Articles
1.
№3-4, 2017
УДК 669.017.165
Influence of microadditives of transition metals and silver on properties sheets from Al–Cu–Mg system alloys
The state-of-the-art review of deformable aluminum alloys of Al–Cu–Mg system is carried out. Microalloying influence by additives of transition metals (Sc, Zr) and silver of sheet semi-finished products from sredneprochny alloys on the basis of Al–Cu–Mg system is investigated. Alloys with different ratio of Cu/Mg are considered. Mechanical properties, fatigue and fracture toughness characteristics are defined at the room temperature. The positive effect of use of complex microalloying by transition metals (Sc, Zr) and Ag is shown.
Keywords: structure, properties, sheets, Al–Cu–Mg, silver, transitional elements.
Reference List
1. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Entsiklopedicheskiy spravochnik. 2008. №3. S. 2–14.
2. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
3. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: August 8, 2016).
4. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Polmer I.J. Aluminium Alloys – A Centry of Age Hardening // ICAA-9. Australia, 2004. P. 1–14.
6. Zaharov V.V., Elagin V.I., Rostova T.D., Filatov Ju.A. Metallovedcheskie principy legirovanija aljuminievyh splavov skandiem [Metallovedchesky principles of alloying of aluminum alloys scandium] // Tehnologija legkih splavov. 2010. №1. S. 67–73.
7. Zaharov V.V. O legirovanii aljuminievyh splavov perehodnymi metallami [About alloying of aluminum alloys transition metals] // MiTOM. 2017. №2. S. 3–8.
8. Cho A., Bes B. Damage Tolerance Capability of an Al–Cu–Mg–Ag Alloy (2139) // Materials Science Forum. 2006. Vol. 519–521. P. 603–608. DOI: 10.4028/www.scientidic.net/MSF.519-521.603.
9. Teleshov V.V., Golovleva A.P. Vlijanie malyh dobavok serebra i parametrov tehnologii izgotovlenija na strukturu i svojstva polufabrikatov iz splavov sistemy Al–Cu–Mg–Ag–Xi [Influence of small additives of silver and manufacturing techniques parameters on structure and properties of semi-finished products from Al-Cu-Mg-Ag-Xi system alloys] // Tehnologija legkih splavov. 2006. №1–2. S. 99–119.
10. Grigorev M.V., Antipov V.V., Vakhromov R.O. i dr. Struktura i svoystva slitkov iz splava sistemy Al–Cu–Mg s mikrodobavkami serebra [Structure and properties of ingots from Al-Cu-Mg system alloy with silver microadditives] // Aviatsionnye materialy i tekhnologii. 2013. №3. S. 3–6.
11. Ringer S.P., Polmear I.J., Sakurai T. Effect of additions of Si and Ag to ternary Al–Cu–Mg alloys in the α+S phase field // Materials Science and Engineering: A. 1996. Vol. 217–218. P. 273–278.
12. Teleshov V.V., Golovleva A.P. Aljuminievye splavy sistemy Al–Mg–(Cu), legirovannye serebrom [The aluminum alloys of Al-Mg-(Cu) system alloyed by silver] // Tehnologija legkih splavov. 2004. №6. S. 49–60.
13. Teleshov V.V., Kaputkin E.Ja., Golovleva A.P., Kosmacheva N.P. Temperaturnye intervaly fazovyh prevrashhenij i mehanicheskie svojstva splavov sistemy Al–Mg–Cu–Ag s razlichnym sootnosheniem Cu/Mg [Temperature intervals of phase transformations and mechanical properties of alloys of Al-Mg-Cu-Ag system with different ratio of Cu/Mg] // MiTOM. 2005. №4. S. 18–23.
14. Kolobnev N.I., Hohlatova L.B., Antipov V.V. Perspektivnye aljuminij-litievye splavy dlja samoletnyh konstrukcij [Perspective aluminum-lithium alloys for aircraft designs] // Tehnologija legkih splavov. 2007. №2. S. 35–38.
15. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Alyuminievye deformiruemye splavy [Aluminum deformable alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
16. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their pro-cessing for the period till 2030] // Aviatsionnye materialy i tekhnologii. 2012. №S. S. 7–17.
2. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
3. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: August 8, 2016).
4. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Polmer I.J. Aluminium Alloys – A Centry of Age Hardening // ICAA-9. Australia, 2004. P. 1–14.
6. Zaharov V.V., Elagin V.I., Rostova T.D., Filatov Ju.A. Metallovedcheskie principy legirovanija aljuminievyh splavov skandiem [Metallovedchesky principles of alloying of aluminum alloys scandium] // Tehnologija legkih splavov. 2010. №1. S. 67–73.
7. Zaharov V.V. O legirovanii aljuminievyh splavov perehodnymi metallami [About alloying of aluminum alloys transition metals] // MiTOM. 2017. №2. S. 3–8.
8. Cho A., Bes B. Damage Tolerance Capability of an Al–Cu–Mg–Ag Alloy (2139) // Materials Science Forum. 2006. Vol. 519–521. P. 603–608. DOI: 10.4028/www.scientidic.net/MSF.519-521.603.
9. Teleshov V.V., Golovleva A.P. Vlijanie malyh dobavok serebra i parametrov tehnologii izgotovlenija na strukturu i svojstva polufabrikatov iz splavov sistemy Al–Cu–Mg–Ag–Xi [Influence of small additives of silver and manufacturing techniques parameters on structure and properties of semi-finished products from Al-Cu-Mg-Ag-Xi system alloys] // Tehnologija legkih splavov. 2006. №1–2. S. 99–119.
10. Grigorev M.V., Antipov V.V., Vakhromov R.O. i dr. Struktura i svoystva slitkov iz splava sistemy Al–Cu–Mg s mikrodobavkami serebra [Structure and properties of ingots from Al-Cu-Mg system alloy with silver microadditives] // Aviatsionnye materialy i tekhnologii. 2013. №3. S. 3–6.
11. Ringer S.P., Polmear I.J., Sakurai T. Effect of additions of Si and Ag to ternary Al–Cu–Mg alloys in the α+S phase field // Materials Science and Engineering: A. 1996. Vol. 217–218. P. 273–278.
12. Teleshov V.V., Golovleva A.P. Aljuminievye splavy sistemy Al–Mg–(Cu), legirovannye serebrom [The aluminum alloys of Al-Mg-(Cu) system alloyed by silver] // Tehnologija legkih splavov. 2004. №6. S. 49–60.
13. Teleshov V.V., Kaputkin E.Ja., Golovleva A.P., Kosmacheva N.P. Temperaturnye intervaly fazovyh prevrashhenij i mehanicheskie svojstva splavov sistemy Al–Mg–Cu–Ag s razlichnym sootnosheniem Cu/Mg [Temperature intervals of phase transformations and mechanical properties of alloys of Al-Mg-Cu-Ag system with different ratio of Cu/Mg] // MiTOM. 2005. №4. S. 18–23.
14. Kolobnev N.I., Hohlatova L.B., Antipov V.V. Perspektivnye aljuminij-litievye splavy dlja samoletnyh konstrukcij [Perspective aluminum-lithium alloys for aircraft designs] // Tehnologija legkih splavov. 2007. №2. S. 35–38.
15. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Alyuminievye deformiruemye splavy [Aluminum deformable alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
16. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their pro-cessing for the period till 2030] // Aviatsionnye materialy i tekhnologii. 2012. №S. S. 7–17.
2.
№5, 2016
УДК 629.7.018.4
Nuzhnyy G.A.1, Gulina I.V.1
Research of long-term action of permanent load and corrosion environment on fracture toughness constructional aluminum alloys
Method of research of kinetics of destruction metallic material by long-term action of permanent load and corrosion environment based on specimen of new type was worked out. This specimen excel specimen of standard ASTM Е1681 in functional capabilities that intended for threshold valuation of stress intensity factor at fixed crack opening by bolt and may was exhibited on exposition in any corrosion or aggressive environment and also have the opportunity to definition of applied tensile load to specimen in testing. Testing of specimens of slab constructional aluminum alloys 1163-Т и V95p.c.-Т2 was carried out. Paradoxical fact of growth of conventional stress intensity factor by propagation of corrosion crack was determined that was conditioned by change of topography of ruptured zone.
Keywords: fracture toughness, corrosion environment, crack
Reference List
1. Cherepanov G.P. Mekhanika khrupkogo razrusheniya [Mechanics of brittle destruction] // Izhevsk: IKI, 2012. 872 s.
2. Muskhelishvili N.I. Nekotorye osnovnye zadachi matematicheskoy teorii uprugosti [Some main objectives of the mathematical theory of elasticity]. M.: Nauka, 1966. 708 s.
3. Westergaard H.M. Bearing Pressures and Cracks // Journal of Applied Mechanics. 1939. Vol. 6. P. A49-53.
4. Sedov L.I. Mekhanika sploshnoy sredy [Mechanics of continuous medium]. M.: Nauka, 1973. T. 1. 536 s.
5. Erasov V.S., Nuzhnyj G.A., Grinevich A.V., Terehin A.L. Treshhinostojkost aviacionnyh materialov v processe ispytaniya na ustalost [Crack growth resistance of aviation materials in fatigue testing] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №10. St. 06. Available at: http://www.viam-works.ru (accessed: October 13, 2016).
6. Grinevich A.V., Nuzhnyy G.A., Gulina I.V. Poisk kriteriya korrozionnoy povrezhdaemosti [Search of criterion of corrosion damageability] // Aviatsionnye materialy i tekhnologii. 2014. №S4. S. 29–33. DOI: 10.18577/2071-9140-2014-0-s4-29-33.
7. Kablov E.N., Startsev O.V. Fundamentalnye i prikladnye issledovaniya korrozii i stareniya materialov v klimaticheskih usloviyah (obzor) [The basic and applied research in the field of corrosion and ageing of materials in natural environments (review)] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
8. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
9. Kablov E.N. Korrozija ili zhizn [Corrosion or life] // Nauka i zhizn. 2012. №11. S. 16–21.
10. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Kvalifikatsionnye ispytaniya i issledovaniya prochnosti aviatsionnyh materialov [Qualification tests and researches of durability of aviation materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
11. Grinevich A.V., Lutsenko A.N., Karimova S.A. Raschetnye harakteristiki metallicheskih materialov s uchetom vlazhnosti [The design characteristic of metallic materials taking into account the humidity] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №7. St. 10. Available at: http://www.viam-works.ru (accessed: October 13, 2016). DOI: 10.18577/2307-6046-2014-0-7-10-10.
12. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
13. Zhilikov V.P., Karimova S.A., Leshko S.S., Chesnokov D.V. Issledovanie dinamiki korrozii alyuminievyh splavov pri ispytanii v kamere solevogo tumana (KST) [Research of dynamics of corrosion of aluminum alloys when testing in the salt spray chamber (SSC)] // Aviacionnye materialy i tehnologii. 2012. №4. S. 18–22.
14. Kurs M.G., Karimova S.A. Naturno-uskorennye ispytaniya: osobennosti metodiki i sposoby ocenki korrozionnyh harakteristik alyuminievyh splavov [Salt-accelerated outdoor corrosion testing: methodology and evaluation of corrosion susceptibility of aluminum alloy] // Aviacionnye materialy i tehnologii. 2014. №1. S. 51–57.
15. Erasov V.S., Mitrakov O.V., Shvets S.M., Lavrov A.V. Vyrashchivanie iskhodnoy treshchiny pri ispytanii na vyazkost razrusheniya (treshchinostoykost) [Cultivation of initial crack at destruction viscosity test (crack resistance)] // Aviatsionnye materialy i tekhnologii. 2014. №S4. S. 55–59. DOI: 10.18577/2071-9140-2014-0-s4-55-59.
2. Muskhelishvili N.I. Nekotorye osnovnye zadachi matematicheskoy teorii uprugosti [Some main objectives of the mathematical theory of elasticity]. M.: Nauka, 1966. 708 s.
3. Westergaard H.M. Bearing Pressures and Cracks // Journal of Applied Mechanics. 1939. Vol. 6. P. A49-53.
4. Sedov L.I. Mekhanika sploshnoy sredy [Mechanics of continuous medium]. M.: Nauka, 1973. T. 1. 536 s.
5. Erasov V.S., Nuzhnyj G.A., Grinevich A.V., Terehin A.L. Treshhinostojkost aviacionnyh materialov v processe ispytaniya na ustalost [Crack growth resistance of aviation materials in fatigue testing] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №10. St. 06. Available at: http://www.viam-works.ru (accessed: October 13, 2016).
6. Grinevich A.V., Nuzhnyy G.A., Gulina I.V. Poisk kriteriya korrozionnoy povrezhdaemosti [Search of criterion of corrosion damageability] // Aviatsionnye materialy i tekhnologii. 2014. №S4. S. 29–33. DOI: 10.18577/2071-9140-2014-0-s4-29-33.
7. Kablov E.N., Startsev O.V. Fundamentalnye i prikladnye issledovaniya korrozii i stareniya materialov v klimaticheskih usloviyah (obzor) [The basic and applied research in the field of corrosion and ageing of materials in natural environments (review)] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
8. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
9. Kablov E.N. Korrozija ili zhizn [Corrosion or life] // Nauka i zhizn. 2012. №11. S. 16–21.
10. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Kvalifikatsionnye ispytaniya i issledovaniya prochnosti aviatsionnyh materialov [Qualification tests and researches of durability of aviation materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
11. Grinevich A.V., Lutsenko A.N., Karimova S.A. Raschetnye harakteristiki metallicheskih materialov s uchetom vlazhnosti [The design characteristic of metallic materials taking into account the humidity] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №7. St. 10. Available at: http://www.viam-works.ru (accessed: October 13, 2016). DOI: 10.18577/2307-6046-2014-0-7-10-10.
12. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
13. Zhilikov V.P., Karimova S.A., Leshko S.S., Chesnokov D.V. Issledovanie dinamiki korrozii alyuminievyh splavov pri ispytanii v kamere solevogo tumana (KST) [Research of dynamics of corrosion of aluminum alloys when testing in the salt spray chamber (SSC)] // Aviacionnye materialy i tehnologii. 2012. №4. S. 18–22.
14. Kurs M.G., Karimova S.A. Naturno-uskorennye ispytaniya: osobennosti metodiki i sposoby ocenki korrozionnyh harakteristik alyuminievyh splavov [Salt-accelerated outdoor corrosion testing: methodology and evaluation of corrosion susceptibility of aluminum alloy] // Aviacionnye materialy i tehnologii. 2014. №1. S. 51–57.
15. Erasov V.S., Mitrakov O.V., Shvets S.M., Lavrov A.V. Vyrashchivanie iskhodnoy treshchiny pri ispytanii na vyazkost razrusheniya (treshchinostoykost) [Cultivation of initial crack at destruction viscosity test (crack resistance)] // Aviatsionnye materialy i tekhnologii. 2014. №S4. S. 55–59. DOI: 10.18577/2071-9140-2014-0-s4-55-59.
3.
№4, 2016
УДК 669.715
Structure of aluminium powders for additive manufacturing, obtained by gas atomization
Additive technologies allow receiving details from widely range of materials, including aluminum alloys. Thus high cooling rates during gas atomization of powders can lead to formation of nonequilibrium structures which can change during heat treatment. This paper deals with the results of investigation of microstructure of aluminium powder after different types of heat treatment.
The work is carried out under the realization of integrated research area 10.3. «Technologies of atomization for producing high quality metallic powders for additive manufacturing and powder for brazing» («Strategic directions of development of materials and technologies for processing them for the period up to 2030»)
Keywords: atomization, aluminium, powders, heat treatment
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Grashchenkov D.V., Shchetanov B.V., Efimochkin I.Yu. Razvitie poroshkovoy metallurgii zharoprochnykh materialov [Development of powder metallurgy of heat resisting materials] // Vse materialy. Entsiklopedicheskiy spravochnik. 2011. №5. S. 13–26.
3. Beresnev A.G., Razumovskiy I.M. Novye resheniya v metallurgicheskom proizvodstve [New decisions in metallurgical production] // Tekhnologiya mashinostroeniya. 2016. №1. S. 29–34.
4. Kablov E.N., Shchetanov B.V., Grashhenkov D.V., Shavnev A.A., Nyafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al–SiC [Metalmatrix composite materials on the basis of Al–SiC] // Aviacionnye materialy i tehnologii. 2012. №S. S. 373–380.
5. Kablov E.N., Shchetanov B.V., Shavnev A.A., Nyafkin A.N. i dr. Svoystva i primenenie vysokonapolnennogo metallomatrichnogo kompozitsionnogo materiala Al‒SiC [Properties and application of the high-filled metalmatrix Al‒SiC composite material] // Tekhnologiya mashinostroeniya. 2011. №3. S. 5–7.
6. Sercombe T., Schaffer G. Rapid manufacturing of aluminum components // Science. 2003.
Vol. 301 (5637). P. 1225–1227.
7. Bremen S., Meiners W., Diatlov A. Selective Laser Melting // Laser Technic Journal. 2012.
No. 9 (2). P. 33–38.
8. Petrovic V., Gonzalez J.V.H., Ferrando O.J., Gordillo J.D., Puchades J.R.B., Grinan L.P. Additive layered manufacturing: sectors of industrial application shown through case studies // Int. J. Prod. Res. 2011. Vol. 49 (4). P. 1061–1079.
9. Aboulkhair N.T., Everitt N.M., Ashcroft I., Tuck C. Reducing porosity in AlSi10Mg parts processed by selective laser melting // Additive Manufacturing. 2014. Vol. 1–4. P. 77–86.
10. Olakanmi E.O. Selective laser sintering/melting (SLS/SLM) of pure Al, Al–Mg, and Al–Si powders: effect of processing conditions and powder properties // J. Mater Process Technol. 2013.
Vol. 213. P. 1387–1405.
11. Antipas G. Gas Atomization of Aluminium Melts: Comparison of Analytical Models // Metals. 2012. No. 2. P. 202–210.
12. Wang E.R., Hui X.D., Wang S.S., Zhao Y.F., Chen G.L. Microstructure and mechanical properties of Al–Si–Ni–Ce alloys prepared by gas-atomization spark plasma sintering and hot-extrusion // Materials Science and Engineering: A. 2011. Vol. 528. Issue 18. P. 5764–5771.
13. Goncharenko E.S., Trapeznikov A.V., Ogorodov D.V. Litejnye alyuminievye splavy (k 100-letiyu so dnya rozhdeniya M.B. Altmana) [Aluminium casting alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №4. St. 02. Available at: http://www.viam-works.ru (accessed: July 19, 2016). DOI: 10.18577/2307-6046-2014-0-4-2-2.
14. Brandl E., Heckenberger U., Holzinger V. et al. Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior // Materials & Design. 2012. Vol. 34. P. 159–169.
15. Prashanth K.G., Scudino S., Klauss H.J. Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment // Materials Science and Engineering: A. 2014. Vol. 590. P. 153–160.
16. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
17. Ryabov D.K., Kolobnev N.I., Samohvalov S.V. Effect of scandium addition on mechanical properties and corrosion resistance of medium strength Al–Zn–Mg(–Cu) alloy // Materials Science Forum. 2014. Vol. 794–796. P. 241–246.
18. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
19. Dobatkin V.I., Belov A.F., Eskin G.I., Borovikova S.I., Golder Yu.G. Zakonomernost kristallizatsii metallicheskikh materialov. Nauchnoe otkrytie. Diplom №271 [Pattern of crystallization of metal materials. Discovery. Diploma No. 271] // Otkrytiya. Izobreteniya. 1983. №37. S. 1.
2. Grashchenkov D.V., Shchetanov B.V., Efimochkin I.Yu. Razvitie poroshkovoy metallurgii zharoprochnykh materialov [Development of powder metallurgy of heat resisting materials] // Vse materialy. Entsiklopedicheskiy spravochnik. 2011. №5. S. 13–26.
3. Beresnev A.G., Razumovskiy I.M. Novye resheniya v metallurgicheskom proizvodstve [New decisions in metallurgical production] // Tekhnologiya mashinostroeniya. 2016. №1. S. 29–34.
4. Kablov E.N., Shchetanov B.V., Grashhenkov D.V., Shavnev A.A., Nyafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al–SiC [Metalmatrix composite materials on the basis of Al–SiC] // Aviacionnye materialy i tehnologii. 2012. №S. S. 373–380.
5. Kablov E.N., Shchetanov B.V., Shavnev A.A., Nyafkin A.N. i dr. Svoystva i primenenie vysokonapolnennogo metallomatrichnogo kompozitsionnogo materiala Al‒SiC [Properties and application of the high-filled metalmatrix Al‒SiC composite material] // Tekhnologiya mashinostroeniya. 2011. №3. S. 5–7.
6. Sercombe T., Schaffer G. Rapid manufacturing of aluminum components // Science. 2003.
Vol. 301 (5637). P. 1225–1227.
7. Bremen S., Meiners W., Diatlov A. Selective Laser Melting // Laser Technic Journal. 2012.
No. 9 (2). P. 33–38.
8. Petrovic V., Gonzalez J.V.H., Ferrando O.J., Gordillo J.D., Puchades J.R.B., Grinan L.P. Additive layered manufacturing: sectors of industrial application shown through case studies // Int. J. Prod. Res. 2011. Vol. 49 (4). P. 1061–1079.
9. Aboulkhair N.T., Everitt N.M., Ashcroft I., Tuck C. Reducing porosity in AlSi10Mg parts processed by selective laser melting // Additive Manufacturing. 2014. Vol. 1–4. P. 77–86.
10. Olakanmi E.O. Selective laser sintering/melting (SLS/SLM) of pure Al, Al–Mg, and Al–Si powders: effect of processing conditions and powder properties // J. Mater Process Technol. 2013.
Vol. 213. P. 1387–1405.
11. Antipas G. Gas Atomization of Aluminium Melts: Comparison of Analytical Models // Metals. 2012. No. 2. P. 202–210.
12. Wang E.R., Hui X.D., Wang S.S., Zhao Y.F., Chen G.L. Microstructure and mechanical properties of Al–Si–Ni–Ce alloys prepared by gas-atomization spark plasma sintering and hot-extrusion // Materials Science and Engineering: A. 2011. Vol. 528. Issue 18. P. 5764–5771.
13. Goncharenko E.S., Trapeznikov A.V., Ogorodov D.V. Litejnye alyuminievye splavy (k 100-letiyu so dnya rozhdeniya M.B. Altmana) [Aluminium casting alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №4. St. 02. Available at: http://www.viam-works.ru (accessed: July 19, 2016). DOI: 10.18577/2307-6046-2014-0-4-2-2.
14. Brandl E., Heckenberger U., Holzinger V. et al. Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior // Materials & Design. 2012. Vol. 34. P. 159–169.
15. Prashanth K.G., Scudino S., Klauss H.J. Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment // Materials Science and Engineering: A. 2014. Vol. 590. P. 153–160.
16. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
17. Ryabov D.K., Kolobnev N.I., Samohvalov S.V. Effect of scandium addition on mechanical properties and corrosion resistance of medium strength Al–Zn–Mg(–Cu) alloy // Materials Science Forum. 2014. Vol. 794–796. P. 241–246.
18. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
19. Dobatkin V.I., Belov A.F., Eskin G.I., Borovikova S.I., Golder Yu.G. Zakonomernost kristallizatsii metallicheskikh materialov. Nauchnoe otkrytie. Diplom №271 [Pattern of crystallization of metal materials. Discovery. Diploma No. 271] // Otkrytiya. Izobreteniya. 1983. №37. S. 1.
4.
№4, 2016
УДК 669.715:669.884
Structure aspects of 1441 Al–Cu–Mg–Li alloy ingots according to solution heat treatment methods
The investigation of phase merging within 1441 Al–Cu–Mg–Li alloy ingots solution heat treatment was carried out. Raising temperature of solution heat treatment from 500 to 530°С causes almost complete nonequilibrium eutectic merge. 540°С, 24 h regime can cause partial melting of nonequilibrium eutectic on grain boundaries and ingot microporosity. Double-stage solution heat treatment of 1441 alloy with first stage at the 70–100°С lower point than the temperature of nonequilibrium solidus and high temperature second stage that is a little more than nonequilibrium solidus temperature allows reaching the most complete precipitation merge and raises material`s technical plasticity at the hot deformation temperature.
The work within the framework of an integrated research area 8.1. «High-welded aluminum and aluminum-lithium alloys low density with high fracture toughness» («The strategic directions of development of materials and technologies of their processing them for the period till 203
Keywords: Al–Cu–Mg–Li alloy, ingot, microstructure, solution heat treatment, differential thermal analisys
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strate-gicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Entsiklopedicheskiy spravochnik. 2008. №3. S. 2–14.
3. Kablov E.N., Shchetanov B.V., Grashhenkov D.V., Shavnev A.A., Nyafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al–SiC [Metalmatrix composite materials on the basis of Al–SiC] // Aviacionnye materialy i tehnologii. 2012. №S. S. 373–380.
4. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
5. Fridlyander I.N., Chuistov K.V., Berezina A.L., Kolobnev N.I. Alyuminiy-litievye splavy. Struktura i svoystva [Aluminum-lithium alloys. Structure and properties]. Kiev: Naukova dumka, 1992. 192 s.
6. Fridlyander I.N., Kolobnev N.I., Sandler V.S. Alyuminiy-litievye splavy [Aluminum-lithium alloys] // Mashinostroenie: entsiklopediya. M.: Mashinostroenie, 2001. T. II-3: Tsvetnye metally i splavy. Kompozitsionnye metallicheskie materialy. S. 156–184.
7. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Alyuminievye deformiruemye splavy [Aluminum deformable alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
8. Sposob polucheniya slitkov iz alyuminievykh splavov, soderzhashchikh litiy [Way of receiving ingots from the aluminum alloys containing lithium]: pat. 2463364 Ros. Federatsiya; opubl. 03.05.11.
9. Ovsyannikov B.V., Komarov S.B. Razvitie proizvodstva deformirovannykh polufabrikatov iz alyuminievo-litievykh splavov v OAO «KUMZ» [Development of production of the deformed semi-finished products from aluminum-lithium alloys in JSC KUMZ] // Tekhnologiya legkikh splavov. 2014. №1. S. 97–103.
10. Ovsyannikov B.V., Zamyatin V.M., Mushnikov V.S., Oglodkov M.S. Termicheskiy i mikrorentgenospektral'nyy analiz slitkov splava V-1461 na osnove sistemy Al–Cu–Li [Thermal and microx ray spectral analysis of ingots of alloy V-1461 on the basis of Al–Cu–Li system] // Metallovedenie i termicheskaya obrabotka metallov. 2014. №6 (708). S. 12–17.
11. Kolobnev N.I., Khokhlatova L.B., Antipov V.V. Perspektivnye alyuminiy-litievye splavy dlya samoletnykh konstruktsiy [Perspective aluminum-lithium alloys for aircraft designs] // Tekhnologiya legkikh splavov. 2007. №2. S. 35–38.
12. Ryabova E.N., Kolobnev N.I., Khokhlatova L.B., Oglodkov M.S. Osobennosti struktury i svoystv listov iz splavov sistemy Al–Cu–Li–Mg [Features of structure and properties of sheets from
Al–Cu–Li–Mg system alloys] // Metallurgiya mashinostroeniya. 2015. №1. S. 17–19.
13. Oglodkov M.S., Hohlatova L.B., Kolobnev N.I., Alekseev A.A., Lukina E.A. Vlijanie termomehanicheskoj obrabotki na svojstva i strukturu splava sistemy Al–Cu–Mg–Li–Zn [Influence of thermomechanical processing on properties and Al–Cu–Mg–Li–Zn system alloy structure] //Aviacionnye materialy i tehnologii. 2010. №4. S. 7–11.
14. Antipov V.V., Kolobnev N.I., Hohlatova L.B. Razvitie alyuminijlitievyh splavov i mnogostupenchatyh rezhimov termicheskoj obrabotki [Development aluminum lithium alloys and multistage modes of thermal processing] // Aviacionnye materialy i tehnologii. 2012. №S. S. 183–195.
15. Khokhlatova L.B., Kolobnev N.I., Oglodkov M.S. i dr. Izmenenie fazovogo sostava v zavisimosti ot rezhimov stareniya i struktury polufabrikatov splava V-1461 [Change of phase structure depending on modes of aging and structure of semi-finished products of alloy V-1461] // MiTOM. 2012. №6. S. 20–24.
16. Khokhlatova L.B., Kolobnev N.I., Oglodkov M.S., Mikhaylov E.D. Alyuminiylitievye splavy dlya samoletostroeniya [Alyuminiylitiyevye alloys for aircraft construction] // Metallurg. 2012. №5.
S. 31–35.
17. Khokhlatova L.B., Oglodkov M.S., Ponomarev E.L. Vliyanie rezhimov stareniya na korrozionnuyu stoykost' listov iz splava V-1461 sistemy Al–Li–Cu–Zn–Mg [Influence of modes of aging on corrosion resistance of sheets from alloy V-1461 of Al–Li–Cu–Zn–Mg system ] // Metallurgiya mashinostroeniya. 2012. №3. S. 22–26.
18. Loshchinin Yu.V., Pakhomkin S.I., Fokin A.S. Vliyanie skorosti nagrevaniya pri issledovanii fazovykh prevrashcheniy v alyuminievykh splavakh metodom DSK [Influence of speed of heating at research of phase transformations in aluminum alloys DSC method] // Aviatsionnye materialy i tekhnologii. 2011. №2. S. 3–6.
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Entsiklopedicheskiy spravochnik. 2008. №3. S. 2–14.
3. Kablov E.N., Shchetanov B.V., Grashhenkov D.V., Shavnev A.A., Nyafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al–SiC [Metalmatrix composite materials on the basis of Al–SiC] // Aviacionnye materialy i tehnologii. 2012. №S. S. 373–380.
4. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
5. Fridlyander I.N., Chuistov K.V., Berezina A.L., Kolobnev N.I. Alyuminiy-litievye splavy. Struktura i svoystva [Aluminum-lithium alloys. Structure and properties]. Kiev: Naukova dumka, 1992. 192 s.
6. Fridlyander I.N., Kolobnev N.I., Sandler V.S. Alyuminiy-litievye splavy [Aluminum-lithium alloys] // Mashinostroenie: entsiklopediya. M.: Mashinostroenie, 2001. T. II-3: Tsvetnye metally i splavy. Kompozitsionnye metallicheskie materialy. S. 156–184.
7. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Alyuminievye deformiruemye splavy [Aluminum deformable alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
8. Sposob polucheniya slitkov iz alyuminievykh splavov, soderzhashchikh litiy [Way of receiving ingots from the aluminum alloys containing lithium]: pat. 2463364 Ros. Federatsiya; opubl. 03.05.11.
9. Ovsyannikov B.V., Komarov S.B. Razvitie proizvodstva deformirovannykh polufabrikatov iz alyuminievo-litievykh splavov v OAO «KUMZ» [Development of production of the deformed semi-finished products from aluminum-lithium alloys in JSC KUMZ] // Tekhnologiya legkikh splavov. 2014. №1. S. 97–103.
10. Ovsyannikov B.V., Zamyatin V.M., Mushnikov V.S., Oglodkov M.S. Termicheskiy i mikrorentgenospektral'nyy analiz slitkov splava V-1461 na osnove sistemy Al–Cu–Li [Thermal and microx ray spectral analysis of ingots of alloy V-1461 on the basis of Al–Cu–Li system] // Metallovedenie i termicheskaya obrabotka metallov. 2014. №6 (708). S. 12–17.
11. Kolobnev N.I., Khokhlatova L.B., Antipov V.V. Perspektivnye alyuminiy-litievye splavy dlya samoletnykh konstruktsiy [Perspective aluminum-lithium alloys for aircraft designs] // Tekhnologiya legkikh splavov. 2007. №2. S. 35–38.
12. Ryabova E.N., Kolobnev N.I., Khokhlatova L.B., Oglodkov M.S. Osobennosti struktury i svoystv listov iz splavov sistemy Al–Cu–Li–Mg [Features of structure and properties of sheets from
Al–Cu–Li–Mg system alloys] // Metallurgiya mashinostroeniya. 2015. №1. S. 17–19.
13. Oglodkov M.S., Hohlatova L.B., Kolobnev N.I., Alekseev A.A., Lukina E.A. Vlijanie termomehanicheskoj obrabotki na svojstva i strukturu splava sistemy Al–Cu–Mg–Li–Zn [Influence of thermomechanical processing on properties and Al–Cu–Mg–Li–Zn system alloy structure] //Aviacionnye materialy i tehnologii. 2010. №4. S. 7–11.
14. Antipov V.V., Kolobnev N.I., Hohlatova L.B. Razvitie alyuminijlitievyh splavov i mnogostupenchatyh rezhimov termicheskoj obrabotki [Development aluminum lithium alloys and multistage modes of thermal processing] // Aviacionnye materialy i tehnologii. 2012. №S. S. 183–195.
15. Khokhlatova L.B., Kolobnev N.I., Oglodkov M.S. i dr. Izmenenie fazovogo sostava v zavisimosti ot rezhimov stareniya i struktury polufabrikatov splava V-1461 [Change of phase structure depending on modes of aging and structure of semi-finished products of alloy V-1461] // MiTOM. 2012. №6. S. 20–24.
16. Khokhlatova L.B., Kolobnev N.I., Oglodkov M.S., Mikhaylov E.D. Alyuminiylitievye splavy dlya samoletostroeniya [Alyuminiylitiyevye alloys for aircraft construction] // Metallurg. 2012. №5.
S. 31–35.
17. Khokhlatova L.B., Oglodkov M.S., Ponomarev E.L. Vliyanie rezhimov stareniya na korrozionnuyu stoykost' listov iz splava V-1461 sistemy Al–Li–Cu–Zn–Mg [Influence of modes of aging on corrosion resistance of sheets from alloy V-1461 of Al–Li–Cu–Zn–Mg system ] // Metallurgiya mashinostroeniya. 2012. №3. S. 22–26.
18. Loshchinin Yu.V., Pakhomkin S.I., Fokin A.S. Vliyanie skorosti nagrevaniya pri issledovanii fazovykh prevrashcheniy v alyuminievykh splavakh metodom DSK [Influence of speed of heating at research of phase transformations in aluminum alloys DSC method] // Aviatsionnye materialy i tekhnologii. 2011. №2. S. 3–6.
5.
№4, 2016
УДК 669.715
Features of forming of structure of round ingots from aluminum alloys on the basis of Al–Cu–Mg system
Traditionally, in the open air of modern aviation technology products are used alloys based on the Al–Cu–Mg system. However, due to the ever increasing demand for the resource and reliability of the critical elements of the airframe requires improving service performance. One area of development to improve the lifetime characteristics of a multicomponent microalloying additives (Sc, Zr – up to 0,15%; Ag – 0,50%) to obtain a semifinished unrecrystallized structure. In this paper we present the main findings of phase dissolution features in the homogenization of ingots with a diameter of 100 mm from alloy series 1163 and future vysokoresursnyh alloy B-1167. Abstract macro and microstructure, phase composition of the ingots as cast and homogenised state. An assessment of their technological properties. The studies show a positive effect of an integrated micro-alloying with transition metals (Sc, Zr) and Ag.
The work within the framework of an integrated research area 8.1. «High-welded al
Keywords: structure, phase composition, properties, MRSA analysis
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Entsiklopedicheskiy spravochnik. 2008. №3. S. 2–14.
4. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: August 8, 2016).
5. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
6. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Alyuminievye deformiruemye splavy [Aluminum deformable alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
7. Novikov I.I., Zolotorevskiy V.S., Portnoy V.K. i dr. Metallovedenie [Metallurgical science]. M.: MISiS, 2009. T. 2. S. 262–312.
8. Chirkov E.F. Temp razuprochneniya pri nagrevakh – kriteriy otsenki zharoprochnosti kon-struktsionnykh splavov sistem Al–Cu–Mg i Al–Cu [Rate of loss of strength when heatings – criterion of assessment of thermal stability of structural alloys of Al–Cu–Mg and Al–Cu systems ] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2013. №2. St. 02. Available at: http://www.viam-works.ru (accessed: August 8, 2016).
9. Grigorev M.V., Antipov V.V., Vakhromov R.O. i dr. Struktura i svoystva slitkov iz splava sistemy Al–Cu–Mg s mikrodobavkami serebra [Structure and properties of ingots from Al-Cu-Mg system alloy with silver microadditives] // Aviatsionnye materialy i tekhnologii. 2013. №3. S. 3–6.
10. Loshchinin Yu.V., Pakhomkin S.I., Fokin A.S. Vliyanie skorosti nagreva pri issledovanii fazovykh prevrashcheniy v alyuminievykh splavakh metodom DSK [Influence of speed of heating at research of phase transformations in aluminum alloys DSC method] // Aviatsionnye materialy i tekhnologii. 2011. №2. S. 3–6.
11. Geuser F. De, Bley F., Deschamps A. Early stage of Ω phase precipitation in Al–Cu–Mg–Ag observed in situ with and without applied stress by small angle x-ray scattering // Proc. of the 12th ICAA. Japan, 2010. P. 475–480.
12. Cho A., Bes B. Damage tolerance capability of an Al–Cu–Mg–Ag Al2139 aluminum alloys // Materuals Science Forum. 2006. Vol. 519–521. P. 603–608.
13. Ringer S.P., Polmearb I.J., Sakurai T. Effect of additions of Si and Ag to ternary Al–Cu–Mg alloys in the α+S phase field // Materials Science and Engineering: A. 1996. Vol. 217–218. P. 273–276.
14. Polmer I.J. Aluminium alloys – a century of age hardening // ICAA-9. Australia. 2004. P. 1–14.
15. Teleshov V.V., Golovleva A.P. Alyuminievye splavy sistemy Al–Mg–(Cu), legirovannye serebrom [The aluminum alloys of Al–Mg–(Cu) system alloyed by silver] // Tekhnologiya legkikh splavov. 2004. №6. S. 49–60.
16. Teleshov V.V., Gogoleva A.P. Vliyanie malykh dobavok serebra i parametrov tekhnologii izgotovleniya na strukturu i svoystva polufabrikatov iz splavov sistemy Al–Cu–Mg–Xi [Influence of small additives of silver and manufacturing techniques parameters on structure and properties of semi-finished products from Al-Cu-Mg-Xi system alloys] // Tekhnologiya legkikh splavov. 2006. №1–2. S. 99–119.
17. Mondolfo L.F. Struktura i svoystva alyuminievykh splavov [Structure and properties of aluminum alloys]. M.: Metallurgiya, 1979. S. 251.
18. Zakharov V.V., Elagin V.I., Rostova T.D., Filatov Yu.A. Metallovedcheskie printsipy legirovaniya alyuminievykh splavov skandiem [Metallovedchesky principles of alloying of aluminum alloys scandium] // Tekhnologiya legkikh splavov. 2010. №1. S. 67–73.
19. Elagin V.I. Legirovanie deformiruemykh alyuminievykh splavov perekhodnymi metallami [Alloying of deformable aluminum alloys transition metals]. M.: Metallurgiya, 1975. 248 s.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Entsiklopedicheskiy spravochnik. 2008. №3. S. 2–14.
4. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: August 8, 2016).
5. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
6. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Alyuminievye deformiruemye splavy [Aluminum deformable alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
7. Novikov I.I., Zolotorevskiy V.S., Portnoy V.K. i dr. Metallovedenie [Metallurgical science]. M.: MISiS, 2009. T. 2. S. 262–312.
8. Chirkov E.F. Temp razuprochneniya pri nagrevakh – kriteriy otsenki zharoprochnosti kon-struktsionnykh splavov sistem Al–Cu–Mg i Al–Cu [Rate of loss of strength when heatings – criterion of assessment of thermal stability of structural alloys of Al–Cu–Mg and Al–Cu systems ] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2013. №2. St. 02. Available at: http://www.viam-works.ru (accessed: August 8, 2016).
9. Grigorev M.V., Antipov V.V., Vakhromov R.O. i dr. Struktura i svoystva slitkov iz splava sistemy Al–Cu–Mg s mikrodobavkami serebra [Structure and properties of ingots from Al-Cu-Mg system alloy with silver microadditives] // Aviatsionnye materialy i tekhnologii. 2013. №3. S. 3–6.
10. Loshchinin Yu.V., Pakhomkin S.I., Fokin A.S. Vliyanie skorosti nagreva pri issledovanii fazovykh prevrashcheniy v alyuminievykh splavakh metodom DSK [Influence of speed of heating at research of phase transformations in aluminum alloys DSC method] // Aviatsionnye materialy i tekhnologii. 2011. №2. S. 3–6.
11. Geuser F. De, Bley F., Deschamps A. Early stage of Ω phase precipitation in Al–Cu–Mg–Ag observed in situ with and without applied stress by small angle x-ray scattering // Proc. of the 12th ICAA. Japan, 2010. P. 475–480.
12. Cho A., Bes B. Damage tolerance capability of an Al–Cu–Mg–Ag Al2139 aluminum alloys // Materuals Science Forum. 2006. Vol. 519–521. P. 603–608.
13. Ringer S.P., Polmearb I.J., Sakurai T. Effect of additions of Si and Ag to ternary Al–Cu–Mg alloys in the α+S phase field // Materials Science and Engineering: A. 1996. Vol. 217–218. P. 273–276.
14. Polmer I.J. Aluminium alloys – a century of age hardening // ICAA-9. Australia. 2004. P. 1–14.
15. Teleshov V.V., Golovleva A.P. Alyuminievye splavy sistemy Al–Mg–(Cu), legirovannye serebrom [The aluminum alloys of Al–Mg–(Cu) system alloyed by silver] // Tekhnologiya legkikh splavov. 2004. №6. S. 49–60.
16. Teleshov V.V., Gogoleva A.P. Vliyanie malykh dobavok serebra i parametrov tekhnologii izgotovleniya na strukturu i svoystva polufabrikatov iz splavov sistemy Al–Cu–Mg–Xi [Influence of small additives of silver and manufacturing techniques parameters on structure and properties of semi-finished products from Al-Cu-Mg-Xi system alloys] // Tekhnologiya legkikh splavov. 2006. №1–2. S. 99–119.
17. Mondolfo L.F. Struktura i svoystva alyuminievykh splavov [Structure and properties of aluminum alloys]. M.: Metallurgiya, 1979. S. 251.
18. Zakharov V.V., Elagin V.I., Rostova T.D., Filatov Yu.A. Metallovedcheskie printsipy legirovaniya alyuminievykh splavov skandiem [Metallovedchesky principles of alloying of aluminum alloys scandium] // Tekhnologiya legkikh splavov. 2010. №1. S. 67–73.
19. Elagin V.I. Legirovanie deformiruemykh alyuminievykh splavov perekhodnymi metallami [Alloying of deformable aluminum alloys transition metals]. M.: Metallurgiya, 1975. 248 s.
6.
№3, 2016
УДК 669.715:621.785
Ber L.B.1
TTT (temperature–time–transformation) and TTP (temperature–time–property)
diagrams for aging of heat treatment strengthenable aluminum alloys. Their use for the development of step aging regimes
There were considered the isothermal TTT (temperature–time–transformation) and TTP (temperature–time–property) aging diagrams for Al–Cu, Al–Cu–Mg, Al–Zn–Mg–(Cu), Al–Mg–Si–(Cu) system heat treatment strengthenable aluminum alloys. The use of optimal step aging regime instead of single-step regime is effective for improving the complex of properties or to accelerate the aging. The optimum phase composition of hardening precipitates was determined with using the TTT and TTP aging diagrams. The regimes for first low temperature aging step (LA), at which for second high temperature aging step (HA) the disperse hardening precipitates that have arisen in the volume of grain at the first aging step will inherit the disperse hardening precipitates, forming at the second aging step. The recovery at the HA step is not necessary, which facilitates the commercial application of these aging regimes. Examples of the effective step aging regimes for the aluminum alloys of different alloying systems we
Keywords: heat treatment strengthenable aluminum alloys, TTT (temperature–time–transformation) aging diagrams, TTP (temperature–time–property) aging diagrams, step aging regimes.
Reference List
1. Davydov V.G., Zakharov V.V., Zakharov E.D., Novikov I.I. Diagrammy izotermicheskogo raspada rastvora v alyuminievykh splavakh: Spravochnik [Charts of isothermal disintegration of solution in aluminum alloys: Directory]. M.: Metallurgiya, 1973. 152 s.
2. Atlas of Time-Temperature Diagrams for Nonferrous Alloys / ed. G.F. van der Voort. S.1.: ASM Intern., 1991. Al Alloys. P. 3–42.
3. Alekseev A.A., Ber L.B. Diagrammy fazovykh prevrashcheniy pri starenii splavov sistemy
Al–Cu–Mg [Charts of phase transformations when aging alloys of Al–Cu–Mg system] // Tekhnologiya legkikh splavov. 1991. №1. S. 9–13.
4. Alekseev A.A., Ber L.B. Diagrammy fazovykh prevrashcheniy pri starenii splavov sistem Al–Cu i Al–Mg–Si–(Cu) [Charts of phase transformations when aging alloys of systems Al–Cu and
Al–Mg–Si–(Cu)] // Tekhnologiya legkikh splavov. 1991. №3. S. 18–20.
5. Alekseev A.A., Ber L.B. Diagrammy fazovykh prevrashcheniy pri starenii splavov sistem
Al–Zn–Mg–(Cu), Al–Li–Cu i Al–Li–Cu–Mg [Charts of phase transformations when aging alloys of systems Al–Zn–Mg–(Cu), Al–Li–Cu and Al–Li–Cu–Mg] // Tekhnologiya legkikh splavov. 1991. №5. S. 15–19.
6. Ber L.B., Kaputkin E.Ya. Diagrammy fazovykh prevrashcheniy alyuminievykh splavov sistem
Al–Cu–Mg, Al–Mg–Si–Cu i Al–Mg–Li [Charts of phase transformations of aluminum alloys of systems Al–Cu–Mg, Al–Mg–Si–Cu and Al–Mg–Li] // FMM. 2001. T. 92. №2. S. 101–111.
7. Alekseev A.A., Fridlyander I.N., Ber L.B. Mechanisms of phase transformations under ageing in the alloys of Al–Zn–Mg–(Cu) system. Aluminium Alloys, Their Physical and Mechanical Properties / ed. P.J. Gregson, S.J. Harris. // Proc. of 8th Int. Conf. on Aluminum Alloys. UK, Cambridge. July 02–05, 2002. P. 2; P. 821–826.
8. Kelli A., Nikolson R. Dispersionnoe tverdenie [Dispersive tverdeniye]. M.: Metallurgiya, 1965.
298 s.
9. Novikov I.I. Teoriya termicheskoy obrabotki metallov [Theory of thermal processing of metals]. 4-e izd., M.: Metallurgiya, 1986. 480 s.
10. Chuistov K.V. Starenie metallicheskikh splavov [Aging of metal alloys]. Vtoroe izdanie, dopolnennoe i pererabotannoe. Kiev: Akademperiodika NAN Ukrainy, 2003. 567 s.
11. Pashley D., Jacobs M., Vietz J. The basic process affecting two-step ageing in Al–Mg–Si alloy // Phil. Mag., 1967. V. 16. №139. Р. 51–76.
12. Lorimer G., Nicholson R. Further results on nucleation of precipitates in the Al–Zn–Mg system // Acta met., 1966. V. 14. №8. Р. 1009–1013.
13. Embury J.D., Nicholson R.B. The nucleation of precipitates: the system Al–Zn–Mg // Acta met., 1965. V. 13. №4. Р. 403–417.
14. Fridlyander I.N., Kozlovskaya V.P. Stupenchatoe starenie splava V95 [Step aging of alloy В95] // Sb. VIAM. M., 1948. Ch. 2.
15. Fridlyander I.N., Kutaytseva E.I., Liberman E.D. Yavlenie vozvrata pri starenii splava V95 [The return phenomenon when aging alloy В95] / VIAM; MAP. M., 1948. Ch. 1. S. 3–26.
16. Fridlyander I.N. Vysokoprochnye deformiruemye alyuminievye splavy [High-strength deformable aluminum alloys]. M.: Oborongiz, 1960. 291 s.
17. Ber L.B. Praktika ispol'zovaniya rentgenovskikh metodov issledovaniya alyuminievykh splavov (obzor) [Practice of use of x-ray methods of research of aluminum alloys (review)] // Zavodskaya laboratoriya. Diagnostika materialov. 2007. №7. T. 73. S. 29–40.
18. Ber L.B. Accelerated artificial ageing regimes of commercial aluminium alloys. I. Al–Cu–Mg alloys // Material Science & Engineering. A. Structural Materials: Properties, Microstructure and Processing. A280. 2000. Р. 83–90.
19. Ber L.B. Accelerated artificial ageing regimes of commercial aluminium alloys. II. Al–Cu,
Al–Zn–Mg–(Cu), Al–Mg–Si–(Cu) alloys // Materials Science & Engineering. A. Structural Materials: Properties, Microstructure and Processing. A280. 2000. Р. 91–96.
20. Elagin V.I., Ber L.B., Rostova T.D., Ukolova O.G. Sovershenstvovanie trekhstupenchatykh rezhimov stareniya splavov sistemy Al–Zn–Mg–Cu [Improvement of three-stage modes of aging of alloys of Al–Zn–Mg–Cu system] // Tekhnologiya legkikh splavov. 2009. №2. S. 12–19.
21. Sinyavskiy V.S., Valkov V.D., Kalinin V.D. Korroziya i zashchita alyuminievykh splavov [Corrosion and protection of aluminum alloys]. 2-e izd. M.: Metallurgiya, 1986. 368 s.
22. Elagin V.I. Sostoyanie i puti povysheniya treshchinostoykosti vysokoprochnykh alyuminievykh splavov [Condition and ways of increase of a treshchinostoykost of high-strength aluminum alloys] // MiTOM. 2002. №9. S. 10–19.
23. Cina B. Reducing the susceptibility of alloys, particularly aluminium alloys, to stress corrosion cracking: pat. 3856584 US; publ. 24.12.74.
24. Ber L.B., Sinyavskiy V.S., Zakharov V.V. i dr. Vliyanie rezhimov zakalki i stareniya na fazovyy sostav, mekhanicheskie svoystva i soprotivlenie MKK listov iz splava tipa 1370 [Influence of modes of training and aging on phase structure, mechanical properties and resistance of MKK of sheets from type 1370 alloy] // Tekhnologiya legkikh splavov. 2008. №4. S. 15‒23.
25. Makhsidov V.V., Kolobnev N.I., Karimova S.A., Sbitneva S.V. Vzaimosvyaz struktury i korrozionnoy stoykosti v splave 1370 sistemy Al–Mg–Si–Cu–Zn [Interrelation of structure and corrosion firmness in an alloy of the 1370th Al-Mg-Si-Cu-Zn system] // Aviatsionnye materialy i tekhnologii. 2012. №1. S. 8–13.
2. Atlas of Time-Temperature Diagrams for Nonferrous Alloys / ed. G.F. van der Voort. S.1.: ASM Intern., 1991. Al Alloys. P. 3–42.
3. Alekseev A.A., Ber L.B. Diagrammy fazovykh prevrashcheniy pri starenii splavov sistemy
Al–Cu–Mg [Charts of phase transformations when aging alloys of Al–Cu–Mg system] // Tekhnologiya legkikh splavov. 1991. №1. S. 9–13.
4. Alekseev A.A., Ber L.B. Diagrammy fazovykh prevrashcheniy pri starenii splavov sistem Al–Cu i Al–Mg–Si–(Cu) [Charts of phase transformations when aging alloys of systems Al–Cu and
Al–Mg–Si–(Cu)] // Tekhnologiya legkikh splavov. 1991. №3. S. 18–20.
5. Alekseev A.A., Ber L.B. Diagrammy fazovykh prevrashcheniy pri starenii splavov sistem
Al–Zn–Mg–(Cu), Al–Li–Cu i Al–Li–Cu–Mg [Charts of phase transformations when aging alloys of systems Al–Zn–Mg–(Cu), Al–Li–Cu and Al–Li–Cu–Mg] // Tekhnologiya legkikh splavov. 1991. №5. S. 15–19.
6. Ber L.B., Kaputkin E.Ya. Diagrammy fazovykh prevrashcheniy alyuminievykh splavov sistem
Al–Cu–Mg, Al–Mg–Si–Cu i Al–Mg–Li [Charts of phase transformations of aluminum alloys of systems Al–Cu–Mg, Al–Mg–Si–Cu and Al–Mg–Li] // FMM. 2001. T. 92. №2. S. 101–111.
7. Alekseev A.A., Fridlyander I.N., Ber L.B. Mechanisms of phase transformations under ageing in the alloys of Al–Zn–Mg–(Cu) system. Aluminium Alloys, Their Physical and Mechanical Properties / ed. P.J. Gregson, S.J. Harris. // Proc. of 8th Int. Conf. on Aluminum Alloys. UK, Cambridge. July 02–05, 2002. P. 2; P. 821–826.
8. Kelli A., Nikolson R. Dispersionnoe tverdenie [Dispersive tverdeniye]. M.: Metallurgiya, 1965.
298 s.
9. Novikov I.I. Teoriya termicheskoy obrabotki metallov [Theory of thermal processing of metals]. 4-e izd., M.: Metallurgiya, 1986. 480 s.
10. Chuistov K.V. Starenie metallicheskikh splavov [Aging of metal alloys]. Vtoroe izdanie, dopolnennoe i pererabotannoe. Kiev: Akademperiodika NAN Ukrainy, 2003. 567 s.
11. Pashley D., Jacobs M., Vietz J. The basic process affecting two-step ageing in Al–Mg–Si alloy // Phil. Mag., 1967. V. 16. №139. Р. 51–76.
12. Lorimer G., Nicholson R. Further results on nucleation of precipitates in the Al–Zn–Mg system // Acta met., 1966. V. 14. №8. Р. 1009–1013.
13. Embury J.D., Nicholson R.B. The nucleation of precipitates: the system Al–Zn–Mg // Acta met., 1965. V. 13. №4. Р. 403–417.
14. Fridlyander I.N., Kozlovskaya V.P. Stupenchatoe starenie splava V95 [Step aging of alloy В95] // Sb. VIAM. M., 1948. Ch. 2.
15. Fridlyander I.N., Kutaytseva E.I., Liberman E.D. Yavlenie vozvrata pri starenii splava V95 [The return phenomenon when aging alloy В95] / VIAM; MAP. M., 1948. Ch. 1. S. 3–26.
16. Fridlyander I.N. Vysokoprochnye deformiruemye alyuminievye splavy [High-strength deformable aluminum alloys]. M.: Oborongiz, 1960. 291 s.
17. Ber L.B. Praktika ispol'zovaniya rentgenovskikh metodov issledovaniya alyuminievykh splavov (obzor) [Practice of use of x-ray methods of research of aluminum alloys (review)] // Zavodskaya laboratoriya. Diagnostika materialov. 2007. №7. T. 73. S. 29–40.
18. Ber L.B. Accelerated artificial ageing regimes of commercial aluminium alloys. I. Al–Cu–Mg alloys // Material Science & Engineering. A. Structural Materials: Properties, Microstructure and Processing. A280. 2000. Р. 83–90.
19. Ber L.B. Accelerated artificial ageing regimes of commercial aluminium alloys. II. Al–Cu,
Al–Zn–Mg–(Cu), Al–Mg–Si–(Cu) alloys // Materials Science & Engineering. A. Structural Materials: Properties, Microstructure and Processing. A280. 2000. Р. 91–96.
20. Elagin V.I., Ber L.B., Rostova T.D., Ukolova O.G. Sovershenstvovanie trekhstupenchatykh rezhimov stareniya splavov sistemy Al–Zn–Mg–Cu [Improvement of three-stage modes of aging of alloys of Al–Zn–Mg–Cu system] // Tekhnologiya legkikh splavov. 2009. №2. S. 12–19.
21. Sinyavskiy V.S., Valkov V.D., Kalinin V.D. Korroziya i zashchita alyuminievykh splavov [Corrosion and protection of aluminum alloys]. 2-e izd. M.: Metallurgiya, 1986. 368 s.
22. Elagin V.I. Sostoyanie i puti povysheniya treshchinostoykosti vysokoprochnykh alyuminievykh splavov [Condition and ways of increase of a treshchinostoykost of high-strength aluminum alloys] // MiTOM. 2002. №9. S. 10–19.
23. Cina B. Reducing the susceptibility of alloys, particularly aluminium alloys, to stress corrosion cracking: pat. 3856584 US; publ. 24.12.74.
24. Ber L.B., Sinyavskiy V.S., Zakharov V.V. i dr. Vliyanie rezhimov zakalki i stareniya na fazovyy sostav, mekhanicheskie svoystva i soprotivlenie MKK listov iz splava tipa 1370 [Influence of modes of training and aging on phase structure, mechanical properties and resistance of MKK of sheets from type 1370 alloy] // Tekhnologiya legkikh splavov. 2008. №4. S. 15‒23.
25. Makhsidov V.V., Kolobnev N.I., Karimova S.A., Sbitneva S.V. Vzaimosvyaz struktury i korrozionnoy stoykosti v splave 1370 sistemy Al–Mg–Si–Cu–Zn [Interrelation of structure and corrosion firmness in an alloy of the 1370th Al-Mg-Si-Cu-Zn system] // Aviatsionnye materialy i tekhnologii. 2012. №1. S. 8–13.
7.
№3, 2016
УДК 669.715
Naumova E.A.1, Nikitin B.K.1, Gromov A.V.1
Investigation of technological and mechanical properties of new casting eutectic aluminum alloys of type "Natural Composites"
The structure, castability and deformability of some ternary eutectic alloys (Al–Ca–Ni,
Al–Ca–Cu, Al–Ca–Fe and Al–Ca–Si) in the as-cast and heat treated states were studied. The ternary eutectics (Al)+Al4Ca+Х (where X – ternary compound) had a much finer structure as compared to the Al–Si eutectic, which suggests a possibility for the creation of the so-called natural composites produced by conventional casting.
Keywords: Al–Ca–Ni, Al–Ca–Cu, Al–Ca–Fe and Al–Ca–Si phase diagrams, heat treatment, microstructure, castability, hot tearing, deformability.
Reference List
1. Zolotorevskiy V.S., Belov N.A. Metallovedenie liteynykh alyuminievykh splavov [Metallurgical science of foundry aluminum alloys]. M.: MISiS, 2005. 376 s.
2. Dobatkin V.I., Elagin V.I., Fedorov V.M. Bystrozakristallizovannye alyuminievye splavy [Quick-crystalline aluminum alloys]. M.: VILS, 1995. 245 s.
3. Kurganova Yu.A., Kolmakov A.G. Konstruktsionnye metallomatrichnye kompozitsionnye ma-terialy [Constructional metalmatrix composite materials]: ucheb. posob. M.: Izd-vo MGTU im. N.E. Baumana, 2015. 143 s.
4. Kuzmich Yu.V., Kolesnikova I.T., Serba V.I., Freydin B.M. Mekhanicheskoe legirovanie [Mechanical alloying]. M.: Nauka, 2005. 213 s.
5. Kiparisov S.S., Libenson G.A. Poroshkovaya metallurgiya [Powder metallurgy]. M.: Metallurgiya, 1991. 432 s.
6. Belov N.A., Zolotorevskiy V.S., Luzgin D.V. Vliyanie termoobrabotki na morfologiyu zhelezosoderzhashchikh faz v alyuminievykh splavakh [Influence of heat treatment on morphology of ferriferous phases in aluminum alloys] // Perspektivnye materialy. №3. 1997. S. 76–86.
7. Belov N.A., Naumova E.A., Eskin D.G. Casting alloys of the Al–Ce–Ni system: microstructural approach to alloy design // Mater. Sci. Eng. A, 1999. V. 271. P. 134–142.
8. Belov N.A., Khvan A.V. Struktura i mekhanicheskie svoystva evtekticheskikh kompozitov na os-nove sistemy Al–Ce–Cu [Structure and mechanical properties of evtektichesky composites on the basis of Al–Ce–Cu system] // Tsvetnye metally. 2007. №2. S. 91–96.
9. Mondolfo L.F. Struktura i svoystva splavov: per. s angl. [Structure and properties of alloys: trans. from English]. M.: Metallurgiya, 1979. 640 s.
10. Belov N.A. Fazovyy sostav promyshlennykh i perspektivnykh alyuminievykh splavov [Phase structure of industrial and perspective aluminum alloys]. M.: Izd. Dom MISiS, 2010. 511 s.
11. Ternary alloys: a comprehensive compendium of evaluated constitutional data and phase diagrams /ed. by G. Petzow, G. Effenberg. Wiley-VCH. 1990. V. 3. 647 p.
12. Naumova E.A., Belov N.A., Bazlova T.A. Vliyanie termoobrabotki na strukturu i uprochne-nie liteynogo alyuminievogo evtekticheskogo splava Al9Zn4Ca3Mg [Influence of heat treatment on structure and hardening of a foundry aluminum evtektichesky alloy of Al9Zn4Ca3Mg] // Metallovedenie i ter-micheskaya obrabotka metallov, 2015. №5. S. 30–36.
13. Belov N.A., Naumova E.A., Bazlova T.A., Alekseeva E.V. Struktura, fazovyy sostav i uprochnenie alyuminievykh splavov sistemy Al–Ca–Mg–Sc [Structure, phase structure and hardening of aluminum alloys of Al–Ca–Mg–Sc system] // Fizika metallov i metallovedenie. 2016. T. 117. S. 208–215.
14. Belov N.A., Naumova E.A., Alabin A.N., Matveeva I.A. Effect of Scandium on Structure and Hardening of Al–Ca Eutectic Alloys // Journal of Alloys and Compaunds. 2015. V. 646. P. 741–747.
15. Kompaniya Thermo-Calc Software [Company Thermo-Calc Software]. Available at: http://www.thermocalc.com (accessed: May 16, 2016).
2. Dobatkin V.I., Elagin V.I., Fedorov V.M. Bystrozakristallizovannye alyuminievye splavy [Quick-crystalline aluminum alloys]. M.: VILS, 1995. 245 s.
3. Kurganova Yu.A., Kolmakov A.G. Konstruktsionnye metallomatrichnye kompozitsionnye ma-terialy [Constructional metalmatrix composite materials]: ucheb. posob. M.: Izd-vo MGTU im. N.E. Baumana, 2015. 143 s.
4. Kuzmich Yu.V., Kolesnikova I.T., Serba V.I., Freydin B.M. Mekhanicheskoe legirovanie [Mechanical alloying]. M.: Nauka, 2005. 213 s.
5. Kiparisov S.S., Libenson G.A. Poroshkovaya metallurgiya [Powder metallurgy]. M.: Metallurgiya, 1991. 432 s.
6. Belov N.A., Zolotorevskiy V.S., Luzgin D.V. Vliyanie termoobrabotki na morfologiyu zhelezosoderzhashchikh faz v alyuminievykh splavakh [Influence of heat treatment on morphology of ferriferous phases in aluminum alloys] // Perspektivnye materialy. №3. 1997. S. 76–86.
7. Belov N.A., Naumova E.A., Eskin D.G. Casting alloys of the Al–Ce–Ni system: microstructural approach to alloy design // Mater. Sci. Eng. A, 1999. V. 271. P. 134–142.
8. Belov N.A., Khvan A.V. Struktura i mekhanicheskie svoystva evtekticheskikh kompozitov na os-nove sistemy Al–Ce–Cu [Structure and mechanical properties of evtektichesky composites on the basis of Al–Ce–Cu system] // Tsvetnye metally. 2007. №2. S. 91–96.
9. Mondolfo L.F. Struktura i svoystva splavov: per. s angl. [Structure and properties of alloys: trans. from English]. M.: Metallurgiya, 1979. 640 s.
10. Belov N.A. Fazovyy sostav promyshlennykh i perspektivnykh alyuminievykh splavov [Phase structure of industrial and perspective aluminum alloys]. M.: Izd. Dom MISiS, 2010. 511 s.
11. Ternary alloys: a comprehensive compendium of evaluated constitutional data and phase diagrams /ed. by G. Petzow, G. Effenberg. Wiley-VCH. 1990. V. 3. 647 p.
12. Naumova E.A., Belov N.A., Bazlova T.A. Vliyanie termoobrabotki na strukturu i uprochne-nie liteynogo alyuminievogo evtekticheskogo splava Al9Zn4Ca3Mg [Influence of heat treatment on structure and hardening of a foundry aluminum evtektichesky alloy of Al9Zn4Ca3Mg] // Metallovedenie i ter-micheskaya obrabotka metallov, 2015. №5. S. 30–36.
13. Belov N.A., Naumova E.A., Bazlova T.A., Alekseeva E.V. Struktura, fazovyy sostav i uprochnenie alyuminievykh splavov sistemy Al–Ca–Mg–Sc [Structure, phase structure and hardening of aluminum alloys of Al–Ca–Mg–Sc system] // Fizika metallov i metallovedenie. 2016. T. 117. S. 208–215.
14. Belov N.A., Naumova E.A., Alabin A.N., Matveeva I.A. Effect of Scandium on Structure and Hardening of Al–Ca Eutectic Alloys // Journal of Alloys and Compaunds. 2015. V. 646. P. 741–747.
15. Kompaniya Thermo-Calc Software [Company Thermo-Calc Software]. Available at: http://www.thermocalc.com (accessed: May 16, 2016).
8.
№1, 2016
УДК 621.762.4.04
THE STUDY OF THE FINE STRUCTURE OF INTERPHASE BOUNDARIES IN THE hard ALLOYs OF THE SYSTEM «CARBIDE CHROMIUM–TITANIUM» BY MEANS OF ELECTRON MICROSCOPY
The paper is devoted to research the structure of interphase boundaries in solid alloys received by explosive pressing the powder mixtures of chromium carbide Cr3C2 and titanium. Using the electron microscopy established that similar boundaries have a final thickness over which there is a smooth change in the chemical composition of the material with complicated crystalline structure.
Keywords: chromium carbide, titanium, explosive compacting of powders.
Reference List
1. Pruemmer R.A., Balakrishna Bhat T., Siva Kumar K., Hokamoto K. Explosive compaction of powders and composites. Enfield, NH: Sci. Publ., 2006. 194 р.
2. LysakV.I., Kuz'minS.V. Svarka vzryvom [Explosion welding]. M.: Mashinostroenie, 2005. 544 s.
3. Krohalev A.V., Harlamov V.O., Kuz'min S.V., Lysak V.I. Zakonomernosti formirovanija tverdyh splavov iz smesej poroshkov karbida hroma s titanom s ispolzovaniem jenergii vzryva [Patterns of forming of hard alloys from mixes of powders of chromium carbide with titanium with use of energy of explosion] // Izvestija vuzov. Poroshkovaja metallurgija i funkcionalnye pokrytija. 2012. №1. C. 32–37.
4. Krohalev A.V., Harlamov V.O., Avdejuk O.A., Kuz'min S.V., Lysak V.I. Komp'juternoe ter-modinamicheskoe modelirovanie fazovogo sostava tvjordyh splavov na osnove karbida hroma [Computer thermodynamic modeling of phase composition of hard alloys on the basis of chromium carbide] // Izvestija Volgogradskogo gosudarstvennogo tehnicheskogo universiteta. Ser.: Aktual'nye problemy upravlenija, vychislitel'noj tehniki i informatiki v tehnicheskih sistemah. 2013. №8 (111). C. 24–26.
5. Poverhnosti razdela v metallicheskih kompozitah [Interfaces in metal composites] / pod red.
A. Metkalfa; per. s angl. M.: Mir, 1978. 437 s.
6. Gusev A.I. Nanomaterialy, nanostruktury, nanotehnologii [Nanomaterials, nanostructures, nanotechnologies]. M.: Fizmatlit, 2005. 416 s.
7. Shabashov V.A., Ovchinnikov V.V., Muljukov P.P., Valiev R.Z., Filippova N.P. Ob obnaruzhenii «zernogranichnoj fazy» v submikrokristallicheskom zheleze messbaujerovskim metodom [About detection of «Zernogranichny phase» in submicrocrystallic iron messbauerovsky method] // Fizika metallov i metallovedenie. 1998. T.85. №3. S. 100–112.
8. Haubold T., Birringer R., Lengeler B., Gleiter H. Exafs studies of nanocrystalline materials exhibiting a new solid state structure with randomly arranged atoms // PhysicsLettersA, 1989. Vol. 135.
P. 461–466.
9. Shtanskij D.V. Prosvechivajushhaja jelektronnaja mikroskopija vysokogo razreshenija v nanotehnologicheskih issledovanijah [Translucent electron microscopy of high resolution in nanotechnological researches] // Rossijskij himicheskij zhurnal. 2002. T. XLVI. №5. C. 81–89.
10. Murty B.S., Datta M.K., Pabi S.K. Structure and thermal stability of nanocrystalline materials// Sadhana. 2003. V. 28. P. 23–45.
11. Keblinski P., Phillpot S.R.,Wolf D., Gleiter H. On the Thermodynamic Stability of Amorphous Intergranular Films in Covalent Materials // Journal of the American Ceramic Society. 1997.
Vol. 80. P. 717–732.
12. Veprek S., Reiprich S.A. A concept for the design of novel superhard coatings. // Thin Solid Films. 1995. Vol. 268. P. 64–71.
13. Shevchenko V.Ja., Hasanov O.L., Jur'ev G.S., Poholkov Ju.P. Nabljudenie osobennostej struktury ul'tradispersnogo sostojanija dioksida cirkonija metodom difrakcii sinhrotronnogo izluchenija [Observation of features of structure of ultradisperse condition of zirconium dioxide by method of diffraction of synchrotron radiation] // Doklady akademii nauk. 2001. T. 377. №6. S. 797–799.
14. Shtansky D.V., Levashov E.A., Sheveiko A.N., Moore J.J. Synthesis and Characterization of
Ti-Si-C-N Films // Metallurgical and Materials Transaction. 1999. Vol. 30, №9, P. 2439–2447.
15. Song J., Kostka A., Veehmayer M., Raabe D. Hierarchical microstructure of explosive joints: Example of titanium to steel cladding. // Materials Science and Engineering: A. 2011. V. 528 (6).
P. 2641–2647.
16. Ushanova Je.A., Nesterova E.V., Petrov S.N., Rybin V.V., Kuz'min S.V., Grinberg B.A. Razrabotka tehnologii podgotovki obrazcov dlja jelektronno-mikroskopicheskih issledovanij nanokristallicheskih zon sceplenija v raznorodnyh soedinenijah na osnove metodov ionnoj polirovki [Development of technology of preparation of samples for electronic and microscopic researches of nanocrystal zones of coupling in diverse connections on the basis of methods of ionic polish] // Voprosy materialovedenija. 2011. №1 (65). C. 110–117.
2. LysakV.I., Kuz'minS.V. Svarka vzryvom [Explosion welding]. M.: Mashinostroenie, 2005. 544 s.
3. Krohalev A.V., Harlamov V.O., Kuz'min S.V., Lysak V.I. Zakonomernosti formirovanija tverdyh splavov iz smesej poroshkov karbida hroma s titanom s ispolzovaniem jenergii vzryva [Patterns of forming of hard alloys from mixes of powders of chromium carbide with titanium with use of energy of explosion] // Izvestija vuzov. Poroshkovaja metallurgija i funkcionalnye pokrytija. 2012. №1. C. 32–37.
4. Krohalev A.V., Harlamov V.O., Avdejuk O.A., Kuz'min S.V., Lysak V.I. Komp'juternoe ter-modinamicheskoe modelirovanie fazovogo sostava tvjordyh splavov na osnove karbida hroma [Computer thermodynamic modeling of phase composition of hard alloys on the basis of chromium carbide] // Izvestija Volgogradskogo gosudarstvennogo tehnicheskogo universiteta. Ser.: Aktual'nye problemy upravlenija, vychislitel'noj tehniki i informatiki v tehnicheskih sistemah. 2013. №8 (111). C. 24–26.
5. Poverhnosti razdela v metallicheskih kompozitah [Interfaces in metal composites] / pod red.
A. Metkalfa; per. s angl. M.: Mir, 1978. 437 s.
6. Gusev A.I. Nanomaterialy, nanostruktury, nanotehnologii [Nanomaterials, nanostructures, nanotechnologies]. M.: Fizmatlit, 2005. 416 s.
7. Shabashov V.A., Ovchinnikov V.V., Muljukov P.P., Valiev R.Z., Filippova N.P. Ob obnaruzhenii «zernogranichnoj fazy» v submikrokristallicheskom zheleze messbaujerovskim metodom [About detection of «Zernogranichny phase» in submicrocrystallic iron messbauerovsky method] // Fizika metallov i metallovedenie. 1998. T.85. №3. S. 100–112.
8. Haubold T., Birringer R., Lengeler B., Gleiter H. Exafs studies of nanocrystalline materials exhibiting a new solid state structure with randomly arranged atoms // PhysicsLettersA, 1989. Vol. 135.
P. 461–466.
9. Shtanskij D.V. Prosvechivajushhaja jelektronnaja mikroskopija vysokogo razreshenija v nanotehnologicheskih issledovanijah [Translucent electron microscopy of high resolution in nanotechnological researches] // Rossijskij himicheskij zhurnal. 2002. T. XLVI. №5. C. 81–89.
10. Murty B.S., Datta M.K., Pabi S.K. Structure and thermal stability of nanocrystalline materials// Sadhana. 2003. V. 28. P. 23–45.
11. Keblinski P., Phillpot S.R.,Wolf D., Gleiter H. On the Thermodynamic Stability of Amorphous Intergranular Films in Covalent Materials // Journal of the American Ceramic Society. 1997.
Vol. 80. P. 717–732.
12. Veprek S., Reiprich S.A. A concept for the design of novel superhard coatings. // Thin Solid Films. 1995. Vol. 268. P. 64–71.
13. Shevchenko V.Ja., Hasanov O.L., Jur'ev G.S., Poholkov Ju.P. Nabljudenie osobennostej struktury ul'tradispersnogo sostojanija dioksida cirkonija metodom difrakcii sinhrotronnogo izluchenija [Observation of features of structure of ultradisperse condition of zirconium dioxide by method of diffraction of synchrotron radiation] // Doklady akademii nauk. 2001. T. 377. №6. S. 797–799.
14. Shtansky D.V., Levashov E.A., Sheveiko A.N., Moore J.J. Synthesis and Characterization of
Ti-Si-C-N Films // Metallurgical and Materials Transaction. 1999. Vol. 30, №9, P. 2439–2447.
15. Song J., Kostka A., Veehmayer M., Raabe D. Hierarchical microstructure of explosive joints: Example of titanium to steel cladding. // Materials Science and Engineering: A. 2011. V. 528 (6).
P. 2641–2647.
16. Ushanova Je.A., Nesterova E.V., Petrov S.N., Rybin V.V., Kuz'min S.V., Grinberg B.A. Razrabotka tehnologii podgotovki obrazcov dlja jelektronno-mikroskopicheskih issledovanij nanokristallicheskih zon sceplenija v raznorodnyh soedinenijah na osnove metodov ionnoj polirovki [Development of technology of preparation of samples for electronic and microscopic researches of nanocrystal zones of coupling in diverse connections on the basis of methods of ionic polish] // Voprosy materialovedenija. 2011. №1 (65). C. 110–117.
9.
№1, 2016
УДК 669.715
Naumova E.A.1
Effect of heat treatment on the structure and hardening of the eutectic alloy based system Al–Ca with the addition of scandium
It was investigated the changes in the structure and properties of the alloys Al–7,6Cа and Al–7,6Ca–0,3Sc during annealing. Separately considered the influence of changes in eutectic intermetallic compounds to changes in hardness and the impact of nanoparticles Al3Sc in the process of disintegration of the solid solution of aluminum. The disintegration of the aluminum solid solution studied directly in the heating process in the column of an electron microscope.
Keywords: Al–Ca–Sc, nanoparticles Al3Sc, heat treatment, fragmentation, spheroidization, eutectic, hardening.
Reference List
1. Belov N.A., Zolotorevskij V.S. Litejnye splavy na osnove aljuminievo-nikelevoj jevtektiki (nikaliny) kak vozmozhnaja alternativa siluminam [Cast alloys on the basis of aluminum-nickel evtektiki (nikaliny) as possible alternative to silumins] // Cvetnye metally. 2003. №2. S. 99–105.
2. Belov N.A. Fazovyj sostav promyshlennyh i perspektivnyh aljuminievyh splavov [Phase composition of industrial and perspective aluminum alloys]. M.: Izdatel'skij Dom «MISiS», 2010. 511 s.
3. Belov N.A., Shherbakov M.V., Belov V.D. O tehnologichnosti vysokoprochnogo jekonomnolegirovannogo nikalina AC6N0,5Zh pri lite, prokatke i svarke [About technological effectiveness high-strength ekonomnolegirovanny nikalina АЦ6Н0,5Ж when molding, rolling and welding] // Cvetnye metally. 2011. №12. S. 94–98.
4. Belov N.A., Naumova E.A., Eskin D.G. Casting alloys of the Al–Ce–Ni System: Microstructural Approach to Alloy Design // Mater. Sci. Eng. A. 1999. V. 271. P. 134–142.
5. Belov N.A., Hvan A.V. Struktura i mehanicheskie svojstva jevtekticheskih kompozitov na osnove sistemy Al–Ce–Cu [Structure and mechanical properties of evtektichesky composites on the basis of Al-Ce-Cu system] // Cvetnye metally. 2007. №2. S. 91–96.
6. Belov N.A., Khvan A.V. The ternary Al–Ce–Cu phase diagram in the Al-rich corner // Acta Materilia. 2007. V. 55. P. 5473–5482.
7. Belov N.A., Zolotorevskij V.S., Luzgin D.V. Vlijanie termoobrabotki na morfologiju zhelezosoderzhashhih faz v aljuminievyh splavah [Influence of heat treatment on morphology of ferriferous phases in aluminum alloys] // Perspektivnye materialy. 1997. №3. S. 76–86.
8. Jentoni U.U., Jeliot F.R., Boll M.D. Aljuminij. Svojstva i fizicheskoe metallovedenie; per. s angl. [Properties and physical metallurgical science; trans. from English] / pod red. Dzh.E. Hjetcha. M.: Metallurgija, 1989. 324 s.
9. Zolotorevskij V.S., Belov N.A. Metallovedenie litejnyh aljuminievyh splavov [Metallurgical science of cast aluminum alloys]. M.: Izd. dom. «MISiS», 2005. 376 s.
10. Belov N.A., Zolotorevskij V.S. Aljuminievye splavy: metallovedenie, primenenie, standarty: kurs lekcij [Aluminum alloys: metallurgical science, application, standards: course of lectures]. – M.: MISiS.120 s.
11. Naumova E.A., Belov N.A., Bazlova T.A. Vlijanie termicheskoj obrabotki na strukturu i uprochnenie litejnogo aljuminievogo jevtekticheskogo splava Al9Zn4Ca3Mg [Influence of thermal processing on structure and hardening of cast Al9Zn4Ca3Mg aluminum eutectic alloy] // Metallovedenie i termicheskaja obrabotka metallov. 2015. №5. S. 30–36.
12. Naumova E.A., Belov N.A., Bazlova T.A. Jevtekticheskie splavy na osnove sistemy Al–Ca s dobavkoj skandija kak vozmozhnaja alternativa termicheski uprochnjaemyh siluminam [Eutectic alloys on the basis of Al–Ca system with scandium additive as possible alternative thermally strengthened to silumins] // Metallovedenie i termicheskaja obrabotka metallov. 2015. №5.
S. 30–36.
13. Kono N., Tsuchida Y., Muromachi S., Watanabe H. Study of the Al–Ca–Zn ternary phase diagram // Light Metals. V. 35. 1985. P. 574–580.
14. Messing A.F., Adams M.D., Steunenberg R.K. Contribution to the Phase Diagram Calcium-Zinc, Transactions of the ASM. V. 56. 1963. P. 345–350.
15. Toropova L.S., Eskin D.G., Kharakterova M.L., Dobatkina T.V. Advanced aluminum alloys containing scandium: structure and properties. Amsterdam: Gordon and Breach Science Publishers. 1998. 175 p.
16. Marquis E.A., Seidman D.N. Nanoscale structural evolution of Al3Sc precipitates in Al (Sc) alloys // Acta mater. 2001. V. 49. P. 1909–1919.
17. Costa S., Puga H., Barbosa J., Pinto A.M.P. The effect of Sc additions on the microstructure and age hardening behaviour of as cast Al–Sc alloys // Materials and Design. 2012. V. 42. P. 347–352.
18. Mondolfo L.F. Struktura i svojstva splavov; per. s angl. [Structure and properties of alloys; trans. from English]. M.: Metallurgija, 1979. 640 s.
2. Belov N.A. Fazovyj sostav promyshlennyh i perspektivnyh aljuminievyh splavov [Phase composition of industrial and perspective aluminum alloys]. M.: Izdatel'skij Dom «MISiS», 2010. 511 s.
3. Belov N.A., Shherbakov M.V., Belov V.D. O tehnologichnosti vysokoprochnogo jekonomnolegirovannogo nikalina AC6N0,5Zh pri lite, prokatke i svarke [About technological effectiveness high-strength ekonomnolegirovanny nikalina АЦ6Н0,5Ж when molding, rolling and welding] // Cvetnye metally. 2011. №12. S. 94–98.
4. Belov N.A., Naumova E.A., Eskin D.G. Casting alloys of the Al–Ce–Ni System: Microstructural Approach to Alloy Design // Mater. Sci. Eng. A. 1999. V. 271. P. 134–142.
5. Belov N.A., Hvan A.V. Struktura i mehanicheskie svojstva jevtekticheskih kompozitov na osnove sistemy Al–Ce–Cu [Structure and mechanical properties of evtektichesky composites on the basis of Al-Ce-Cu system] // Cvetnye metally. 2007. №2. S. 91–96.
6. Belov N.A., Khvan A.V. The ternary Al–Ce–Cu phase diagram in the Al-rich corner // Acta Materilia. 2007. V. 55. P. 5473–5482.
7. Belov N.A., Zolotorevskij V.S., Luzgin D.V. Vlijanie termoobrabotki na morfologiju zhelezosoderzhashhih faz v aljuminievyh splavah [Influence of heat treatment on morphology of ferriferous phases in aluminum alloys] // Perspektivnye materialy. 1997. №3. S. 76–86.
8. Jentoni U.U., Jeliot F.R., Boll M.D. Aljuminij. Svojstva i fizicheskoe metallovedenie; per. s angl. [Properties and physical metallurgical science; trans. from English] / pod red. Dzh.E. Hjetcha. M.: Metallurgija, 1989. 324 s.
9. Zolotorevskij V.S., Belov N.A. Metallovedenie litejnyh aljuminievyh splavov [Metallurgical science of cast aluminum alloys]. M.: Izd. dom. «MISiS», 2005. 376 s.
10. Belov N.A., Zolotorevskij V.S. Aljuminievye splavy: metallovedenie, primenenie, standarty: kurs lekcij [Aluminum alloys: metallurgical science, application, standards: course of lectures]. – M.: MISiS.120 s.
11. Naumova E.A., Belov N.A., Bazlova T.A. Vlijanie termicheskoj obrabotki na strukturu i uprochnenie litejnogo aljuminievogo jevtekticheskogo splava Al9Zn4Ca3Mg [Influence of thermal processing on structure and hardening of cast Al9Zn4Ca3Mg aluminum eutectic alloy] // Metallovedenie i termicheskaja obrabotka metallov. 2015. №5. S. 30–36.
12. Naumova E.A., Belov N.A., Bazlova T.A. Jevtekticheskie splavy na osnove sistemy Al–Ca s dobavkoj skandija kak vozmozhnaja alternativa termicheski uprochnjaemyh siluminam [Eutectic alloys on the basis of Al–Ca system with scandium additive as possible alternative thermally strengthened to silumins] // Metallovedenie i termicheskaja obrabotka metallov. 2015. №5.
S. 30–36.
13. Kono N., Tsuchida Y., Muromachi S., Watanabe H. Study of the Al–Ca–Zn ternary phase diagram // Light Metals. V. 35. 1985. P. 574–580.
14. Messing A.F., Adams M.D., Steunenberg R.K. Contribution to the Phase Diagram Calcium-Zinc, Transactions of the ASM. V. 56. 1963. P. 345–350.
15. Toropova L.S., Eskin D.G., Kharakterova M.L., Dobatkina T.V. Advanced aluminum alloys containing scandium: structure and properties. Amsterdam: Gordon and Breach Science Publishers. 1998. 175 p.
16. Marquis E.A., Seidman D.N. Nanoscale structural evolution of Al3Sc precipitates in Al (Sc) alloys // Acta mater. 2001. V. 49. P. 1909–1919.
17. Costa S., Puga H., Barbosa J., Pinto A.M.P. The effect of Sc additions on the microstructure and age hardening behaviour of as cast Al–Sc alloys // Materials and Design. 2012. V. 42. P. 347–352.
18. Mondolfo L.F. Struktura i svojstva splavov; per. s angl. [Structure and properties of alloys; trans. from English]. M.: Metallurgija, 1979. 640 s.
10.
№6, 2015
УДК 669.2:669.131
Development of manufacturing techniques of semi-finished products of alloys of the titanium, excluding defect formation and raising material inspectability
This article generalizes existing experience in production of critical parts of titanium alloys. It gives main approaches to maximum reduction of defectiveness level and increase in homoge-neity of final products. It is shown that quality of charge materials and subsequent remelting are of great importance. A rational approach to material conversion process allows increasing controllability. In this regard process parameters are of paramount importance as well as a correct selection of part geometry by a designer for nondestructive testing. It is also pointed out that a correct selection of a material grade influences structural homogeneity and a result-ing complex of mechanical and service properties.
Keywords: titanium alloys, charge materials, ultrasonic inspection, remelting, deformation.
Reference List
1. Tetjuhin V.V., Musatov M.I., Al'tman P.S., Savel'ev V.V. Rafinirovanie titanovyh splavov v drugoj podovoj pechi [Refinement of titanium alloys in other hearth furnace] /V sb. materialov IX Mezhdunarodnoj konf. po titanu. SPb. 1999. S. 1366–1371.
2. Tetyukhin V.V., Levin I.V., Musatov M.I., Puzakov I.U., Chechulin S.M., Tarenkova N.U. Experience of Using Scull Remelt for Production of multi-Component Titanium Alloys /Proceedings of the 11th World Conference on Titanium «Ti–2007 Science and Technology». Kyoto. 2007.
P. 167–172.
3. Brun M.Ja., Evmenov O.P., Kaganovich I.N., Tetjuhin V.V., Kataja G.K., Shibanov A.S. Uluchshenie struktury zagotovok iz dvuhfaznyh titanovyh splavov putem predvaritel'noj deformacii v (α+)-oblasti i okonchatel'noj obrabotki pri temperaturah b-oblasti [Improvement of structure of preparations from two-phase titanium alloys by preliminary deformation in (α+)-area and final processing at -area temperatures] //Tehnologija legkih splavov. 1978. №6. S. 43–47.
4. Sposob izgotovlenija promezhutochnoj zagotovki iz (α+)-titanovyh splavov [Way of manufacturing of intermediate preparation from (α+)-titanium alloys]: AS 2266171 S1. B21J5/00, C22F1/18./. Zajavl.04.06.2004. №2004116944/02.
5. Shibanov A.S., Kropotov V.A., Timohov V.B., Bogatov A.A. Vlijanie shemy i rezhimov pressovoj protjazhki slitkov na neravnomernosti raspredelenija temperatury i nakoplennoj deformacii v pokovke [Influence of the scheme and modes of pressovy broach of ingots on irregularities of distribution of temperature and the saved-up deformation in pokovka] /V sb. trudov nauch.-tehnich. konf. «Titan–2006». Kiev. 2006. S. 181–186.
6. Tetjuhin V.V., Timohov V.B., Shibanov A.S., Troshin A.N. Avtomatizacija konstruktorsko-tehnologicheskih rabot v kuznechnom proizvodstve [Automation of design and technological works in forge production] /V sb. trudov nauch.-tehnich. konf. «Titan–2006». Kiev. 2006.
S. 112–117.
2. Tetyukhin V.V., Levin I.V., Musatov M.I., Puzakov I.U., Chechulin S.M., Tarenkova N.U. Experience of Using Scull Remelt for Production of multi-Component Titanium Alloys /Proceedings of the 11th World Conference on Titanium «Ti–2007 Science and Technology». Kyoto. 2007.
P. 167–172.
3. Brun M.Ja., Evmenov O.P., Kaganovich I.N., Tetjuhin V.V., Kataja G.K., Shibanov A.S. Uluchshenie struktury zagotovok iz dvuhfaznyh titanovyh splavov putem predvaritel'noj deformacii v (α+)-oblasti i okonchatel'noj obrabotki pri temperaturah b-oblasti [Improvement of structure of preparations from two-phase titanium alloys by preliminary deformation in (α+)-area and final processing at -area temperatures] //Tehnologija legkih splavov. 1978. №6. S. 43–47.
4. Sposob izgotovlenija promezhutochnoj zagotovki iz (α+)-titanovyh splavov [Way of manufacturing of intermediate preparation from (α+)-titanium alloys]: AS 2266171 S1. B21J5/00, C22F1/18./. Zajavl.04.06.2004. №2004116944/02.
5. Shibanov A.S., Kropotov V.A., Timohov V.B., Bogatov A.A. Vlijanie shemy i rezhimov pressovoj protjazhki slitkov na neravnomernosti raspredelenija temperatury i nakoplennoj deformacii v pokovke [Influence of the scheme and modes of pressovy broach of ingots on irregularities of distribution of temperature and the saved-up deformation in pokovka] /V sb. trudov nauch.-tehnich. konf. «Titan–2006». Kiev. 2006. S. 181–186.
6. Tetjuhin V.V., Timohov V.B., Shibanov A.S., Troshin A.N. Avtomatizacija konstruktorsko-tehnologicheskih rabot v kuznechnom proizvodstve [Automation of design and technological works in forge production] /V sb. trudov nauch.-tehnich. konf. «Titan–2006». Kiev. 2006.
S. 112–117.
11.
№6, 2015
УДК 669.295
Influence of the corrosion and active environment on fracture toughness of titanium al-loys pseudo-β-class
Results of researches of phase composition, structure, corrosion and mechanical properties of the titanium pseudo-β-alloy ВТ22 forgings are presented. Influence of a microalloying by ruthenium on above-mentioned characteristics of the alloy, including fracture toughness in the corrosive environment is considered.
Keywords: titanium alloys, mechanical properties, corrosion resistance and mechanical strength, microalloying, microstructure.
Reference List
1. Gorynin I.V., Oryshhenko A.S., Kudrjavcev A.S., Ushakov B.G. Titanovye splavy dlja morskih konstrukcij i sudovogo mashinostroenija [Titanium alloys for sea designs and ship mechanical engineering] //Tehnologija legkih splavov. 2014. №3. S. 6–13.
2. Gorynin I.V., Oryshhenko A.S., Leonov V.P., Mihajlov V.I., Kudrjavcev A.S. Vysokoprochnye titanovye splavy – osnova dlja sozdanija glubokovodnoj tehniki [High-strength titanium alloys – basis for creation of deep-water equipment] //Sudostroitel'nye materialy. 2014. №3. S. 58–60.
3. Gorynin I.V., Kudrjavcev A.S., Oryshhenko A.S. Osnovnye aspekty sozdanija vysokoprochnyh titanovyh splavov dlja morskoj tehniki [The main aspects of creation of high-strength titanium alloys for sea equipment]/V sb. trudov Mezhdunarodnoj konf. «Ti–2010 v SNG». Ekaterinburg. 2010.
S. 7–13.
4. Il'in A.A., Kolachev B.A., Pol'kin I.S. Titanovye splavy. Sostav, struktura, svojstva [Titanium alloys. Structure, structure, properties]: Spravochnik. M.: VILS–MATI. 2009. 520 s.
5. Tomashov N.D., Al'tovskij R.M. Korrozija i zashhita titana [Corrosion and protection of titanium]. M.: Mashgiz. 1963. 295 s.
6. Ruskol Ju.S. Titanovye konstrukcionnye splavy v himicheskih proizvodstvah [Titanium structural alloys in chemical productions]. M.: Himija. 1989. 288 s.
7. Tomashov N.D. Titan i korrozionnostojkie splavy na ego osnove [Titanium and corrosion-resistant alloys on its basis]. M.: Metallurgija. 1985. 150 s.
8. Gorynin I.V., Ushkov S.S., Hatuncev A.N., Loshakova N.I. Titanovye splavy dlja morskoj tehniki [Titanium alloys for sea equipment]. SPb.: Politehnika. 2007. 387 s.
9. Raevskaja M.V., Sokolovskaja E.M. Fizikohimija rutenija i ego splavov [Fizikokhimiya of ruthenium and its alloys]. M.: Izd-vo MGU. 1979. 230 s.
10. Leonov V.P., Shherbinin V.F., Malinkina Ju.Ju. Povyshenie korrozionnoj stojkosti splava titana v koncentrirovannyh vodnyh rastvorah hloridov pri vysokih temperaturah [Increase of corrosion resistance of alloy of titanium in the concentrated aqueous solutions of chlorides at high temperatures] //Voprosy materialovedenija. 2013. №1 (73). S. 175–181.
11. Hesin Ju.D., Sher V.A., Shherbinin V.F., Lysenko L.V. Vlijanie sostojanija poverhnosti na korrozionno-mehanicheskuju prochnost' titanovyh splavov v vodnyh rastvorah hloridov [Influence of surface condition on corrosion mechanical strength of titanium alloys in aqueous solutions of chlorides] //Jenergotehnologicheskie processy. Problemy i perspektivy. 2000. S. 80–85.
2. Gorynin I.V., Oryshhenko A.S., Leonov V.P., Mihajlov V.I., Kudrjavcev A.S. Vysokoprochnye titanovye splavy – osnova dlja sozdanija glubokovodnoj tehniki [High-strength titanium alloys – basis for creation of deep-water equipment] //Sudostroitel'nye materialy. 2014. №3. S. 58–60.
3. Gorynin I.V., Kudrjavcev A.S., Oryshhenko A.S. Osnovnye aspekty sozdanija vysokoprochnyh titanovyh splavov dlja morskoj tehniki [The main aspects of creation of high-strength titanium alloys for sea equipment]/V sb. trudov Mezhdunarodnoj konf. «Ti–2010 v SNG». Ekaterinburg. 2010.
S. 7–13.
4. Il'in A.A., Kolachev B.A., Pol'kin I.S. Titanovye splavy. Sostav, struktura, svojstva [Titanium alloys. Structure, structure, properties]: Spravochnik. M.: VILS–MATI. 2009. 520 s.
5. Tomashov N.D., Al'tovskij R.M. Korrozija i zashhita titana [Corrosion and protection of titanium]. M.: Mashgiz. 1963. 295 s.
6. Ruskol Ju.S. Titanovye konstrukcionnye splavy v himicheskih proizvodstvah [Titanium structural alloys in chemical productions]. M.: Himija. 1989. 288 s.
7. Tomashov N.D. Titan i korrozionnostojkie splavy na ego osnove [Titanium and corrosion-resistant alloys on its basis]. M.: Metallurgija. 1985. 150 s.
8. Gorynin I.V., Ushkov S.S., Hatuncev A.N., Loshakova N.I. Titanovye splavy dlja morskoj tehniki [Titanium alloys for sea equipment]. SPb.: Politehnika. 2007. 387 s.
9. Raevskaja M.V., Sokolovskaja E.M. Fizikohimija rutenija i ego splavov [Fizikokhimiya of ruthenium and its alloys]. M.: Izd-vo MGU. 1979. 230 s.
10. Leonov V.P., Shherbinin V.F., Malinkina Ju.Ju. Povyshenie korrozionnoj stojkosti splava titana v koncentrirovannyh vodnyh rastvorah hloridov pri vysokih temperaturah [Increase of corrosion resistance of alloy of titanium in the concentrated aqueous solutions of chlorides at high temperatures] //Voprosy materialovedenija. 2013. №1 (73). S. 175–181.
11. Hesin Ju.D., Sher V.A., Shherbinin V.F., Lysenko L.V. Vlijanie sostojanija poverhnosti na korrozionno-mehanicheskuju prochnost' titanovyh splavov v vodnyh rastvorah hloridov [Influence of surface condition on corrosion mechanical strength of titanium alloys in aqueous solutions of chlorides] //Jenergotehnologicheskie processy. Problemy i perspektivy. 2000. S. 80–85.
12.
№6, 2015
УДК 669.295
BEHAVIOUR THE PSEUDO-ALPHA OF TITANIUM ALLOYS AS A PART
OF THE STEAM-ELECTRIC EQUIPMENT AT SUPERDESIGN LOADS
Designing of power equipment supposes, as a rule, its behavior under over calculated loaded conditions at a short time. For details and assemblies of steam turbine units, made by high strength weldable pseudo-alpha-titanium alloys, it is necessary to calculate their specific properties for saving serviceability.
Keywords: pseudo-alpha-titanium alloys, power-machine equipment, overloaded conditions.
Reference List
1. Maksimov Ju.A., Lysenko L.V., Travin V.V. Problemy i praktika ispol'zovanija titanovyh splavov v paroturbinnyh ustanovkah [Problems and practice of use of titanium alloys in steam-electric installations] /V sb. trudov Mezhdunarodnoj konf. «Ti–2007 v SNG». Kiev. 2007. S. 330–337.
2. Ivanova L.A., Kudrjavcev A.S., Chudakov E.V., Lysenko L.V., Travin V.V. Optimizacija kompleksa sluzhebnyh svojstv titanovyh splavov marok 5V i 37 dlja uzlov i detalej jenergeticheskogo oborudovanija [Optimization of complex of office properties of titanium alloys of brands 5В and 37 for nodes and details of utilities equipment] //Titan. 2010. №4 (30). S. 23–30.
3. Ivanova L.A., Kozlova I.R., Kudrjavcev A.S., Chudakov E.V. Issledovanie zharoprochnosti svarivaemyh titanovyh splavov marok 5V i 37 [Research of thermal stability of welded titanium alloys of brands 5В and 37] //Voprosy materialovedenija. 2009. №3 (59). S. 329.
4. Travin V.V. Raschetno-jeksperimental'noe obespechenie prochnosti cel'nosvarnogo rabochego kolesa turbiny [Rated and experimental ensuring durability of the tselnosvarny driving wheel of the turbine] /V sb. materialov Vserossijskoj konf. «Progressivnye tehnologii, konstrukcii i sistemy v priboro-, mashinostroenii». M.: MGTU im. N.Je. Baumana. 2004. S. 55–57.
5. Travin V.V. MKJe – sistema raschetov prochnosti mehanicheskih konstrukcij «PROKSIMA». Opyt jekspluatacii [MKE – system of calculations of durability of mechanical designs "PROXIMA". Operating experience] /V sb. trudov konf. «Metody i programmnoe obespechenie raschetov na prochnost'». M.: NIKIJeT. 2001. S. 169–173.
6. Vodop'janov V.I., Kondrat'ev O.V., Travin V.V. K voprosu postroenija istinnoj diagrammy dempfirovanija na stadii shejkoobrazovanija [To question of creation of the true chart of damping at sheykoobrazovaniye stage] //Zavodskaja laboratorija. Diagnostika materialov. 2007. T. 73. №7.
S. 53–58.
7. Travin V.V., Ivanova L.A., Kozlova I.R., Vodop'janov V.I. Soprotivlenie titanovyh splavov staticheskim i malociklovym nagruzkam v zonah koncentracii [Resistance of titanium alloys to static and low-cyclic loads in concentration zones] /V sb. trudov Mezhdunarodnoj konf. «Ti–2011 v SNG». Kiev. 2011. S. 215–222.
8. Rabinovich V.P. Prochnost' turbinnyh diskov [Durability of turbine disks]. M.: Mashinostroenie. 1966. 150 s.
9. RTM 108.022.106–86. Ustanovki gazoturbinnye. Raschet na prochnost' diskov i rotorov [Installations gas-turbine. Calculation on durability of disks and rotors]. M., L.: NPO CKTI. 1987. 23 s.
10. Lysenko L.V. Teoreticheskie osnovy konstruktorskih ocenok jenergotehnologicheskih processov [Theoretical bases of design estimates of power technological processes]. M.: Jenergoatomizdat. 1997. 64 s.
2. Ivanova L.A., Kudrjavcev A.S., Chudakov E.V., Lysenko L.V., Travin V.V. Optimizacija kompleksa sluzhebnyh svojstv titanovyh splavov marok 5V i 37 dlja uzlov i detalej jenergeticheskogo oborudovanija [Optimization of complex of office properties of titanium alloys of brands 5В and 37 for nodes and details of utilities equipment] //Titan. 2010. №4 (30). S. 23–30.
3. Ivanova L.A., Kozlova I.R., Kudrjavcev A.S., Chudakov E.V. Issledovanie zharoprochnosti svarivaemyh titanovyh splavov marok 5V i 37 [Research of thermal stability of welded titanium alloys of brands 5В and 37] //Voprosy materialovedenija. 2009. №3 (59). S. 329.
4. Travin V.V. Raschetno-jeksperimental'noe obespechenie prochnosti cel'nosvarnogo rabochego kolesa turbiny [Rated and experimental ensuring durability of the tselnosvarny driving wheel of the turbine] /V sb. materialov Vserossijskoj konf. «Progressivnye tehnologii, konstrukcii i sistemy v priboro-, mashinostroenii». M.: MGTU im. N.Je. Baumana. 2004. S. 55–57.
5. Travin V.V. MKJe – sistema raschetov prochnosti mehanicheskih konstrukcij «PROKSIMA». Opyt jekspluatacii [MKE – system of calculations of durability of mechanical designs "PROXIMA". Operating experience] /V sb. trudov konf. «Metody i programmnoe obespechenie raschetov na prochnost'». M.: NIKIJeT. 2001. S. 169–173.
6. Vodop'janov V.I., Kondrat'ev O.V., Travin V.V. K voprosu postroenija istinnoj diagrammy dempfirovanija na stadii shejkoobrazovanija [To question of creation of the true chart of damping at sheykoobrazovaniye stage] //Zavodskaja laboratorija. Diagnostika materialov. 2007. T. 73. №7.
S. 53–58.
7. Travin V.V., Ivanova L.A., Kozlova I.R., Vodop'janov V.I. Soprotivlenie titanovyh splavov staticheskim i malociklovym nagruzkam v zonah koncentracii [Resistance of titanium alloys to static and low-cyclic loads in concentration zones] /V sb. trudov Mezhdunarodnoj konf. «Ti–2011 v SNG». Kiev. 2011. S. 215–222.
8. Rabinovich V.P. Prochnost' turbinnyh diskov [Durability of turbine disks]. M.: Mashinostroenie. 1966. 150 s.
9. RTM 108.022.106–86. Ustanovki gazoturbinnye. Raschet na prochnost' diskov i rotorov [Installations gas-turbine. Calculation on durability of disks and rotors]. M., L.: NPO CKTI. 1987. 23 s.
10. Lysenko L.V. Teoreticheskie osnovy konstruktorskih ocenok jenergotehnologicheskih processov [Theoretical bases of design estimates of power technological processes]. M.: Jenergoatomizdat. 1997. 64 s.
13.
№4, 2015
УДК 621.74:669.295
L.I. Rassohina1, Bityutskaya O.N.1, P.I. Parfenovich1
STUDY OF THE PROPERTIES OF LATEX BINDER «REMAL 20» AND SUSPENSIONS FOR THE MANUFACTURE OF SHELL SHAPE IN THE PRODUCTION OF CASTINGS FROM γ-TiAl ALLOYS
The study involved issues of development of structures of molds for the production of castings of γ-TiAl alloys on the basis of water dispersion of aluminum oxide, suspension, mechanical properties of ceramic samples. The conclusions about the need to continue exploration in this sphere
Keywords: casting alloys based on titanium, ceramic slurry, a binder, shell shape, fused.
Reference List
1. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokolenija [Nickel foundry hot strength alloys of new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 36–52.
2. Kablov E.N., Deev V.V., Bondarenko Ju.A., Narskij A.R. Beskremnezemnye keramicheskie formy dlja napravlennoj kristallizacii pri lit'e lopatok gazoturbinnyh dvigatelej [Beskremnezemnye ceramic forms for the directed crystallization when molding blades of gas turbine engines] //Litejnoe proizvodstvo. 2003. № 5. S. 17–20.
3. Kablov E.N., Tolorajja V.N. VIAM – osnovopolozhnik otechestvennoj tehnologii lit'ja monokristallicheskih turbinnyh lopatok GTD i GTU [VIAM – the founder of domestic casting technology of single-crystal turbine blades of GTD and GTU] //Aviacionnye materialy i tehnologii. 2012. №S.
S. 105–117.
4. Kablov E.N., Petrushin N.V., Eljutin E.S. Monokristallicheskie zharoprochnye splavy dlja gazoturbinnyh dvigatelej [Single-crystal hot strength alloys for gas turbine engines] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 38–52.
5. Pavlinich S.P., Belov V.D., Alikin P.V., Petrovskij P.V., Fadeev A.V. Intermetallid Ti–Al nachinaet put' v rossijskuju aviaciju [Ti-Al intermetallic compound begins way to the Russian aircraft] //Litejshhik Rossii. 2013. № 3. S. 21–24.
6. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
7. Nochovnaja N.A., Ivanov V.I., Alekseev E.B., Kochetkov A.S. Puti optimizacii jekspluatacionnyh svojstv splavov na osnove intermetallidov titana [Ways of optimization of operational properties of alloys on the basis of titanium intermetallic compound] //Aviacionnye materialy i tehnologii. 2012. №S. S. 196–206.
8. Kulakov B.A., Dubrovin V.K., Pavlinich S.P., Gojhenberg Ju.N., Karpinskij A.V. Otlivki iz intermetallidnyh titanovyh splavov [Casting from intermetallidny titanium alloys] //Litejnoe proizvodstvo. 2012. № 7. S. 6–9.
2. Kablov E.N., Deev V.V., Bondarenko Ju.A., Narskij A.R. Beskremnezemnye keramicheskie formy dlja napravlennoj kristallizacii pri lit'e lopatok gazoturbinnyh dvigatelej [Beskremnezemnye ceramic forms for the directed crystallization when molding blades of gas turbine engines] //Litejnoe proizvodstvo. 2003. № 5. S. 17–20.
3. Kablov E.N., Tolorajja V.N. VIAM – osnovopolozhnik otechestvennoj tehnologii lit'ja monokristallicheskih turbinnyh lopatok GTD i GTU [VIAM – the founder of domestic casting technology of single-crystal turbine blades of GTD and GTU] //Aviacionnye materialy i tehnologii. 2012. №S.
S. 105–117.
4. Kablov E.N., Petrushin N.V., Eljutin E.S. Monokristallicheskie zharoprochnye splavy dlja gazoturbinnyh dvigatelej [Single-crystal hot strength alloys for gas turbine engines] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 38–52.
5. Pavlinich S.P., Belov V.D., Alikin P.V., Petrovskij P.V., Fadeev A.V. Intermetallid Ti–Al nachinaet put' v rossijskuju aviaciju [Ti-Al intermetallic compound begins way to the Russian aircraft] //Litejshhik Rossii. 2013. № 3. S. 21–24.
6. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
7. Nochovnaja N.A., Ivanov V.I., Alekseev E.B., Kochetkov A.S. Puti optimizacii jekspluatacionnyh svojstv splavov na osnove intermetallidov titana [Ways of optimization of operational properties of alloys on the basis of titanium intermetallic compound] //Aviacionnye materialy i tehnologii. 2012. №S. S. 196–206.
8. Kulakov B.A., Dubrovin V.K., Pavlinich S.P., Gojhenberg Ju.N., Karpinskij A.V. Otlivki iz intermetallidnyh titanovyh splavov [Casting from intermetallidny titanium alloys] //Litejnoe proizvodstvo. 2012. № 7. S. 6–9.