Articles
1.
№3-4, 2018
УДК 621.775.8
Zimichev A.M.1, Varrik N.M.1, Sumin V.A.1
TO A QUESTION OF FORMATION OF CONTINUOUS REFRACTORY ALUMINA-BASED FIBERS
High-temperature heat-insulating materials on the basis of heat-resistant fibers are one of priority objects of development of materials scientists now. The alumina continuous fibers used for manufacture of the flexible high-temperature sealing heat-insulating materials working at temperatures over 1500°C, such as fabrics, braidings and cords. Flexibility of the continuous fibers received by sol-gel method depends on a number of factors. Structure and composition of the ceramic fiber received by this multistage process are depend on the quality of the used precursors, conditions of process of evaporation of spinning solution, the form of orifices and conditions of extrusion of green fibers from solution and conditions of the subsequent heat treatment during of which there are chemical and phase transformations occuring. In this paper influence of characteristics of spinning solution and some conditions of formation of a fiber on structure and properties of the received alumina fibers w
Keywords: continuous ceramic fibers, sol-gel method, precursor, alumina, high temperature heat-insulating material.
Reference List
1. Kablov E.N. Materialy novogo pokolenija – osnova innovacij, tehnologicheskogo liderstva i nacionalnoj bezopasnosti Rossii [Materials of new generation – basis of innovations, technological leadership and national security of Russia] // Intellekt i tehnologii. 2016. №2 (14). S. 16–21.
2. Babashov V.G., Varrik N.M. Teploizolyatsionnye materialy dlya sovremennyh letatel'nyh apparatov [Thermal insulation materials for modern planes] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2016. №3 (21). St. 01. Available at: http://materialsnews.ru (accessed: June 4, 2018).
3. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: June 4, 2018).
4. Bunsell A.R. Oxide Fibers for High-Temperature Reinforcement and Insulation // J. Miner., Metalls and Mater. Sci. 2005. Vol. 57 (2). P. 48–51.
5. Non-frangible alumina-silica fibers: pat. US4047965; publ. 13.09.77.
6. Balinova Yu.A., Lyulyukina G.Yu., Kirienko T.A., Arakcheeva L.V. Svojstva promyshlennogo silikazolya i vozmozhnost' ego dorabotki dlya izgotovleniya alyumosilikatnyh materialov [Properties industrial silikazolya and possibility of its completion for manufacturing of silica-alumina materials] // Steklo i keramika. 2013. №12. S. 33–36.
7. Kirienko T.A., Balinova Yu.A. Fiziko-himicheskie svojstva mnogokomponentnyh rastvorov dlya keramicheskih materialov, soderzhashhih polivinilovyj spirt [Physical and chemical properties of multicomponent solutions for ceramic materials containing polyvinyl alcohol] // Aviacionnye materialy i tehnologii. 2014. №1. S. 34–38. DOI: 10.18577/2071-9140-2014-0-1-34-38.
8. Kirienko T.A., Balinova Yu.A. Vliyanie atmosfernoj vlazhnosti na reologiju tonkih sloev koncentrirovannyh vodnyh rastvorov sistemy «neorganicheskie soli–organicheskij polimer» [Influence of atmospheric humidity on a rheology of thin layers of the concentrated water solutions of system «inorganic salts–organic polymer»] // Aviacionnye materialy i tehnologii. 2014. №2. S. 56–58. DOI: 10.18577/2071-9140-2014-0-2-56-58.
9. Zimichev A.M., Varrik N.M., SHCHeglova T.M., Nikitina V.YU. Issledovanie prochnostnyh svojstv rovinga iz volokon sostava 85%Al2O3–15%SiO2 pri temperature 1000°S [Research of strength properties of roving from structure fibers 85%Al2O3–15%SiO2 at temperature 1000°С] // Vse materialy. Entsiklopedicheskij spravochnik s Prilozheniem «Kommentarii k standartam, TU, sertifikatam». 2015. №1. S. 30–35.
10. Zimichev A.M., Balinova Yu.A., Varrik N.M. K voprosu o module uprugosti volokon iz tugoplavkih oksidov [To a question of the elasticity module of refractory oxides fibers] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2014. №10. St. 06. Available at: http://www.viam-works.ru (accessed: June 4, 2018). DOI: 10.18577/2307-6046-2014-0-10-6-6.
11. Zimichev A.M., Varrik N.M., Sumin A.V., Lyulyukina G.YU. K voprosu o poluchenii nepreryvnyh oksidnyh volokon zol-gel metodom [To question of receiving continuous oksidny fibers sol-gel method] // Vse materialy. Entsiklopedicheskij spravochnik s Prilozheniem «Kommentarii k standartam, TU, sertifikatam». 2015. №12. C. 12–17.
12. Zimichev A.M., Varrik N.M., Sumin A.V. K voprosu polucheniya keramicheskih nitej na osnove tugoplavkih oksidov [To the question of receiving ceramic threads on the basis of high-melting oxides] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2016. №3 (21). St. 09. Available at: http://materialsnews.ru (accessed: June 4, 2018).
13. Zimichev A.M., Varrik N.M., Sumin A.V. Issledovanie protsessa ekstruzii nepreryvnyh tugoplavkih volokon [Research of the process of extrusion of continuous high-melting fibers] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №1 (49). Ct. 06. Available at: http://www.viam-works.ru (accessed: June 4, 2018). DOI: 10.18577/2307-6046-2017-0-1-6-6.
14. Kablov E.N. Konstruktsionnye i funktsionalnye materialy – osnova ekonomicheskogo i nauchno-tekhnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
15. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
2. Babashov V.G., Varrik N.M. Teploizolyatsionnye materialy dlya sovremennyh letatel'nyh apparatov [Thermal insulation materials for modern planes] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2016. №3 (21). St. 01. Available at: http://materialsnews.ru (accessed: June 4, 2018).
3. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: June 4, 2018).
4. Bunsell A.R. Oxide Fibers for High-Temperature Reinforcement and Insulation // J. Miner., Metalls and Mater. Sci. 2005. Vol. 57 (2). P. 48–51.
5. Non-frangible alumina-silica fibers: pat. US4047965; publ. 13.09.77.
6. Balinova Yu.A., Lyulyukina G.Yu., Kirienko T.A., Arakcheeva L.V. Svojstva promyshlennogo silikazolya i vozmozhnost' ego dorabotki dlya izgotovleniya alyumosilikatnyh materialov [Properties industrial silikazolya and possibility of its completion for manufacturing of silica-alumina materials] // Steklo i keramika. 2013. №12. S. 33–36.
7. Kirienko T.A., Balinova Yu.A. Fiziko-himicheskie svojstva mnogokomponentnyh rastvorov dlya keramicheskih materialov, soderzhashhih polivinilovyj spirt [Physical and chemical properties of multicomponent solutions for ceramic materials containing polyvinyl alcohol] // Aviacionnye materialy i tehnologii. 2014. №1. S. 34–38. DOI: 10.18577/2071-9140-2014-0-1-34-38.
8. Kirienko T.A., Balinova Yu.A. Vliyanie atmosfernoj vlazhnosti na reologiju tonkih sloev koncentrirovannyh vodnyh rastvorov sistemy «neorganicheskie soli–organicheskij polimer» [Influence of atmospheric humidity on a rheology of thin layers of the concentrated water solutions of system «inorganic salts–organic polymer»] // Aviacionnye materialy i tehnologii. 2014. №2. S. 56–58. DOI: 10.18577/2071-9140-2014-0-2-56-58.
9. Zimichev A.M., Varrik N.M., SHCHeglova T.M., Nikitina V.YU. Issledovanie prochnostnyh svojstv rovinga iz volokon sostava 85%Al2O3–15%SiO2 pri temperature 1000°S [Research of strength properties of roving from structure fibers 85%Al2O3–15%SiO2 at temperature 1000°С] // Vse materialy. Entsiklopedicheskij spravochnik s Prilozheniem «Kommentarii k standartam, TU, sertifikatam». 2015. №1. S. 30–35.
10. Zimichev A.M., Balinova Yu.A., Varrik N.M. K voprosu o module uprugosti volokon iz tugoplavkih oksidov [To a question of the elasticity module of refractory oxides fibers] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2014. №10. St. 06. Available at: http://www.viam-works.ru (accessed: June 4, 2018). DOI: 10.18577/2307-6046-2014-0-10-6-6.
11. Zimichev A.M., Varrik N.M., Sumin A.V., Lyulyukina G.YU. K voprosu o poluchenii nepreryvnyh oksidnyh volokon zol-gel metodom [To question of receiving continuous oksidny fibers sol-gel method] // Vse materialy. Entsiklopedicheskij spravochnik s Prilozheniem «Kommentarii k standartam, TU, sertifikatam». 2015. №12. C. 12–17.
12. Zimichev A.M., Varrik N.M., Sumin A.V. K voprosu polucheniya keramicheskih nitej na osnove tugoplavkih oksidov [To the question of receiving ceramic threads on the basis of high-melting oxides] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2016. №3 (21). St. 09. Available at: http://materialsnews.ru (accessed: June 4, 2018).
13. Zimichev A.M., Varrik N.M., Sumin A.V. Issledovanie protsessa ekstruzii nepreryvnyh tugoplavkih volokon [Research of the process of extrusion of continuous high-melting fibers] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №1 (49). Ct. 06. Available at: http://www.viam-works.ru (accessed: June 4, 2018). DOI: 10.18577/2307-6046-2017-0-1-6-6.
14. Kablov E.N. Konstruktsionnye i funktsionalnye materialy – osnova ekonomicheskogo i nauchno-tekhnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
15. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
2.
№1-2, 2018
УДК 620.197
Denisova V.S.1, Rozenenkova V.A.1, Agarkov A.B.1
HIGH TEMPERATURE GLASS CERAMIC COATING FOR HEAT RESISTANT NICKEL ALLOYS PROTECTION
The heat resistant glass ceramic coating was developed for heat resistant nickel alloy protection. The technology heat-resistant glass-ceramic coating fabrication was obtained for protection of combustion chambers made of high-strength weldable alloy. The main properties of heat resistant glass-ceramic coating were investigated, e.g. bonding strength, thermal stress resistance, heat resistance. Heat-resistant glass-ceramic coating fabrication is easy to provide, the coating is non-porous and fine for dimentional complex details.
Keywords: thermal stress resistance, heat resistance, coating, nickel alloy, hot corrosion, glass.
Reference List
1. Kablov E.N., Solncev S.S., Rozenenkova V.A., Mironova N.A. Sovremennye polifunkcional'nye vysokotemperaturnye pokrytija dlja nikelevyh splavov, uplotnitel'nyh metallicheskih materialov i berillievyh splavov [Modern multifunctional high temperature coatings for nickel alloys, sealing metal materials and beryllium alloys] // Novosti materialovedenija. Nauka i tehnika: jelektron. nauch.-tehnich. zhurn. 2013. №1. St. 05. Available at: http://www.materialsnews.ru (accessed: February 5, 2018).
2. Solncev S.S. Zashhitnye tehnologicheskie pokrytija i tugoplavkie jemali [Protective technological coverings and high-melting enamels]. M.: Mashinostroenie, 1984. 256 s.
3. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S., Sevastjanov V.G. Vysokotemperaturnye konstrukcionnye kompozicionnye materialy na osnove stekla i keramiki dlja perspektivnyh izdelij aviacionnoj tehniki [High-temperature constructional composite materials on the basis of glass and ceramics for perspective products of aviation engineering] // Steklo i keramika. 2012. №4. S. 7–11.
4. Solncev S.S. Vysokotemperaturnye kompozicionnye materialy i pokrytija na osnove stekla i keramiki [High-temperature composite materials and coverings on the basis of glass and ceramics] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: jubil. nauch.-tehnich. sb. M.: VIAM, 2007. S. 90–99.
5. Solncev S.S. Vysokotemperaturnye steklokeramicheskie materialy i pokrytija – perspektivnoe napravlenie aviacionnogo materialovedenija [High-temperature glass-ceramics materials and coverings – the perspective direction of aviation materials science] // Vse materialy. Jenciklopedicheskij spravochnik. 2009. №1. S. 26–37.
6. Solncev S.S., Denisova V.S., Rozenenkova V.A. Zharostojkie jemali dlja zashhity nikelevyh splavov i stalej [Heat resisting enamels for protection of nickel alloys and steels] // Vse materialy. Jenciklopedicheskij spravochnik. 2016. №1. S. 22–28.
7. Denisova V.S., Solncev S.St., Soloveva G.A. Stekloemalevye pokrytiya dlya zashhity korrozionnostojkih stalej ot vysokotemperaturnoj gazovoj korrozii: svojstva i oblasti primeneniya (obzor) [Glass enamel coatings for stainless steels protection against attacks of hot gas corrosion: properties and application fields (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №5. St. 05. Available at: http://www.viam-works.ru (accessed: February 5, 2018). DOI: 10.18577/23071-6046-2015-0-5-5-5.
8. Denisova V.S., Solncev S.S., Soloveva G.A., Malinina G.A. Sovremennoe sostoyanie issledovanij v oblasti zharostojkih resursnyh pokrytij dlya nikelevyh i titanovyh splavov (obzor) [Current state of investigations in the field of heat-resistant coatings for nickel and titanium alloys (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №4. St. 02. Available at: http://www.viam-works.ru (accessed: February 5, 2018). DOI: 10.18577/23071-6046-2015-0-4-2-2.
9. Solntsev S.S. Nekotorye osobennosti pokrytij dlya plitok mnogorazovoj teplozashhity orbitalnyh kosmicheskih korablej [Some features of coatings for tiles reusable heat-protection orbiting spacecraft] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №2. St. 01. Available at: http://www.viam-works.ru (accessed: February 5, 2018). DOI: 10.18577/2307-6046-2014-0-2-1-1.
10. Solntsev S.S., Rozenenkova V.A., Mironova N.A., Soloveva G.A. Vysokotemperaturnye pokrytiya na osnove zol-gel tehnologii [High-temperature coatings on basis of sol-gel technology] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №1. St. 03. Available at: http://www.viam-works.ru (accessed: February 5, 2018). DOI: 10.18577/2307-6046-2014-0-1-3-3.
11. Solncev S.S., Shvagireva V.V., Isaeva N.V., Soloveva G.A. Armirovannye zharostojkie steklojemali dlja kamer sgoranija gazoturbinnyh dvigatelej [Reinforced heat-resistant glass-enamels for combustion chambers of gas-turbine engines] // Aviacionnye materialy i tehnologii. 2010. №1. S. 26–29.
12. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
13. Lomberg B.S., Ovsepyan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharoprochnye nikelevye splavy dlya detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] // Aviacionnye materialy i tehnologii. 2012. №S.
S. 52–57.
14. Ovsepyan S.V., Lukina E.A., Filonova E.V., Mazalov I.S. Formirovanie uprochnyayushhej fazy v processe vysokotemperaturnogo azotirovaniya svarivaemogo zharoprochnogo deformiruemogo splava na osnove sistemy Ni–Co–Cr [Formation of the Strengthening Phase during the High-Temperature Nitriding of Ni–Co–Cr Weldable Wrought Superalloy] // Aviacionnye materialy i tehnologii. 2013. №1. S. 3–8.
15. Solntsev St.S., Rozenenkova V.A., Mironova N.A. Vysokotemperaturnye steklokeramicheskie pokrytiya i kompozicionnye materialy [The high-temperature glass ceramic coatings and composite materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 359–368.
16. Solntsev S.S., Shvagireva V.V., Isaeva N.V., Soloveva G.A. Zharostojkoe pokrytie dlya zashhity vysokoprochnyh slozhnolegirovannyh nikelevyh splavov ot vysokotemperaturnoj gazovoj korrozii [High temperature coating for protection of high-strength complex alloyed of nickel alloys of high-temperature gas corrosion] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 04. Available at: http://www.viam-works.ru (accessed: February 5, 2018). DOI: 10.18577/2307-6046-2014-0-6-4-4.
2. Solncev S.S. Zashhitnye tehnologicheskie pokrytija i tugoplavkie jemali [Protective technological coverings and high-melting enamels]. M.: Mashinostroenie, 1984. 256 s.
3. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S., Sevastjanov V.G. Vysokotemperaturnye konstrukcionnye kompozicionnye materialy na osnove stekla i keramiki dlja perspektivnyh izdelij aviacionnoj tehniki [High-temperature constructional composite materials on the basis of glass and ceramics for perspective products of aviation engineering] // Steklo i keramika. 2012. №4. S. 7–11.
4. Solncev S.S. Vysokotemperaturnye kompozicionnye materialy i pokrytija na osnove stekla i keramiki [High-temperature composite materials and coverings on the basis of glass and ceramics] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: jubil. nauch.-tehnich. sb. M.: VIAM, 2007. S. 90–99.
5. Solncev S.S. Vysokotemperaturnye steklokeramicheskie materialy i pokrytija – perspektivnoe napravlenie aviacionnogo materialovedenija [High-temperature glass-ceramics materials and coverings – the perspective direction of aviation materials science] // Vse materialy. Jenciklopedicheskij spravochnik. 2009. №1. S. 26–37.
6. Solncev S.S., Denisova V.S., Rozenenkova V.A. Zharostojkie jemali dlja zashhity nikelevyh splavov i stalej [Heat resisting enamels for protection of nickel alloys and steels] // Vse materialy. Jenciklopedicheskij spravochnik. 2016. №1. S. 22–28.
7. Denisova V.S., Solncev S.St., Soloveva G.A. Stekloemalevye pokrytiya dlya zashhity korrozionnostojkih stalej ot vysokotemperaturnoj gazovoj korrozii: svojstva i oblasti primeneniya (obzor) [Glass enamel coatings for stainless steels protection against attacks of hot gas corrosion: properties and application fields (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №5. St. 05. Available at: http://www.viam-works.ru (accessed: February 5, 2018). DOI: 10.18577/23071-6046-2015-0-5-5-5.
8. Denisova V.S., Solncev S.S., Soloveva G.A., Malinina G.A. Sovremennoe sostoyanie issledovanij v oblasti zharostojkih resursnyh pokrytij dlya nikelevyh i titanovyh splavov (obzor) [Current state of investigations in the field of heat-resistant coatings for nickel and titanium alloys (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №4. St. 02. Available at: http://www.viam-works.ru (accessed: February 5, 2018). DOI: 10.18577/23071-6046-2015-0-4-2-2.
9. Solntsev S.S. Nekotorye osobennosti pokrytij dlya plitok mnogorazovoj teplozashhity orbitalnyh kosmicheskih korablej [Some features of coatings for tiles reusable heat-protection orbiting spacecraft] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №2. St. 01. Available at: http://www.viam-works.ru (accessed: February 5, 2018). DOI: 10.18577/2307-6046-2014-0-2-1-1.
10. Solntsev S.S., Rozenenkova V.A., Mironova N.A., Soloveva G.A. Vysokotemperaturnye pokrytiya na osnove zol-gel tehnologii [High-temperature coatings on basis of sol-gel technology] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №1. St. 03. Available at: http://www.viam-works.ru (accessed: February 5, 2018). DOI: 10.18577/2307-6046-2014-0-1-3-3.
11. Solncev S.S., Shvagireva V.V., Isaeva N.V., Soloveva G.A. Armirovannye zharostojkie steklojemali dlja kamer sgoranija gazoturbinnyh dvigatelej [Reinforced heat-resistant glass-enamels for combustion chambers of gas-turbine engines] // Aviacionnye materialy i tehnologii. 2010. №1. S. 26–29.
12. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
13. Lomberg B.S., Ovsepyan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharoprochnye nikelevye splavy dlya detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] // Aviacionnye materialy i tehnologii. 2012. №S.
S. 52–57.
14. Ovsepyan S.V., Lukina E.A., Filonova E.V., Mazalov I.S. Formirovanie uprochnyayushhej fazy v processe vysokotemperaturnogo azotirovaniya svarivaemogo zharoprochnogo deformiruemogo splava na osnove sistemy Ni–Co–Cr [Formation of the Strengthening Phase during the High-Temperature Nitriding of Ni–Co–Cr Weldable Wrought Superalloy] // Aviacionnye materialy i tehnologii. 2013. №1. S. 3–8.
15. Solntsev St.S., Rozenenkova V.A., Mironova N.A. Vysokotemperaturnye steklokeramicheskie pokrytiya i kompozicionnye materialy [The high-temperature glass ceramic coatings and composite materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 359–368.
16. Solntsev S.S., Shvagireva V.V., Isaeva N.V., Soloveva G.A. Zharostojkoe pokrytie dlya zashhity vysokoprochnyh slozhnolegirovannyh nikelevyh splavov ot vysokotemperaturnoj gazovoj korrozii [High temperature coating for protection of high-strength complex alloyed of nickel alloys of high-temperature gas corrosion] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 04. Available at: http://www.viam-works.ru (accessed: February 5, 2018). DOI: 10.18577/2307-6046-2014-0-6-4-4.
3.
№5-6, 2017
УДК 666.7
Varrik N.M.1, Maksimov V.G.1
THE FIBROUS CERAMIC MATERIAL BASED ON ZIRCONIA FOR ALKALINE BATTERIY’S SEPARATORS
In this paper was assessing the possibility of creating a porous flexible dielectric composite material based on refractory oxide fibers for the separators of chemical power sources: alkaline batteries and fuel cells designed for power supply systems of aircraft, marine, automotive and household batteries.
It was carry out the comparative analysis of the properties of separation of materials of three kinds, proven ability of obtaining a porous composite material based on fibers of zirconium oxide having a high resistance to concentrated alkaline solution and a satisfactory mechanical strength. The investigation of obtained samples showed that the zirconia fibers with high thermal stability and chemical resistance, particularly to alkalis, have good prospects for the manufacture of separators alkaline batteries, especially in those cases where it is necessary combination of high power characteristics with increased reliability and service life.
Keywords: zirconia fiber, alkaline battery separator, a fibrous ceramic material.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Tinyakova E.V., Grashhenkov D.V. Teploizolyacionnyj material na osnove mullito-korundovyh i kvarcevyh volokon [Heatinsulating material on the basis of mullit-corundum and quartz fibers] // Aviacionnye materialy i tehnologii. 2012. №3. S. 43–46.
3. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: December 12, 2017).
4. Dospehi dlja «Burana». Materialy i tehnologii VIAM dlja MKS «Jenergija–Buran» [Armor for «Buran». Materials and VIAM technologies for ISS of «Energiya-Buran»] / pod obshh. red. E.N. Kablova. M.: Nauka i zhizn, 2013. 128 s.
5. Kablov E.N., Shhetanov B.V. Voloknistye teploizoljacionnye i teplozashhitnye materialy: svojstva, oblasti primenenija [Fibrous heatinsulating and heat-protective materials: properties, scopes] / Sb. tez. dokl. Mezhdunar. nauch.-tehnich. konf. «Fundamentalnye problemy vysokoskorostnyh techenij». Zhukovskij, 2004. S. 95–96.
6. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A., Semenova E.V. Volokna dioksida cirkonija dlja novogo pokolenija materialov aviacii i kosmosa [Zirconium dioxide fibers for new generation of materials of aircraft and space] / Sb. materialov 25-j Mezhdunar. konf. «Kompozicionnye materialy v promyshlennosti». Jalta, 2005. S. 320–323.
7. Zimichev A.M., Soloveva E.P. Volokno dioksida tsirkoniya dlya vysokotemperaturnogo primeneniya (obzor) [Zirconia fiber for high temperature application (review)] // Aviacionnye materialy i tehnologii. 2014. №3. S. 55–61. DOI: 10.18577/2071-9140-2014-0-3-55-61.
8. Varrik N.M., Ivahnenko Ju.A. Osobennosti poluchenija volokna oksida cirkonija (obzor) [Features of producing zirconia fibers (review)] // Trudy VIAM: jelektron. nauch. tehnich. zhurn. 2015. №10. St. 08. Available at: http://www.viam-works.ru (accessed: December 12, 2017). DOI: 10.18577/2307-6046-2015-0-10-8-8.
9. Netkanyj material dlja separatorov svincovo-kislotnyh akkumuljatornyh batarej [Nonwoven material for separators of lead-acid storage batteries]: pat. 2084049 Ros. Federacija; zajavl. 21.10.94; opubl. 10.07.97.
10. Alcaline battery separator and process of producing the same: pat. US 6037079; publ. 14.03.00.
11. Battery separator: pat. US 5336573; publ. 09.09.94.
12. Separator dlja nikel-vodorodnogo akkumuljatora [Separator for nickel - the hydrogen accumulator]: pat 2173918 Ros. Federacija; opubl. 20.09.01.
13. Flexible matrix and battery separator embodying same: pat. US 3625770; publ. 07.12.71.
14. Asbestos diaphragms for electrochemical cells and the manufacture thereof: pat. US 4367270; publ. 04.01.83.
15. Flexible battery separator and method of production: pat. US 3713890; publ. 30.01.73.
16. Multilaminate material and separator assembly for electrochemical cells: pat. US 4855196; 08.08.89.
17. Battery separator: pat. 8048556; publ. 01.11.11.
18. Zircar Zirconia Inc.: Available at: http://www.zircarzirconia.com (accessed: December 12, 2017).
19. Hamling D. Using Ceramic-Fiber Materials in Corrosive Environments // American Ceramic Society Bulletin. 1997. Vol. 76. No. 9. P. 79–82.
20. Kompozicionnyj material dlja separatora shhelochnyh akkumuljatornyh batarej [Composite material for separator of alkaline storage batteries]. pat. 2231868 Ros. Federacija; zajavl. 18.11.02; opubl. 27.06.04.
21. Kompozicionnyj material dlja separatora shhelochnyh akkumuljatornyh batarej i sposob ego poluchenija [Composite material for separator of alkaline storage batteries and way of its receiving]. pat. 2279159 Ros. Federacija; zajavl. 21.10.204; opubl. 27.06.06.
22. Sposob poluchenija poristogo kompozicionnogo materiala dlja separatorov shhelochnyh akkumuljatornyh batarej [Way of receiving porous composite material for separators of alkaline storage batteries]. pat. 2298261 Ros. Federacija; zajavl. 10.11.05; opubl. 27.04.07.
2. Tinyakova E.V., Grashhenkov D.V. Teploizolyacionnyj material na osnove mullito-korundovyh i kvarcevyh volokon [Heatinsulating material on the basis of mullit-corundum and quartz fibers] // Aviacionnye materialy i tehnologii. 2012. №3. S. 43–46.
3. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: December 12, 2017).
4. Dospehi dlja «Burana». Materialy i tehnologii VIAM dlja MKS «Jenergija–Buran» [Armor for «Buran». Materials and VIAM technologies for ISS of «Energiya-Buran»] / pod obshh. red. E.N. Kablova. M.: Nauka i zhizn, 2013. 128 s.
5. Kablov E.N., Shhetanov B.V. Voloknistye teploizoljacionnye i teplozashhitnye materialy: svojstva, oblasti primenenija [Fibrous heatinsulating and heat-protective materials: properties, scopes] / Sb. tez. dokl. Mezhdunar. nauch.-tehnich. konf. «Fundamentalnye problemy vysokoskorostnyh techenij». Zhukovskij, 2004. S. 95–96.
6. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A., Semenova E.V. Volokna dioksida cirkonija dlja novogo pokolenija materialov aviacii i kosmosa [Zirconium dioxide fibers for new generation of materials of aircraft and space] / Sb. materialov 25-j Mezhdunar. konf. «Kompozicionnye materialy v promyshlennosti». Jalta, 2005. S. 320–323.
7. Zimichev A.M., Soloveva E.P. Volokno dioksida tsirkoniya dlya vysokotemperaturnogo primeneniya (obzor) [Zirconia fiber for high temperature application (review)] // Aviacionnye materialy i tehnologii. 2014. №3. S. 55–61. DOI: 10.18577/2071-9140-2014-0-3-55-61.
8. Varrik N.M., Ivahnenko Ju.A. Osobennosti poluchenija volokna oksida cirkonija (obzor) [Features of producing zirconia fibers (review)] // Trudy VIAM: jelektron. nauch. tehnich. zhurn. 2015. №10. St. 08. Available at: http://www.viam-works.ru (accessed: December 12, 2017). DOI: 10.18577/2307-6046-2015-0-10-8-8.
9. Netkanyj material dlja separatorov svincovo-kislotnyh akkumuljatornyh batarej [Nonwoven material for separators of lead-acid storage batteries]: pat. 2084049 Ros. Federacija; zajavl. 21.10.94; opubl. 10.07.97.
10. Alcaline battery separator and process of producing the same: pat. US 6037079; publ. 14.03.00.
11. Battery separator: pat. US 5336573; publ. 09.09.94.
12. Separator dlja nikel-vodorodnogo akkumuljatora [Separator for nickel - the hydrogen accumulator]: pat 2173918 Ros. Federacija; opubl. 20.09.01.
13. Flexible matrix and battery separator embodying same: pat. US 3625770; publ. 07.12.71.
14. Asbestos diaphragms for electrochemical cells and the manufacture thereof: pat. US 4367270; publ. 04.01.83.
15. Flexible battery separator and method of production: pat. US 3713890; publ. 30.01.73.
16. Multilaminate material and separator assembly for electrochemical cells: pat. US 4855196; 08.08.89.
17. Battery separator: pat. 8048556; publ. 01.11.11.
18. Zircar Zirconia Inc.: Available at: http://www.zircarzirconia.com (accessed: December 12, 2017).
19. Hamling D. Using Ceramic-Fiber Materials in Corrosive Environments // American Ceramic Society Bulletin. 1997. Vol. 76. No. 9. P. 79–82.
20. Kompozicionnyj material dlja separatora shhelochnyh akkumuljatornyh batarej [Composite material for separator of alkaline storage batteries]. pat. 2231868 Ros. Federacija; zajavl. 18.11.02; opubl. 27.06.04.
21. Kompozicionnyj material dlja separatora shhelochnyh akkumuljatornyh batarej i sposob ego poluchenija [Composite material for separator of alkaline storage batteries and way of its receiving]. pat. 2279159 Ros. Federacija; zajavl. 21.10.204; opubl. 27.06.06.
22. Sposob poluchenija poristogo kompozicionnogo materiala dlja separatorov shhelochnyh akkumuljatornyh batarej [Way of receiving porous composite material for separators of alkaline storage batteries]. pat. 2298261 Ros. Federacija; zajavl. 10.11.05; opubl. 27.04.07.