Articles
Protection against climatic and microbiological degradations
1.
№6, 2016
УДК 678.026
Petrov N. N.1, Koval T. V.2, Kurganskiy M. A.2, Sheldeshov N. V.2, Panyushkin V. T.2, Bukov N. N.2
FUNCTIONAL HYBRID ANTICORROSIVE SYSTEMS WITH ANTIDEGRADATION AND SELF-DIAGNOSTIC CHARACTERISTICS
The experience of creating and studying the properties of sandwich systems «epoxy-polyelectrolyte-inorganic counter-ion – modifier/epoxide-carbon filler» was generalized. It has been shown that due to the variable nature of the polyelectrolyte and the modifier been introduced into the polymeric binder may provide protective materials having variable antidegradation and self-diagnostic functions. These functions manifest themselves of speed reduction of underfilm corrosion of metal surfaces from the aging of the coating and variable of electrical resistivity obtained anti-corrosion systems at the loss of their hydroinsulating properties.
Keywords: variable resistivity, intelligent anticorosive protective materials, the system «polymer-polyelectrolyte».
Reference List
1. Williams G., Geary S., McMurray H.N. Smart release corrosion inhibitor pigments based on organic ion-exchange resins // Corrosion Science. 2012. Vol. 57. P. 139–147.
2. Montemor M.F. Functional and smart coatings for corrosion protection: A review of recent advances // Surface and Coatings Technology. 2014. Vol. 258. No. 15. P. 17–37.
3. Petrov N.N., Fedorov D.Yu., Gorokhov R.V., Bukov N.N., Shel'deshov N.V. Sensornoe protivokorrozionnoe pokrytie [Touch corrosion preventive coating] // Territoriya NEFTEGAZ. 2013. №2. C. 62–65.
4. Petrov N.N., Koval T.V., Falina I.V., Gorokhov R.V., Sakharov D.I., Bukov N.N., Sheldeshov N.V. Povyshenie effektivnosti protivokor-rozionnoy zashchity magistralnykh truboprovodov s ispol'zovaniem intellektualnykh pokrytiy [Increase of efficiency of anticorrosive protection of main pipelines with use of intellectual coverings] // Territoriya NEFTEGAZ. 2014. №9. S. 30–34.
5. Sposob elektrokhimicheskogo opredeleniya skorosti korrozii metalla s dielektricheskim pokrytiem i ustroystvo dlya ego osushchestvleniya [Way of electrochemical speed sensing of corrosion of metal with dielectric covering and the device for its implementation]: pat. 2020461 Ros. Federatsiya; opubl. 30.09.94.
2. Montemor M.F. Functional and smart coatings for corrosion protection: A review of recent advances // Surface and Coatings Technology. 2014. Vol. 258. No. 15. P. 17–37.
3. Petrov N.N., Fedorov D.Yu., Gorokhov R.V., Bukov N.N., Shel'deshov N.V. Sensornoe protivokorrozionnoe pokrytie [Touch corrosion preventive coating] // Territoriya NEFTEGAZ. 2013. №2. C. 62–65.
4. Petrov N.N., Koval T.V., Falina I.V., Gorokhov R.V., Sakharov D.I., Bukov N.N., Sheldeshov N.V. Povyshenie effektivnosti protivokor-rozionnoy zashchity magistralnykh truboprovodov s ispol'zovaniem intellektualnykh pokrytiy [Increase of efficiency of anticorrosive protection of main pipelines with use of intellectual coverings] // Territoriya NEFTEGAZ. 2014. №9. S. 30–34.
5. Sposob elektrokhimicheskogo opredeleniya skorosti korrozii metalla s dielektricheskim pokrytiem i ustroystvo dlya ego osushchestvleniya [Way of electrochemical speed sensing of corrosion of metal with dielectric covering and the device for its implementation]: pat. 2020461 Ros. Federatsiya; opubl. 30.09.94.
2.
№6, 2016
УДК 620.19
Karpov V.A.1, Kovalchuk Yu.L.1, Beleneva I.A.2, Petrosyan V.G.1
The study of the corrosion of metals in tropical marine waters
Method multisubstrate testing (MST) investigated the activity of biofilm on the samples of carbon steel after exposure in the Dam Bay of the South China sea. The close correlation between the corrosion losses of St. 3 and aktivity. The activity of biofilm on the surface of the steel plates increased with increasing time of exposure in the sea. Confirmed the accuracy and versatility of the method of MST in characterizing biofilms of marine origin.
Keywords: corrosion losses, the activity of biofilm, the method of MST.
3.
№6, 2016
УДК 620.193.21
Dub A.V.1, Volkova O.V.1
Techniques of assessment and forecasting of corrosion resistance of construction metalwork in different climatic zones
The report examines the creation of methods forecasting the durability metal elements of construction hinged front systems, based on the results of monitoring of corrosion losses in the operated structures; development of recommendations on the selection of materials for the manufacture of metal construction at both the structural design and in the evaluation of their technical condition during operation.
Keywords: corrosion resistance of steel structures, durability, aggressiveness atmosphere, climatic tests.
Reference List
1. Ulig G.G., Revi R.G. Korroziya i borba s ney. Vvedenie v korrozionnuyu nauku i tekhniku [Corrosion and fight against it. Introduction in corrosion science and equipment]. M.: Khimiya, 1989. 456 s.
2. Sinyavskiy V.S., Valkov V.D., Budov G.M. Korroziya i zashchita alyuminievykh splavov [Corrosion and protection of aluminum alloys]. M.: Metallurgiya, 1979. 223 s.
3. Rozenfeld I.L. Korroziya i zashchita metallov [Corrosion and protection of metals]. M.: Metallurgiya, 1969. 448 s.
2. Sinyavskiy V.S., Valkov V.D., Budov G.M. Korroziya i zashchita alyuminievykh splavov [Corrosion and protection of aluminum alloys]. M.: Metallurgiya, 1979. 223 s.
3. Rozenfeld I.L. Korroziya i zashchita metallov [Corrosion and protection of metals]. M.: Metallurgiya, 1969. 448 s.
4.
№5, 2016
УДК 678.019.32:539.37
Dobrodushnova V.I.1, Kozlova M.V.1
The influence of hygrothermal and climatic aging on the thermoplastics deformation patterns
The effect of hygrothermal and climatic aging on the deformation patterns of thermoplastics with linear (organic glass brand СО-120) and rarely cross-linked (organic glass brand BOC-2) structures was investigated. It has been shown that the thermos-moisture-saturation for 132 days at 70°C and humidity of 85% leads to a marked uniaxial tension curves decrease at room temperature and temperatures equal to 0,95 the softening temperature of the respective materials. At the same time exposure to moderately warm climate conditions for 12 months leads to strain curves decrease only at elevated temperatures.
This work was performed as part of the comprehensive scientific areas 2.2. «Qualification and materials research» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
Keywords: organic glass, strain curve, rubber-like elastic strain, hygrothermal aging, climatic aging
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative de-velopments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Sentyurin E.G., Mekalina I.V., Trigub T.S., Klimova S.F. Modifitsirovannye organicheskie stekla dlya perspektivnoy aviatsionnoy tekhniki [The modified organic glasses for perspective aviation engineering]// Vse materialy. Entsiklopedicheskiy spravochnik. 2012. № 2. S. 2–4.
3. Gorelov Yu.P., Chmykhova T.G., Shalaginova I.A. Novye organicheskie stekla dlya aviastroeniya [New organic glasses for aircraft industry] // Plasticheskie massy. 2009. №12. C. 20–22.
4. Kablov E.N. Materialy i khimicheskie tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
5. Kharitonov G.M., Yakovlev N.O., Mekalina I.V. Vliyanie fiziko-mekhanicheskikh kharakteristik orgstekol na napryazheniya v samoletnom osteklenii pri aerodinamicheskom nagreve [Influence of physicomechanical characteristics of organic glasses on tension in aircraft glazing at aerodynamic heating] // Aviatsionnye materialy i tekhnologii. 2015. №S1. S. 56–60. DOI: 10.18577/2071-9140-2015-0-S1-56-60.
6. Yakovlev N.O., Erasov V.S., Sentyurin E.G., Kharitonov G.M. Kompleks metodik otsenki fiziko-mekhanicheskikh kharakteristik organicheskikh stekol s uchetom vliyaniya vysokoelasticheskoy deformatsii [Complex of techniques of assessment of physicomechanical characteristics of organic glasses taking into account high-elastic deformation influence] // Vse materialy. Entsiklopedicheskiy spravochnik. 2013. №10. S. 6–11.
7. Yakovlev N.O. Issledovanie i opisanie relaksacionnogo povedeniya polimernyh materialov (obzor) [Study and description of relaxation behavior of polymers (review)] //Aviacionnye materialy i tehnologii. 2014. №S4. S. 50–54. DOI: 10.18577/2071-9140-2014-0-S4-50-54.
8. Yakovlev N.O., Mekalina I.V., Sentyurin E.G. Peculiarities of resilient highly elastic deformation of organic glasses with linear and rarely cross-linked structure // Inorganic Materials: Applied Research. 2015. Т. 6. №4. С. 336–342.
9. Kablov E.N. Konstruktsionnye i funktsionalnye materialy – osnova ekonomicheskogo i nauchno-tekhnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
10. Mekalina I.V., Sentyurin E.G., Klimova S.F., Bogatov V.A. Novye «serebrostojkie» organicheskie stekla [New «silver resistant» organic glasses] // Aviacionnye materialy i tehnologii. 2012. №4. S. 45–48.
11. Kablov E.N. Khimiya v aviatsionnom materialovedenii [Chemistry in aviation materials science] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 3–4.
12. Bogatov V.A., Trigub T.S., Mekalina I.V., Ayzatulina M.K. Otsenka ekspluatatsionnykh kharakteristik novykh teplostoykikh organicheskikh stekol VOS-1 i VOS-2 [Assessment of utilization properties of new heatresistant organic glasses VOS-1 and VOS-2] // Aviatsionnye materialy i tekhnologii. 2010. №1. S. 21–26.
13. Kablov E.N., Yakovlev N.O., Kharitonov G.M., Mekalina I.V. Osobennosti relaksa-tsionnogo povedeniya polimernykh stekol na osnove polimetilmetakrilata i ikh uchet pri prochnostnom raschete aviatsionnogo ostekleniya [Features of relaxation behavior of polymeric glasses on basis polimetilmetakrilata and their accounting at strength calculation of aviation glazing] // Vse materialy. Entsiklopedicheskiy spravochnik. 2016. №9. S. 7–12.
14. Yakovlev N.O. Vliyanie vysokoelasticheskoy deformatsii na napryazhenno-deformirovannoe sostoyanie aviatsionnykh organicheskikh stekol: avtoref. dis. kand. tekhn. nauk [Influence of high-elastic deformation on intense the deformed condition of aviation organic glasses: thesis cand. Sc. (Tech.)]. M.: VIAM, 2013. 24 s.
15. Yakovlev N.O., Erasov V.S., Sentyurin E.G., Haritonov G.M. Relaksaciya ostatochnyh napryazhenij v aviacionnyh organicheskih steklah pri poslepoletnoj stoyanke samoleta [Relaxation of residual stresses in aviation organic glasses at postflight parking of airplane] //Aviacionnye materialy i tehnologii. 2012. №2 (23). S. 66–69.
16. Yakovlev N.O. Otsenka granits oblasti relaksatsionnogo povedeniya organicheskogo stekla na osnove polimetilmetakrilata [Assessment of borders of area of relaxation behavior of organic glass on basis polimetilmetakrilata] // Plasticheskie massy. 2015. №1–2. S. 36–39.
17. Yakovlev N.O. Relaksatsionnoe povedenie organicheskogo stekla na osnove polimetilmetakrilata [Relaxation behavior of organic glass on basis polimetilmetakrilata] // Zavodskaya laboratoriya. Diagnostika materialov. 2015. T. 81. №5. S. 57–60.
2. Sentyurin E.G., Mekalina I.V., Trigub T.S., Klimova S.F. Modifitsirovannye organicheskie stekla dlya perspektivnoy aviatsionnoy tekhniki [The modified organic glasses for perspective aviation engineering]// Vse materialy. Entsiklopedicheskiy spravochnik. 2012. № 2. S. 2–4.
3. Gorelov Yu.P., Chmykhova T.G., Shalaginova I.A. Novye organicheskie stekla dlya aviastroeniya [New organic glasses for aircraft industry] // Plasticheskie massy. 2009. №12. C. 20–22.
4. Kablov E.N. Materialy i khimicheskie tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
5. Kharitonov G.M., Yakovlev N.O., Mekalina I.V. Vliyanie fiziko-mekhanicheskikh kharakteristik orgstekol na napryazheniya v samoletnom osteklenii pri aerodinamicheskom nagreve [Influence of physicomechanical characteristics of organic glasses on tension in aircraft glazing at aerodynamic heating] // Aviatsionnye materialy i tekhnologii. 2015. №S1. S. 56–60. DOI: 10.18577/2071-9140-2015-0-S1-56-60.
6. Yakovlev N.O., Erasov V.S., Sentyurin E.G., Kharitonov G.M. Kompleks metodik otsenki fiziko-mekhanicheskikh kharakteristik organicheskikh stekol s uchetom vliyaniya vysokoelasticheskoy deformatsii [Complex of techniques of assessment of physicomechanical characteristics of organic glasses taking into account high-elastic deformation influence] // Vse materialy. Entsiklopedicheskiy spravochnik. 2013. №10. S. 6–11.
7. Yakovlev N.O. Issledovanie i opisanie relaksacionnogo povedeniya polimernyh materialov (obzor) [Study and description of relaxation behavior of polymers (review)] //Aviacionnye materialy i tehnologii. 2014. №S4. S. 50–54. DOI: 10.18577/2071-9140-2014-0-S4-50-54.
8. Yakovlev N.O., Mekalina I.V., Sentyurin E.G. Peculiarities of resilient highly elastic deformation of organic glasses with linear and rarely cross-linked structure // Inorganic Materials: Applied Research. 2015. Т. 6. №4. С. 336–342.
9. Kablov E.N. Konstruktsionnye i funktsionalnye materialy – osnova ekonomicheskogo i nauchno-tekhnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
10. Mekalina I.V., Sentyurin E.G., Klimova S.F., Bogatov V.A. Novye «serebrostojkie» organicheskie stekla [New «silver resistant» organic glasses] // Aviacionnye materialy i tehnologii. 2012. №4. S. 45–48.
11. Kablov E.N. Khimiya v aviatsionnom materialovedenii [Chemistry in aviation materials science] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 3–4.
12. Bogatov V.A., Trigub T.S., Mekalina I.V., Ayzatulina M.K. Otsenka ekspluatatsionnykh kharakteristik novykh teplostoykikh organicheskikh stekol VOS-1 i VOS-2 [Assessment of utilization properties of new heatresistant organic glasses VOS-1 and VOS-2] // Aviatsionnye materialy i tekhnologii. 2010. №1. S. 21–26.
13. Kablov E.N., Yakovlev N.O., Kharitonov G.M., Mekalina I.V. Osobennosti relaksa-tsionnogo povedeniya polimernykh stekol na osnove polimetilmetakrilata i ikh uchet pri prochnostnom raschete aviatsionnogo ostekleniya [Features of relaxation behavior of polymeric glasses on basis polimetilmetakrilata and their accounting at strength calculation of aviation glazing] // Vse materialy. Entsiklopedicheskiy spravochnik. 2016. №9. S. 7–12.
14. Yakovlev N.O. Vliyanie vysokoelasticheskoy deformatsii na napryazhenno-deformirovannoe sostoyanie aviatsionnykh organicheskikh stekol: avtoref. dis. kand. tekhn. nauk [Influence of high-elastic deformation on intense the deformed condition of aviation organic glasses: thesis cand. Sc. (Tech.)]. M.: VIAM, 2013. 24 s.
15. Yakovlev N.O., Erasov V.S., Sentyurin E.G., Haritonov G.M. Relaksaciya ostatochnyh napryazhenij v aviacionnyh organicheskih steklah pri poslepoletnoj stoyanke samoleta [Relaxation of residual stresses in aviation organic glasses at postflight parking of airplane] //Aviacionnye materialy i tehnologii. 2012. №2 (23). S. 66–69.
16. Yakovlev N.O. Otsenka granits oblasti relaksatsionnogo povedeniya organicheskogo stekla na osnove polimetilmetakrilata [Assessment of borders of area of relaxation behavior of organic glass on basis polimetilmetakrilata] // Plasticheskie massy. 2015. №1–2. S. 36–39.
17. Yakovlev N.O. Relaksatsionnoe povedenie organicheskogo stekla na osnove polimetilmetakrilata [Relaxation behavior of organic glass on basis polimetilmetakrilata] // Zavodskaya laboratoriya. Diagnostika materialov. 2015. T. 81. №5. S. 57–60.
5.
№2, 2016
УДК 621.792.053
Petrova A.P.1, Lukina N.Ph.1, I.A. Sharova1, V. M. Bouznik1
Operability of glues and materials on their basisin the conditions close to conditions of the Arctic
The analysis of properties of epoxy adhesives of cold curing, film adhesives of different types and adhesive prepregs with reference to work in the Arctic conditions is provided. Data on water resistance and water absorption of curing film adhesives are provided. Possibilities of use of adhesive bonds are considered at temperature -60°С. Рroperties of composite materials on the basis of adhesive prepregs and change of their properties at operation in weather conditions of Yakutsk.
Work is executed within implementation of the complex scientific direction 15.1: Multifunction adhesives systems. («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
Keywords: epoxy adhesives, film adhesives, adhesive prepregs, water resistance, frost resistance.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Kablov E.N. Konstrukcionnye i funkcionalnye materialy – osnova jekonomicheskogo i nauchno-tehnicheskogo razvitija Rossii [Constructional and functional materials – a basis of economic and scientific and technical development of Russia] // Voprosy materialovedenija. 2006. №1. S. 64–67.
3. Petrova A.P., Sharova I.A., Lukina N.F., Buznik V.M. Vozmozhnosti primenenija kleev v arkticheskih uslovijah [Possibilities of application of glues in the Arctic conditions] // Klei. Germetiki. Tehnologii. 2015. № 7. S. 10–15.
4. Petrova A.P., Donskoj A.A. Klejashhie materialy [Gluing materials]. Germetiki: Sprav. SPb.: NPO «Professional», 2008. 559 s.
5. Petrova A.P., Lukina N.F., Dementeva L.A., Avdonina I.A., Tjumeneva T.Ju., Zhadova N.S. Klei dlja aviacionnoj tehniki [Glues for aviation engineering] // RZhH. 2010. T. LIV. №1. S. 46–52.
6. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
7. Buznik V.M., Kablov E.N., Koshurina A.A. Materialy dlja slozhnyh tehnicheskih ustrojstv arkticheskogo primenenija [Materials for difficult technical devices of the Arctic application] // Nauchno-tehnicheskie problemy osvoenija Arktiki. M.: Nauka, 2015. 490 s.
8. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
9. Sharova I.A., Lukina N.F. Zazorozapolnjajushhij jepoksidnyj klej holodnogo otverzhdenija [Gap filling epoxy glue of a cold curing] // Klei. Germetiki. Tehnologii. 2012. №3. S. 10–12.
10. Avdonina I.A., Lukina N.F. Bystrootverzhdajushhijsja jepoksidnyj klej VK-93 holodnogo otverzhdenija [Fast-curing epoxy VK-93 glue of a cold curing] // Klei. Germetiki. Tehnologii. 2009. №3. S. 14–17.
11. Zhadova N.S., Tjumeneva T.Ju., Sharova I.A., Lukina N.F. Perspektivnye tehnologii dlja vremennogo operativnogo remonta aviacionnoj tehniki [Perspective technologies for temporary expeditious repair of aviation engineering] // Aviacionnye materialy i tehnologii. 2013. №2. S. 67–70.
12. Sharova I.A., Lukina N.F., Aleksashin V.M., Antjufeeva N.V. Vlijanie sostava na kineticheskie i prochnostnye svojstva bystrootverzhdajushhihsja jepoksidnyh kleevyh kompozicij [Influence of structure on kinetic and strength properties fast-curing epoxy glue compositions] // Klei. Germetiki. Tehnologii. 2015. №2. S. 1–5.
13. Dementeva L.A., Petrova A.P., Lukina N.F. Primenenie i naznachenie jepoksidnogo plenochnogo kleja VK-31 [Application and purpose of epoxy film VK-31 glue] // Vse materialy. Jenciklopedicheskij spravochnik. 2015. №1. S. 25–32.
14. Petrova A.P., Lukina N.F., Dementeva L.A., Anihovskaja L.I. Plenochnye konstrukcionnye klei [Film constructional glues] // Klei. Germetiki. Tehnologii. 2014. №10. S. 7–12.
15. Lukina N.F., Dementeva L.A., Petrova A.P., Serezhenkov A.A. Konstrukcionnye i termostojkie klei [Constructional and heat-resistant glues] // Aviacionnye materialy i tehnologii. 2012. №S. S. 328–335.
16. Sharova I.A., Petrova A.P. Obzor po materialam mezhdunarodnoj konferencii po kleyam i germetikam (WAC-2012, Franciya) [Review of world adhesive and sealant conference (WAC-2012, France] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №8. St. 06. Available at: http://www.viam-works.ru (accessed: March 15, 2016).
17. Sharova I. A. Otechestvennyj i zarubezhnyj opyt v oblasti razrabotki epoksidnyh kleev holodnogo otverzhdeniya [Domestic and foreign experience in area of cold curing epoxy adhesive development] // Trudy VIAM : electron. elektron. nauch.-tehnich. zhurn. 2014. №7. St. 05. Available at: http://viam-works.ru (accessed: March 18, 2016).
18. Kucevich K.E., Dement'eva L.A., Lukina N.F., Chursova L.V. Svojstva i naznachenie kleja VK-36RM dlja aviacionnoj tehniki [Properties and purpose of VK-36PM glue for aviation engineering] // Klei. Germetiki. Tehnologii. 2013. №8. S. 5–6.
19. Petrova A.P., Dementeva L.A., Kucevich K.E., Buznik V.M. O vozmozhnosti ispol'zovanija materialov na osnove kleevyh prepregov v arkticheskih uslovijah [About possibility of use of materials on the basis of glue prepreg in the Arctic conditions] // Klei. Germetiki. Tehnologii. 2015. №2. S. 12–16.
20. Dementeva L.A., Serezhenkov A.A., Lukina N.F., Kucevich K.E. Kleevye prepregi – perspektivnye materialy dlja detalej i agregatov iz PKM [Glue prepregs – perspective materials for details and units from PCM] // Kompozity 21 vek. 2014. №2. S. 12–14.
21. Dementeva L.A., Serezhenkov A.A., Bocharova L.I., Lukina N.F., Kucevich K.E., Petrova A.P. Svojstva kompozicionnyh materialov na osnove kleevyh prepregov [Properties of composite materials on the basis of glue prepregs] // Klei. Germetiki. Tehnologii. 2012. №6. S. 19–24.
22. Dementeva L.A., Serezhenkov A.A., Lukina N.F., Kucevich K.E. Kleevye prepregi i sloistye materialy na ih osnove [Adhesive prepregs and layered materials on their basis] // Aviacionnye materialy i tehnologii. 2013. №2. S. 19–21.
23. Shvedkova A.K., Petrova A.P., Buznik V.M. Klimaticheskaja stojkost' kompozicionnyh materialov na osnove kleevyh prepregov v kontinental'nyh arkticheskih uslovijah [Climatic firmness of composite materials on the basis of glue prepregs in continental Arctic conditions] // Klei. Germetiki. Tehnologii. 2016. №1. S. 19–25.
2. Kablov E.N. Konstrukcionnye i funkcionalnye materialy – osnova jekonomicheskogo i nauchno-tehnicheskogo razvitija Rossii [Constructional and functional materials – a basis of economic and scientific and technical development of Russia] // Voprosy materialovedenija. 2006. №1. S. 64–67.
3. Petrova A.P., Sharova I.A., Lukina N.F., Buznik V.M. Vozmozhnosti primenenija kleev v arkticheskih uslovijah [Possibilities of application of glues in the Arctic conditions] // Klei. Germetiki. Tehnologii. 2015. № 7. S. 10–15.
4. Petrova A.P., Donskoj A.A. Klejashhie materialy [Gluing materials]. Germetiki: Sprav. SPb.: NPO «Professional», 2008. 559 s.
5. Petrova A.P., Lukina N.F., Dementeva L.A., Avdonina I.A., Tjumeneva T.Ju., Zhadova N.S. Klei dlja aviacionnoj tehniki [Glues for aviation engineering] // RZhH. 2010. T. LIV. №1. S. 46–52.
6. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
7. Buznik V.M., Kablov E.N., Koshurina A.A. Materialy dlja slozhnyh tehnicheskih ustrojstv arkticheskogo primenenija [Materials for difficult technical devices of the Arctic application] // Nauchno-tehnicheskie problemy osvoenija Arktiki. M.: Nauka, 2015. 490 s.
8. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
9. Sharova I.A., Lukina N.F. Zazorozapolnjajushhij jepoksidnyj klej holodnogo otverzhdenija [Gap filling epoxy glue of a cold curing] // Klei. Germetiki. Tehnologii. 2012. №3. S. 10–12.
10. Avdonina I.A., Lukina N.F. Bystrootverzhdajushhijsja jepoksidnyj klej VK-93 holodnogo otverzhdenija [Fast-curing epoxy VK-93 glue of a cold curing] // Klei. Germetiki. Tehnologii. 2009. №3. S. 14–17.
11. Zhadova N.S., Tjumeneva T.Ju., Sharova I.A., Lukina N.F. Perspektivnye tehnologii dlja vremennogo operativnogo remonta aviacionnoj tehniki [Perspective technologies for temporary expeditious repair of aviation engineering] // Aviacionnye materialy i tehnologii. 2013. №2. S. 67–70.
12. Sharova I.A., Lukina N.F., Aleksashin V.M., Antjufeeva N.V. Vlijanie sostava na kineticheskie i prochnostnye svojstva bystrootverzhdajushhihsja jepoksidnyh kleevyh kompozicij [Influence of structure on kinetic and strength properties fast-curing epoxy glue compositions] // Klei. Germetiki. Tehnologii. 2015. №2. S. 1–5.
13. Dementeva L.A., Petrova A.P., Lukina N.F. Primenenie i naznachenie jepoksidnogo plenochnogo kleja VK-31 [Application and purpose of epoxy film VK-31 glue] // Vse materialy. Jenciklopedicheskij spravochnik. 2015. №1. S. 25–32.
14. Petrova A.P., Lukina N.F., Dementeva L.A., Anihovskaja L.I. Plenochnye konstrukcionnye klei [Film constructional glues] // Klei. Germetiki. Tehnologii. 2014. №10. S. 7–12.
15. Lukina N.F., Dementeva L.A., Petrova A.P., Serezhenkov A.A. Konstrukcionnye i termostojkie klei [Constructional and heat-resistant glues] // Aviacionnye materialy i tehnologii. 2012. №S. S. 328–335.
16. Sharova I.A., Petrova A.P. Obzor po materialam mezhdunarodnoj konferencii po kleyam i germetikam (WAC-2012, Franciya) [Review of world adhesive and sealant conference (WAC-2012, France] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №8. St. 06. Available at: http://www.viam-works.ru (accessed: March 15, 2016).
17. Sharova I. A. Otechestvennyj i zarubezhnyj opyt v oblasti razrabotki epoksidnyh kleev holodnogo otverzhdeniya [Domestic and foreign experience in area of cold curing epoxy adhesive development] // Trudy VIAM : electron. elektron. nauch.-tehnich. zhurn. 2014. №7. St. 05. Available at: http://viam-works.ru (accessed: March 18, 2016).
18. Kucevich K.E., Dement'eva L.A., Lukina N.F., Chursova L.V. Svojstva i naznachenie kleja VK-36RM dlja aviacionnoj tehniki [Properties and purpose of VK-36PM glue for aviation engineering] // Klei. Germetiki. Tehnologii. 2013. №8. S. 5–6.
19. Petrova A.P., Dementeva L.A., Kucevich K.E., Buznik V.M. O vozmozhnosti ispol'zovanija materialov na osnove kleevyh prepregov v arkticheskih uslovijah [About possibility of use of materials on the basis of glue prepreg in the Arctic conditions] // Klei. Germetiki. Tehnologii. 2015. №2. S. 12–16.
20. Dementeva L.A., Serezhenkov A.A., Lukina N.F., Kucevich K.E. Kleevye prepregi – perspektivnye materialy dlja detalej i agregatov iz PKM [Glue prepregs – perspective materials for details and units from PCM] // Kompozity 21 vek. 2014. №2. S. 12–14.
21. Dementeva L.A., Serezhenkov A.A., Bocharova L.I., Lukina N.F., Kucevich K.E., Petrova A.P. Svojstva kompozicionnyh materialov na osnove kleevyh prepregov [Properties of composite materials on the basis of glue prepregs] // Klei. Germetiki. Tehnologii. 2012. №6. S. 19–24.
22. Dementeva L.A., Serezhenkov A.A., Lukina N.F., Kucevich K.E. Kleevye prepregi i sloistye materialy na ih osnove [Adhesive prepregs and layered materials on their basis] // Aviacionnye materialy i tehnologii. 2013. №2. S. 19–21.
23. Shvedkova A.K., Petrova A.P., Buznik V.M. Klimaticheskaja stojkost' kompozicionnyh materialov na osnove kleevyh prepregov v kontinental'nyh arkticheskih uslovijah [Climatic firmness of composite materials on the basis of glue prepregs in continental Arctic conditions] // Klei. Germetiki. Tehnologii. 2016. №1. S. 19–25.
6.
№5, 2015
УДК 621.793.1
The analysis and forecasting of operational damages of coverings of TiN at influence of climatic factors and corrosion and active environments
Effect of vacuum ion plasma coating parameters on part operation abilities was studied. Comparative analysis showed an insufficiency of coating perfection factors specified by drawing technical requirements and parameters and parameters required to provide parts operation abilities. Studies Quality specifications of TiN coated parts working under influence of climatic factors and corrosion-active media were developed. The necessity of standard preparation re-gulating coating perfection factors was established.
Keywords: surface roughness, coating thickness, microhardness.
Reference List
1. Budilov V.V., Kireev R.M., Shehtman S.R. Tehnologija vakuumnoj ionno-plazmennoj obrabotki [Technology of vacuum ion-plasma processing]. M.: MAI. 2007. 155 s.
2. Il'in A.A., Spektor V.S., Petrov L.M. Kompleksnaja sistema obespechenija rabotosposobnosti izdelij iz titanovyh splavov pri ionno-vakuumnoj obrabotke [Complex system of ensuring operability of products from titanium alloys at ion-vacuum processing] //Aviacionnaja promyshlennost'. 2005. №2. S. 27–32.
3. Suslov A.G., Fedorov V.P., Gorlenko O.A. i dr. Tehnologicheskoe obespechenie i povyshenie jekspluatacionnyh svojstv detalej i ih soedinenij [Technological support and increase of operational properties of details and their connections]. M.: Mashinostroenie. 2006. 448 s.
4. Budilov V.V., Ivanov V.Ju., Muhin V.S. Integrirovannye vakuumnye ionno-plazmennye tehnologii obrabotki detalej gazoturbinnyh dvigatelej. Fizicheskie osnovy, modelirovanie i proektirovanie [The integrated vacuum ion-plasma technologies of processing of details of gas turbine engines. Physical bases, modeling and design]. Ufa: Gilem. 2004. 216 s.
5. Barvinok V.A., Bogdanovich V.I. Fizicheskie osnovy i matematicheskoe modelirovanie processov vakuumnogo ionno-plazmennogo napylenija [Physical bases and mathematical modeling of processes of vacuum ion-plasma dusting]. M.: Mashinostroenie. 1999. 309 s.
6. Zenin B.S., Ovechkin B.B. Sovremennye tehnologii modificirovanija poverhnosti i nanesenija pokrytij [Modern technologies of modifying of surface and drawing coverings]. Tomsk. 2008. 75 s.
7. Tehnologicheskie rekomendacii «Nanesenie nitridov titana i cirkonija metodom kondensacii s ionnoj bombardirovkoj na detali GTD iz stalej 13H11N2V2MF-Sh, 12H18N9T, 38HA i splavov VT18U, VT9, VT3-1» [Technological recommendations «Putting titanium nitrides and zirconium condensation method with ionic bombing on GTD detail from staly 13kh11n2v2mf-Sh, 12Х18Н9Т, 38ХА and alloys ВТ18У, BT9, BT3-1»]. Ufa: UMPO–UAI. 1992.
8. Mubojadzhjan S.A., Kablov E.N., Budinovskij S.A., Pomelov Ja.A. Nanesenie zashhitnyh pokrytij na detali ionno-plazmennym metodom [Drawing protecting covers on detail ion-plasma method] //Aviacionnaja promyshlennost' 1997. №3–4. S. 65–70.
9. Vasil'ev V.V., Luchaninov A.A., Reshetnjak E.N., Strel'nickij V.E., Tolmacheva G.N. Reshetnjak M.V. Strukturam i tverdost' Ti–N- i Ti–Si–N-pokrytij, osazhdennyh iz fil'trovannoj vakuumno-dugovoj plazmy [To structures and Ti–N-and Ti hardness – Si – the N-coverings besieged from filtered vacuum and arc plasma] //Voprosy atomnoj nauki i tehniki. 2009. №2. S. 173–180.
10. Matjunin V.M. Opredelenie mehanicheskih svojstv i adgezionnoj prochnosti ion-no-plazmennyh pokrytij sklerometricheskim metodom [Determination of mechanical properties and adhesive durability of ion-plasma coverings sclerometric method] //MiTOM. 2002. №3. S. 36–38.
11. Mihajlova E.A. Osobennosti nanesenija vakuumnyh ionno-plazmennyh pokrytij na vnutrennie poverhnosti izdelij mashinostroenija [Features of drawing vacuum ion-plasma coverings on inner surfaces of products of mechanical engineering] //Uprochnjajushhie tehnologii i pokrytija. 2006. №4. S. 32–35.
2. Il'in A.A., Spektor V.S., Petrov L.M. Kompleksnaja sistema obespechenija rabotosposobnosti izdelij iz titanovyh splavov pri ionno-vakuumnoj obrabotke [Complex system of ensuring operability of products from titanium alloys at ion-vacuum processing] //Aviacionnaja promyshlennost'. 2005. №2. S. 27–32.
3. Suslov A.G., Fedorov V.P., Gorlenko O.A. i dr. Tehnologicheskoe obespechenie i povyshenie jekspluatacionnyh svojstv detalej i ih soedinenij [Technological support and increase of operational properties of details and their connections]. M.: Mashinostroenie. 2006. 448 s.
4. Budilov V.V., Ivanov V.Ju., Muhin V.S. Integrirovannye vakuumnye ionno-plazmennye tehnologii obrabotki detalej gazoturbinnyh dvigatelej. Fizicheskie osnovy, modelirovanie i proektirovanie [The integrated vacuum ion-plasma technologies of processing of details of gas turbine engines. Physical bases, modeling and design]. Ufa: Gilem. 2004. 216 s.
5. Barvinok V.A., Bogdanovich V.I. Fizicheskie osnovy i matematicheskoe modelirovanie processov vakuumnogo ionno-plazmennogo napylenija [Physical bases and mathematical modeling of processes of vacuum ion-plasma dusting]. M.: Mashinostroenie. 1999. 309 s.
6. Zenin B.S., Ovechkin B.B. Sovremennye tehnologii modificirovanija poverhnosti i nanesenija pokrytij [Modern technologies of modifying of surface and drawing coverings]. Tomsk. 2008. 75 s.
7. Tehnologicheskie rekomendacii «Nanesenie nitridov titana i cirkonija metodom kondensacii s ionnoj bombardirovkoj na detali GTD iz stalej 13H11N2V2MF-Sh, 12H18N9T, 38HA i splavov VT18U, VT9, VT3-1» [Technological recommendations «Putting titanium nitrides and zirconium condensation method with ionic bombing on GTD detail from staly 13kh11n2v2mf-Sh, 12Х18Н9Т, 38ХА and alloys ВТ18У, BT9, BT3-1»]. Ufa: UMPO–UAI. 1992.
8. Mubojadzhjan S.A., Kablov E.N., Budinovskij S.A., Pomelov Ja.A. Nanesenie zashhitnyh pokrytij na detali ionno-plazmennym metodom [Drawing protecting covers on detail ion-plasma method] //Aviacionnaja promyshlennost' 1997. №3–4. S. 65–70.
9. Vasil'ev V.V., Luchaninov A.A., Reshetnjak E.N., Strel'nickij V.E., Tolmacheva G.N. Reshetnjak M.V. Strukturam i tverdost' Ti–N- i Ti–Si–N-pokrytij, osazhdennyh iz fil'trovannoj vakuumno-dugovoj plazmy [To structures and Ti–N-and Ti hardness – Si – the N-coverings besieged from filtered vacuum and arc plasma] //Voprosy atomnoj nauki i tehniki. 2009. №2. S. 173–180.
10. Matjunin V.M. Opredelenie mehanicheskih svojstv i adgezionnoj prochnosti ion-no-plazmennyh pokrytij sklerometricheskim metodom [Determination of mechanical properties and adhesive durability of ion-plasma coverings sclerometric method] //MiTOM. 2002. №3. S. 36–38.
11. Mihajlova E.A. Osobennosti nanesenija vakuumnyh ionno-plazmennyh pokrytij na vnutrennie poverhnosti izdelij mashinostroenija [Features of drawing vacuum ion-plasma coverings on inner surfaces of products of mechanical engineering] //Uprochnjajushhie tehnologii i pokrytija. 2006. №4. S. 32–35.