Articles

1.
category: Composite materials
УДК 669.018.95
A.A. Shavnev1, B.В. Berezovsky1, Yu.А. Kyrganova2
SPECIFICITY OF METAL MATRIX COMPOSITES BASED
ON ALUMINUM ALLOY REINFORCED BY SIC PARTICLES
APPLICATION. PART I (review)
International technological review of Al–SiC system metal matrix composites application is shown. Application examples of this metal matrix composites is shown. There is an information about basic specificities and demands of all applications is applied in examples. Special attention is devoted to specificity of construction analysis which caused the selection of this composite. Composite structure and technology of it manufacturing is described. Advantages of these composite materials is noted.
Keywords: Keywords: metal matrix composites, composites reinforced by SiC particles, composites based on aluminum alloy.
Reference List
materialov i tehnologij ih pererabotki na period do 2030 goda [Strategic the direction of development of materials and technologies of their processing for the period till 2030]
//Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
2. Tarasov Ju.M., Antipov V.V. Novye materialy VIAM – dlja perspektivnoj aviacionnoj tehniki proizvodstva OAO «OAK» [The VIAM new materials – for perspective aviation engineering of production of JSC OAK]
//Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
3. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armirujushhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru).
4. Kablov E.N., Shhetanov B.V., Grashhenkov D.V., Shavnev A.A., Njafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al‒SiC [Metalmatrix composite materials on the basis of
Al‒SiC] //Aviacionnye materialy i tehnologii. 2012. № S.
S. 373–380.
5. Kablov E.N., Chibirkin V.V., Vdovin S.M. Izgotovlenie, svojstva i primenenie teplootvodjashhih osnovanij iz MMK Al–SiC v silovoj jelektronike i preobrazovatel'noj tehnike [Manufacturing, properties and application of the heat-removing bases from Al–SiC MMK in power electronics and converting equipment] //Aviacionnye materialy i tehnologii. 2012. №2. S. 20–22.
6. Lebedeva Ju.E., Popovich N.V., Orlova L.A. Zashhitnye vysokotemperaturnye pokrytija dlja kompozicionnyh materialov na osnove SiC [Protective high temperature coatings for composite materials on the basis of SiC]
//Trudy VIAM. 2013. №2. St. 06 (viam-works.ru).
7. MIL-HDBK-5J: Department of defence handbook: Metallic materials and elements for aerospace vehicles structures. 2003. 1731 р.
8. Kurganova Ju.A. Perspektivy razvitija metallomatrichnyh kompazicionnyh materialov promyshlennogo naznachenija [Perspectives of development of metalmatrix composite materials of industrial function] //Servis v Rossii i za rubezhom. 2012. T. 30. №3. S. 235–240.
9. Kurganova Ju.A., Chernysheva T.A., Kobeleva L.I., Kurganov S.V. Jekspluatacionnye harakteristiki aljumomatrichnyh dispersnouprochnennyh kompozicionnyh materialov i perspektivy ih ispol'zovanija na sovremennom rynke konstrukcionnyh materialov [Utilization properties of alyumomatrichny dispersnouprochnenny composite materials and perspective of their use in the modern market of constructional materials] //Metally. 2011. №4. S. 71.
10. Chawla N., Chawla K.K. Metal Matrix Composites
/In: Springer Sience+Business Media. Inc. 2006. 401 p.
11. Beffort O. Metal Matrix composites (MMCs) from Space to Earth /In: Werkstoffe für Transport und Verkehr Materials Day. ETH-Zürich. 2001 (электронная
версия).
12. Evans A., Marchi C.S., Mortensen A. /In: Metal Matrix Composites in Industry. Kluwer Akademic Publishers. Dordrecht. 2003. XI. 423 p.
13. Di Russo E. Aluminium composite armour
//International defense review. 1988. №12. P. 1657–1658.
14. Ganesh V.V., Chawla N. Effect of Reinforcement-Particle-Orientation Anisotropy on the Tensile and Fatigue Behavior of Metal-Matrix Composites
//Metallurgical and materials transactions. 2003. V. 34A. №1. P. 52– 54.
15. Lloyd D.J. /In: Mallick PK, editor. Composite engineering handbook. New York: Marcel Dekker. 1997.
P. 63–70.
16. Austin L.K., Van den Bergh M., Cho A., Niedzinski M. Implementation of New Materials on Aging Aircraft Structure /In: New Metallic Materials for the Structure of Aging Aircraft. Greece, 19–20 April. 1999 (электронная версия).
17. Surappa M.K. Aluminum matrix composites: challenges and opportunities //Sadhana. 2003. V. 28. Parts 1–2.
P. 319–334.
18. EAA (European Aluminum Association), TALAT (Training in Aluminum Application Technologies) BOOK, Lecture 1402. Brussels, 1999.
19. Rawal S. Metal Matrix Composites for Space Applications //Journal of Materials. 2001. V. 53. P. 14–17.
20. Rittner M.N. Expanding World Markets for MMCs
//Journal of Materials. 2001. P. 43.
21. Hunt W.H., Herling D.R. Application of Aluminum Metal Matrix Composites: Past, Present and Future /In: International Symposium of Aluminum Applications, ASM Materials Solutions Conference. Oct. 2003.
Pittsburgh.
//Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
2. Tarasov Ju.M., Antipov V.V. Novye materialy VIAM – dlja perspektivnoj aviacionnoj tehniki proizvodstva OAO «OAK» [The VIAM new materials – for perspective aviation engineering of production of JSC OAK]
//Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
3. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armirujushhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru).
4. Kablov E.N., Shhetanov B.V., Grashhenkov D.V., Shavnev A.A., Njafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al‒SiC [Metalmatrix composite materials on the basis of
Al‒SiC] //Aviacionnye materialy i tehnologii. 2012. № S.
S. 373–380.
5. Kablov E.N., Chibirkin V.V., Vdovin S.M. Izgotovlenie, svojstva i primenenie teplootvodjashhih osnovanij iz MMK Al–SiC v silovoj jelektronike i preobrazovatel'noj tehnike [Manufacturing, properties and application of the heat-removing bases from Al–SiC MMK in power electronics and converting equipment] //Aviacionnye materialy i tehnologii. 2012. №2. S. 20–22.
6. Lebedeva Ju.E., Popovich N.V., Orlova L.A. Zashhitnye vysokotemperaturnye pokrytija dlja kompozicionnyh materialov na osnove SiC [Protective high temperature coatings for composite materials on the basis of SiC]
//Trudy VIAM. 2013. №2. St. 06 (viam-works.ru).
7. MIL-HDBK-5J: Department of defence handbook: Metallic materials and elements for aerospace vehicles structures. 2003. 1731 р.
8. Kurganova Ju.A. Perspektivy razvitija metallomatrichnyh kompazicionnyh materialov promyshlennogo naznachenija [Perspectives of development of metalmatrix composite materials of industrial function] //Servis v Rossii i za rubezhom. 2012. T. 30. №3. S. 235–240.
9. Kurganova Ju.A., Chernysheva T.A., Kobeleva L.I., Kurganov S.V. Jekspluatacionnye harakteristiki aljumomatrichnyh dispersnouprochnennyh kompozicionnyh materialov i perspektivy ih ispol'zovanija na sovremennom rynke konstrukcionnyh materialov [Utilization properties of alyumomatrichny dispersnouprochnenny composite materials and perspective of their use in the modern market of constructional materials] //Metally. 2011. №4. S. 71.
10. Chawla N., Chawla K.K. Metal Matrix Composites
/In: Springer Sience+Business Media. Inc. 2006. 401 p.
11. Beffort O. Metal Matrix composites (MMCs) from Space to Earth /In: Werkstoffe für Transport und Verkehr Materials Day. ETH-Zürich. 2001 (электронная
версия).
12. Evans A., Marchi C.S., Mortensen A. /In: Metal Matrix Composites in Industry. Kluwer Akademic Publishers. Dordrecht. 2003. XI. 423 p.
13. Di Russo E. Aluminium composite armour
//International defense review. 1988. №12. P. 1657–1658.
14. Ganesh V.V., Chawla N. Effect of Reinforcement-Particle-Orientation Anisotropy on the Tensile and Fatigue Behavior of Metal-Matrix Composites
//Metallurgical and materials transactions. 2003. V. 34A. №1. P. 52– 54.
15. Lloyd D.J. /In: Mallick PK, editor. Composite engineering handbook. New York: Marcel Dekker. 1997.
P. 63–70.
16. Austin L.K., Van den Bergh M., Cho A., Niedzinski M. Implementation of New Materials on Aging Aircraft Structure /In: New Metallic Materials for the Structure of Aging Aircraft. Greece, 19–20 April. 1999 (электронная версия).
17. Surappa M.K. Aluminum matrix composites: challenges and opportunities //Sadhana. 2003. V. 28. Parts 1–2.
P. 319–334.
18. EAA (European Aluminum Association), TALAT (Training in Aluminum Application Technologies) BOOK, Lecture 1402. Brussels, 1999.
19. Rawal S. Metal Matrix Composites for Space Applications //Journal of Materials. 2001. V. 53. P. 14–17.
20. Rittner M.N. Expanding World Markets for MMCs
//Journal of Materials. 2001. P. 43.
21. Hunt W.H., Herling D.R. Application of Aluminum Metal Matrix Composites: Past, Present and Future /In: International Symposium of Aluminum Applications, ASM Materials Solutions Conference. Oct. 2003.
Pittsburgh.
2.
category: Scientific reports
УДК 621.762
N.A. Manakov1, E.V. Svidenko1
АBOUT THE POSSIBILITIES OF IMPROVING THE WEAR
RESISTANCE OF CUTTING TOOLS
Despite the development of new technologies of processing of metals, improving the wear resistance of cutting tools remains a very important task. One method of solving this problem is the use of solid intensifiers cooling (thio) cutting surface of the tool. One of the most promising tio is copper is a relatively inexpensive material with high thermal conductivity. Copper plating of the inserts was performed in an electric furnace RM 214 in a metal crucible. In the crucible was placed a mixture consisting of 50% Al2O3, 1,5–2% of NH4Cl, the rest of the copper – oxide (SiO). Trials were conducted of the influence of the copper plating of plates of solid alloy T15K6 to change at the right temperature during the cutting process. Was determined by the depth of the copper plating layer, the microstructure of the resulting material, identified wear during cutting. The aim is to increase the wear resistance of cutting tools due to the tio.
Keywords: copper, heat treatment, microstructure, wear
3.
category: Structural metallic materials
УДК 669.716:621.785
V.G. Shmorgun1, O.V Slautin1, V.N. Arisova1, D.A Yevstropov1, Y.V. Mironova1, V.P. Kulevich1
STRUCTURE AND A PHASE COMPOSITION OF COATINGS SYSTEMS Ti–Cu, IS FORMED ON THE SURFACE OF TITAN
It is shown that thermal treatment of welded explosion copper-titanium composite allows to form on the surface of titanium double coating of titanium kupridov hardness of 3,9–4,7 GPa.
Keywords: copper, titanium, intermetallic, explosion welding, diffusion annealing.
Reference List
1. Morozova E.A., Muratov V.S. Lazernoe legirovanie poverkhnosti titana med'yu [Laser doping of surface of titanium by copper] //Uspekhi sovremennogo estestvoznaniya. 2009. №11. S. 71.
2. Shmorgun V.G., Slautin O.V., Arisova V.N., Evstropov D.A. Issledovanie fazovogo sostava diffuzionnoy zony v kompozite sistemy med'–titan [Research of phase structure of diffusion zone in system composite copper-titanium] //Izvestiya VolgGTU. Ser.: «Problemy materialovedeniya, svarki i prochnosti v mashinostroenii». 2013. №6 (109). S. 32–35.
2. Shmorgun V.G., Slautin O.V., Arisova V.N., Evstropov D.A. Issledovanie fazovogo sostava diffuzionnoy zony v kompozite sistemy med'–titan [Research of phase structure of diffusion zone in system composite copper-titanium] //Izvestiya VolgGTU. Ser.: «Problemy materialovedeniya, svarki i prochnosti v mashinostroenii». 2013. №6 (109). S. 32–35.
4.
category: Composite materials
УДК 621.373.826
V.M. Fomin1, A.G. Malikov1, A.M. Orishich1, A.O. Tokarev2
MICROSTRUCTURE AT LASER FUSING METAL POWDERS
The paper deals with research conducted at ITAM SB RAS laser welding nickel-chromium and iron powder on a steel plate in order to obtain bimetallic wear-resistant coatings.
Keywords: laser cladding, micro-hardness, wear resistance, CO2-laser, bimetal, nickel-chrome plating, R6M5.
Reference List
1. Kruth J.P., Wang X., Laoui T., Froyen L. //Assem. Autom. 2003. V. 23. P. 357–371.
2. Brandl E., Heckenberger U., Holzinger V., Buchbinder D. //Mater. Des. 2012. V. 34. Р. 159–169.
3. Gu D.D., Shen Y.F. et al. //J. Alloys Compd. 2007. №438. Р. 184–189.
4. Kruth J.P., Levy G. et al. //CIRP Ann. 2007. V. 56.
Р. 730–759.
5. Vandenbroucke B., Kruth J.P. //Rapid Prototyping J. 2007. V. 13. Р. 196–203.
6. Gu D.D., Shen Y.F. //Mater. Des. 2009. V. 30. Р. 2903–2910.
7. Gu D.D., Shen Y.F. //J. Alloy Compd. 2007. №432.
P. 163–166.
8. Mumtaz K.A., Hopkinson N. //J. Mater. Process Technol. 2010. V. 210. P. 279–287.
9. Mumtaz K., Hopkinson N. //Rapid Prototyping J. 2009. V. 15. P. 96–103.
10. Hofmeister W., Griffith M. et al. //OM. 2001. V. 53.
P. 30–34.
11. Wang H.M., Zhang S.Q., Wang X.M. //Chin. J. Lasers. 2009. V. 36. P. 3204–3209.
12. Facchini L., Magalini E., Robotti P., Molinari A., Ho¨ges S., Wissenbach K. //Rapid Prototyping J. 2010. V. 16. P. 450–459.
13. Gu D.D., Meiners W., Wissenbach K., Poprawe R. Laser additive manufacturing of metallic components: materials, processes and mechanisms //Int. Mater. Rev. 2012. V. 57. P. 133–164.
14. Klimenov V.A. i dr. Issledovanie struktury i fazovogo sostava plazmennogo pokrytija na osnove nikelevogo splava posle vozdejstvija lazernogo izluchenija [Research of structure and phase structure of plasma covering on the basis of nickel alloy after influence of laser radiation] //FHOM. 1996. №2. S. 68–77.
15. Nizhnikovskaja P.F., Kalinushkin E.P., Arshova E.V., Jakushev S.S. Vlijanie skorosti ohlazhdenija na mehanizm i kinetiku fazovyh prevrashhenij pri zatverdevanii W–Mo-bystrorezhushhih stalej [Influence of cooling rate on the mechanism and kinetics of phase transformations when hardening W–Maud-fast-cutting staly] //MiTOM. 1987. №9. S. 7–11.
16. Nizhnikovskaja P.F., Kalinushkin E.P., Snagovskij L.M., Demchenko G.F. Formirovanie struktury bystrorezhushhih stalej pri kristallizacii [Forming of structure fast-cutting staly at crystallization] //MiTOM. 1982. №11. S. 23–30.
17. Ozerskij A.D., Fishmajster X., Oslon L., Popova G.A. Struktura bystrorezhushhih stalej pri bol'shih skorostjah zatverdevanija [Structure fast-cutting staly at big speeds of hardening] //MiTOM. 1984. №3. S. 19–24.
18. Andrijahin V.M. Processy lazernoj svarki i termoobrabotki [Processes of laser bonding and heat treatment]. M.: Nauka. 1988. 176 s.
19. Sadovskij V.D., Schastlivcev V.M., Tabatchikova G.I. i dr. Lazernyj nagrev i struktura stali [Laser heating and structure became]. Sverdlovsk. 1985. 100 s.
20. Tehnologicheskie lazery [Technological lasers]: Spravochnik. T. 1 /Pod red. G.A. Abil'siitova. M.: Mashinostroenie. 1991. 432 s.
21. Arhipov V.E., Ablaev A.A., Geletin I.V. i dr. Osobennosti lazernoj naplavki pri razlichnyh sposobah podachi poroshka [Features of laser welding at different ways of giving of powder] //Svarochnoe proizvodstvo. 1992. №3. S. 4–6.
2. Brandl E., Heckenberger U., Holzinger V., Buchbinder D. //Mater. Des. 2012. V. 34. Р. 159–169.
3. Gu D.D., Shen Y.F. et al. //J. Alloys Compd. 2007. №438. Р. 184–189.
4. Kruth J.P., Levy G. et al. //CIRP Ann. 2007. V. 56.
Р. 730–759.
5. Vandenbroucke B., Kruth J.P. //Rapid Prototyping J. 2007. V. 13. Р. 196–203.
6. Gu D.D., Shen Y.F. //Mater. Des. 2009. V. 30. Р. 2903–2910.
7. Gu D.D., Shen Y.F. //J. Alloy Compd. 2007. №432.
P. 163–166.
8. Mumtaz K.A., Hopkinson N. //J. Mater. Process Technol. 2010. V. 210. P. 279–287.
9. Mumtaz K., Hopkinson N. //Rapid Prototyping J. 2009. V. 15. P. 96–103.
10. Hofmeister W., Griffith M. et al. //OM. 2001. V. 53.
P. 30–34.
11. Wang H.M., Zhang S.Q., Wang X.M. //Chin. J. Lasers. 2009. V. 36. P. 3204–3209.
12. Facchini L., Magalini E., Robotti P., Molinari A., Ho¨ges S., Wissenbach K. //Rapid Prototyping J. 2010. V. 16. P. 450–459.
13. Gu D.D., Meiners W., Wissenbach K., Poprawe R. Laser additive manufacturing of metallic components: materials, processes and mechanisms //Int. Mater. Rev. 2012. V. 57. P. 133–164.
14. Klimenov V.A. i dr. Issledovanie struktury i fazovogo sostava plazmennogo pokrytija na osnove nikelevogo splava posle vozdejstvija lazernogo izluchenija [Research of structure and phase structure of plasma covering on the basis of nickel alloy after influence of laser radiation] //FHOM. 1996. №2. S. 68–77.
15. Nizhnikovskaja P.F., Kalinushkin E.P., Arshova E.V., Jakushev S.S. Vlijanie skorosti ohlazhdenija na mehanizm i kinetiku fazovyh prevrashhenij pri zatverdevanii W–Mo-bystrorezhushhih stalej [Influence of cooling rate on the mechanism and kinetics of phase transformations when hardening W–Maud-fast-cutting staly] //MiTOM. 1987. №9. S. 7–11.
16. Nizhnikovskaja P.F., Kalinushkin E.P., Snagovskij L.M., Demchenko G.F. Formirovanie struktury bystrorezhushhih stalej pri kristallizacii [Forming of structure fast-cutting staly at crystallization] //MiTOM. 1982. №11. S. 23–30.
17. Ozerskij A.D., Fishmajster X., Oslon L., Popova G.A. Struktura bystrorezhushhih stalej pri bol'shih skorostjah zatverdevanija [Structure fast-cutting staly at big speeds of hardening] //MiTOM. 1984. №3. S. 19–24.
18. Andrijahin V.M. Processy lazernoj svarki i termoobrabotki [Processes of laser bonding and heat treatment]. M.: Nauka. 1988. 176 s.
19. Sadovskij V.D., Schastlivcev V.M., Tabatchikova G.I. i dr. Lazernyj nagrev i struktura stali [Laser heating and structure became]. Sverdlovsk. 1985. 100 s.
20. Tehnologicheskie lazery [Technological lasers]: Spravochnik. T. 1 /Pod red. G.A. Abil'siitova. M.: Mashinostroenie. 1991. 432 s.
21. Arhipov V.E., Ablaev A.A., Geletin I.V. i dr. Osobennosti lazernoj naplavki pri razlichnyh sposobah podachi poroshka [Features of laser welding at different ways of giving of powder] //Svarochnoe proizvodstvo. 1992. №3. S. 4–6.
5.
category: Structural metallic materials
УДК 669.793
S.P. Yatsenko1, L.A. Pasechnik1, V.M. Skachkov1
SCANDIUM: PRODUCTION AND APPLICATION
A promising feedstock for the obtaining of scandium is alumina production sludge, in which more than 150 tons of this scattered metal are annually wasted at each Ural plant. A method of carbonization of the sludge pulp by kiln gas of alumina production is described briefly. It leads to concentration of scandium, titanium, and zirconium, and decreases the toxicity of alkaline pulp in sludge fields by converting alkali into soda-hydrocarbonates with pH value lowering from 12 down to <8,5. This technology provides the production of hundred times more rich solutions than pregnant solutions of uranium in-situ leaching. An economically effective precipitation method for recovery of scandium oxide suitable for the production of master alloys, alloys, and compounds has been proposed. An injection method of synthesis of aluminum-scandium master alloys has been developed and tested in the industrial furnaces at the KUMP Public Limited Company. Advantages of application of scandium-containing all
Keywords: scandium, recovery, red mud, alloys, Al–Sc master alloy, scandium compounds, application.
Reference List
1. Shatalov V.V., Nikonov V.I., Solov'eva L.G., Par-
shin A.P. Proizvodstvo soedinenij skandija pri kompleksnoj pererabotke razlichnyh rud [Production of compounds of scandium at complex processing of different ores] //Cvetnye metally. 2003. №4.
S. 58–59.
2. Putilov A.V., Shatalov V.V. Syr'evaja baza razvivajushhejsja atomnoj jenergetiki [Source of raw materials of developing nuclear power] //Cvetnye metally. 2006. №9. S. 102–108.
3. Jacenko S.P., Pjagaj I.N. Karbonizacija pul'py krasnogo shlama glinozemnogo proizvodstva s izvlecheniem skandija [Karbonizatsiya of pulp red shlama aluminous production with scandium extraction]
//Himicheskaja tehnologija. 2009. №4. S. 231–237.
4. Pjagaj I.N., Jacenko S.P., Skachkov V.M. Opytno-promyshlennoe proizvodstvo dlja izvlechenija skandija iz shlama glinozemnogo proizvodstva [Trial production for scandium extraction from shlama aluminous production] //Cvetnye metally. 2011. №12. S. 75–79.
5. Pasechnik L.A., Pjagaj I.N., Skachkov V.M., Jacenko S.P. Izvlechenie redkih jelementov iz otval'nogo shlama glinozemnogo proizvodstva s ispol'zovaniem othodjashhih gazov pechej spekanija [Extraction of rare elements from otvalny shlama aluminous production with use of off gases of furnaces of agglomeration] //Jekologija i promyshlennost' Rossii. 2013. №6. S. 36–38.
6. Timofeev K.L., Nabojchenko S.S., Lebed' A.B., Akulich L.F. Sorbcionnaja tehnologija izvlechenija cvetnyh metallov iz shahtnyh vod [Sorbtsionny extraction technology of non-ferrous metals from mine waters] //Izvestija VUZov. Cvetnaja metallurgija. 2012. №6. S. 7–10.
7. Kazancev V.P., Beketov A.R., Kudrjavskij Ju.P., Rychkov V.N., Gorohov D.S. Perspek-tivy izvlechenija skandija iz rastvorov podzemnogo vyshhelachivanija mineral'nogo syr'ja [Perspectives of extraction of scandium from solutions of underground lixiviation of mineral raw material] //Cvetnaja metallurgija. 2009. №1. S. 37–41.
8. Ivanov L.I., Ivanov V.V., Lazorenko V.M., Platov Ju.M., Tovtin V.I. Perspektivy primenenija splavov na osnove sistemy aljuminij–magnij–skandij v jadernoj jenergetike [Perspectives of application of alloys on the basis of system aluminum-magnesium-scandium in nuclear power] //Tehnologija legkih splavov. 1990. №12. S. 46–50.
9. Azhazha V.M., Borc B.V., Vanzha A.F., Rybal'chenko N.D., Shevjakova Je.P. Vozmozhnosti primenenija redkozemel'nyh jelementov pri sozdanii konstrukcionnyh materialov dlja atomnoj promyshlennosti Ukrainy [Possibilities of application of rare earth elements at creation of constructional materials for the nuclear industry of Ukraine] //Voprosy atomnoj nauki i tehniki. Serija 17. 2008. №1. S. 195–201.
10. Skachkov V.M., Jacenko S.P. Poluchenie Sc-, Zr-, Hf-, Y-ligatur na osnove aljuminija metodom vysokotemperaturnyh obmennyh reakcij v rasplavah solej [Receiving Sc-, Zr-, Hf-, Y-ligatures on the basis of aluminum method of high-temperature exchange reactions in rasplavakh salts] //Cvetnye metally. 2011. №3. S. 22–26.
11. Jacenko S.P., Skachkov V.M., Jacenko А.S. Poluchenie aljuminij-skandievyh splavov metodom inzhekcii tehnologicheskih poroshkov v rasplav. V. Inzhekcija tehnologicheskih poroshkov [Receiving aluminum-scandium alloys method of injection of technological powders in rasplav. V. Injection of technological powders] //Rasplavy. 2011. №4.
S. 41–46.
12. Ovsjannikov B.V., Jacenko S.P., Varchenja P.A., Skachkov V.M. Poluchenie aljuminij-skandievyh splavov metodom inzhekcii tehnologicheskih poroshkov v rasplav [Receiving aluminum - scandium alloys method of injection of technological powders in rasplav] //Tehnologija metallov. 2011. №5.
S. 23–29.
shin A.P. Proizvodstvo soedinenij skandija pri kompleksnoj pererabotke razlichnyh rud [Production of compounds of scandium at complex processing of different ores] //Cvetnye metally. 2003. №4.
S. 58–59.
2. Putilov A.V., Shatalov V.V. Syr'evaja baza razvivajushhejsja atomnoj jenergetiki [Source of raw materials of developing nuclear power] //Cvetnye metally. 2006. №9. S. 102–108.
3. Jacenko S.P., Pjagaj I.N. Karbonizacija pul'py krasnogo shlama glinozemnogo proizvodstva s izvlecheniem skandija [Karbonizatsiya of pulp red shlama aluminous production with scandium extraction]
//Himicheskaja tehnologija. 2009. №4. S. 231–237.
4. Pjagaj I.N., Jacenko S.P., Skachkov V.M. Opytno-promyshlennoe proizvodstvo dlja izvlechenija skandija iz shlama glinozemnogo proizvodstva [Trial production for scandium extraction from shlama aluminous production] //Cvetnye metally. 2011. №12. S. 75–79.
5. Pasechnik L.A., Pjagaj I.N., Skachkov V.M., Jacenko S.P. Izvlechenie redkih jelementov iz otval'nogo shlama glinozemnogo proizvodstva s ispol'zovaniem othodjashhih gazov pechej spekanija [Extraction of rare elements from otvalny shlama aluminous production with use of off gases of furnaces of agglomeration] //Jekologija i promyshlennost' Rossii. 2013. №6. S. 36–38.
6. Timofeev K.L., Nabojchenko S.S., Lebed' A.B., Akulich L.F. Sorbcionnaja tehnologija izvlechenija cvetnyh metallov iz shahtnyh vod [Sorbtsionny extraction technology of non-ferrous metals from mine waters] //Izvestija VUZov. Cvetnaja metallurgija. 2012. №6. S. 7–10.
7. Kazancev V.P., Beketov A.R., Kudrjavskij Ju.P., Rychkov V.N., Gorohov D.S. Perspek-tivy izvlechenija skandija iz rastvorov podzemnogo vyshhelachivanija mineral'nogo syr'ja [Perspectives of extraction of scandium from solutions of underground lixiviation of mineral raw material] //Cvetnaja metallurgija. 2009. №1. S. 37–41.
8. Ivanov L.I., Ivanov V.V., Lazorenko V.M., Platov Ju.M., Tovtin V.I. Perspektivy primenenija splavov na osnove sistemy aljuminij–magnij–skandij v jadernoj jenergetike [Perspectives of application of alloys on the basis of system aluminum-magnesium-scandium in nuclear power] //Tehnologija legkih splavov. 1990. №12. S. 46–50.
9. Azhazha V.M., Borc B.V., Vanzha A.F., Rybal'chenko N.D., Shevjakova Je.P. Vozmozhnosti primenenija redkozemel'nyh jelementov pri sozdanii konstrukcionnyh materialov dlja atomnoj promyshlennosti Ukrainy [Possibilities of application of rare earth elements at creation of constructional materials for the nuclear industry of Ukraine] //Voprosy atomnoj nauki i tehniki. Serija 17. 2008. №1. S. 195–201.
10. Skachkov V.M., Jacenko S.P. Poluchenie Sc-, Zr-, Hf-, Y-ligatur na osnove aljuminija metodom vysokotemperaturnyh obmennyh reakcij v rasplavah solej [Receiving Sc-, Zr-, Hf-, Y-ligatures on the basis of aluminum method of high-temperature exchange reactions in rasplavakh salts] //Cvetnye metally. 2011. №3. S. 22–26.
11. Jacenko S.P., Skachkov V.M., Jacenko А.S. Poluchenie aljuminij-skandievyh splavov metodom inzhekcii tehnologicheskih poroshkov v rasplav. V. Inzhekcija tehnologicheskih poroshkov [Receiving aluminum-scandium alloys method of injection of technological powders in rasplav. V. Injection of technological powders] //Rasplavy. 2011. №4.
S. 41–46.
12. Ovsjannikov B.V., Jacenko S.P., Varchenja P.A., Skachkov V.M. Poluchenie aljuminij-skandievyh splavov metodom inzhekcii tehnologicheskih poroshkov v rasplav [Receiving aluminum - scandium alloys method of injection of technological powders in rasplav] //Tehnologija metallov. 2011. №5.
S. 23–29.
6.
category: Testing of materials and structures
УДК 621.74.045
L.I. Rassohina1, P.I. Parfenovich1
THE ISSUES OF DEVELOPING MODEL COMPOSITIONS
OF NEW GENERATION ON THE BASIS OF DOMESTIC MATERIALS
FOR THE MANUFACTURE OF GAS TURBINE ENGINE BLADES
Model compositions are widely used in manufacture of GTE details by investment casting. The analysis of contemporary issues, related to quality of models was reviewed and main branches of development of domestic model compositions of new generation, which aren’t inferior to foreign counterparts in properties, were determined.
Keywords: investment casting, model compositions, wax, polymeric resin, terephtalic acid.
Reference List
. Klassifikacija vyplavljaemyh model'nyh sostavov dlja tochnogo lit'ja [Classification of melted model structures for precision casting] /Pod red. S.I. Jacyka. Proizvodstvo vysokotemperaturnyh lityh lopatok aviacionnyh GTD. M.: Mashinostroenie. 1995. 256 s.
2. Ospennikova O.G. Model'nye kompozicii na osnove sinteticheskih materialov dlja lit'ja po vyplavljaemym modeljam detalej GTD [Model compositions on the basis of synthetic materials for investment casting of details of GTD]. Avtoreferat diss. k.t.n. M.: MMPP «Saljut». 2000. 32 s.
3. Ospennikova O.G., Kablov E.N., Shunkin V.N. Model'nye kompozicii na osnove sinteticheskih materialov dlja lit'ja lopatok GTD [Model compositions on the basis of synthetic materials for molding of blades of GTD] /V sb. Aviacionnye materialy i tehnologii. M.: VIAM. 2002. №3. S. 64–67.
4. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
5. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
6. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] //Nauka i zhizn'. 2010. №4. S. 2–7.
7. Ospennikova O.G., Shutov A.N., Pikulina L.V., Dushkin A.M. Model'nye kompozicii na osnove sinteticheskih materialov dlja lit'ja lopatok GTD [Model compositions on the basis of synthetic materials for molding of blades of GTD] // Litejnoe proizvodstvo. 2003. № 1.
S. 21–23.
8. Ospennikova O.G. Issledovanie vlijanija napolnitelej na svojstva i stabil'nost' model'nyh kompozicij, vybor optimal'nyh sostavov [Research of influence of fillers on properties and stability of model compositions, choice of optimum structures] //Aviacionnye materialy i tehnologii. 2014. № 3. S. 14–17.
9. Ospennikova O.G. Issledovanie i razrabotka parametrov tehnologicheskogo processa izgotovlenija modelej iz model'nyh kompozicij na osnove sinteticheskih voskov [Research and development of parameters of technological process of manufacturing of models from model compositions on the basis of synthetic voskov] //Aviacionnye materialy i tehnologii. 2014. № 3. S. 18–21.
10. Ospennikova O.G., Kablov E.N., Shunkin V.N. Razrabotka i issledovanie plastifikatora dlja model'nyh kompozicij na osnove prirodnyh voskov [Development and plasticizer research for model compositions on the basis of natural voskov] /V sb.: Aviacionnye materialy i tehnologii. M.: VIAM. 2002. №3. S. 68–70.
2. Ospennikova O.G. Model'nye kompozicii na osnove sinteticheskih materialov dlja lit'ja po vyplavljaemym modeljam detalej GTD [Model compositions on the basis of synthetic materials for investment casting of details of GTD]. Avtoreferat diss. k.t.n. M.: MMPP «Saljut». 2000. 32 s.
3. Ospennikova O.G., Kablov E.N., Shunkin V.N. Model'nye kompozicii na osnove sinteticheskih materialov dlja lit'ja lopatok GTD [Model compositions on the basis of synthetic materials for molding of blades of GTD] /V sb. Aviacionnye materialy i tehnologii. M.: VIAM. 2002. №3. S. 64–67.
4. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
5. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
6. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] //Nauka i zhizn'. 2010. №4. S. 2–7.
7. Ospennikova O.G., Shutov A.N., Pikulina L.V., Dushkin A.M. Model'nye kompozicii na osnove sinteticheskih materialov dlja lit'ja lopatok GTD [Model compositions on the basis of synthetic materials for molding of blades of GTD] // Litejnoe proizvodstvo. 2003. № 1.
S. 21–23.
8. Ospennikova O.G. Issledovanie vlijanija napolnitelej na svojstva i stabil'nost' model'nyh kompozicij, vybor optimal'nyh sostavov [Research of influence of fillers on properties and stability of model compositions, choice of optimum structures] //Aviacionnye materialy i tehnologii. 2014. № 3. S. 14–17.
9. Ospennikova O.G. Issledovanie i razrabotka parametrov tehnologicheskogo processa izgotovlenija modelej iz model'nyh kompozicij na osnove sinteticheskih voskov [Research and development of parameters of technological process of manufacturing of models from model compositions on the basis of synthetic voskov] //Aviacionnye materialy i tehnologii. 2014. № 3. S. 18–21.
10. Ospennikova O.G., Kablov E.N., Shunkin V.N. Razrabotka i issledovanie plastifikatora dlja model'nyh kompozicij na osnove prirodnyh voskov [Development and plasticizer research for model compositions on the basis of natural voskov] /V sb.: Aviacionnye materialy i tehnologii. M.: VIAM. 2002. №3. S. 68–70.
7.
category: Composite materials
УДК 621.373.826
P.N. Kilina1, A.M. Khanov1, E.A. Morozov1, L.D. Sirotenko1
USE OF TECHNOLOGY OF THE SELECTION LASER AGGLOMERATION FOR RECEIVING IMPLANTS WITH CELLULAR STRUCTURE
The results of the application of selective laser sintering technology to produce implants composed of regular geometric shape cellular structures was shown. Computer 3D-model designs created in the Delcam PowerShape CAD system. Laser sintering was performed at the installation Realizer SLM 50 at various laser intensities. Stainless steel and titanium powders with an average particle size of 30 microns were used as the initial material.
Obtained cellular samples that were implanted in laboratory animals. After the introduction of implants for six months integral indicators characterizing the general condition of the animals were evaluated. Indices were within normal limits, the rejection of implants wasn’t observed.
Keywords: selective laser sintering, 3D-model, Wigner–Seitz cell, cellular implants, metal powders.
Reference List
1. Syam W.P., Mannan M.A., Al-Ahmari A.M. Rapid prototyping and rapid manufacturing in medicine and dentistry //Virtual and Physical Prototyping. 2011. V. 6. №2. P. 79–109.
2. Mullen L. et al. Selective laser melting: a unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications. II. Randomized structures //Journal of Biomedical Materials Research. Part B Applied Biomaterials. 2010.
V. 92. №1. P. 178–188.
3. Hench L., Dzhons D. Biomaterialy, iskusstvennye organy i inzhiniring tkanej [Biomaterials, artificial organs and engineering of fabrics]. M.: Tehnosfera. 2007. 304 s.
4. Pattanayak D.K. et al. Bioactive Ti metal analogous to human cancellous bone: fabrication by selective laser melting and chemical treatments //Acta Biomaterialia. 2011. V. 7. №3. P. 1398–406.
5. Capel A.J. et al. Design and additive manufacture for flow chemistry //Lab Chip. 2013. V. 13. №23. P. 4583–4590.
6. Mazzoli A. Selective laser sintering in biomedical engineering //Medical & Biological Engineering & Computing. 2013. V. 51. №3. P. 245–256.
7. Anciferov V.N., Porozova S.E. Vysokoporistye jacheistye materialy [High-porous cellular materials]. Perm': Izd-vo Perm. gos. tehnich. un-ta. 1996. 207 s.
8. Ashkroft N., Mermin N. Fizika tverdogo tela [Solid state physics]. T. 1. M.: Mir. 1979. 399 s.
9. Vasiljuk V.P. i dr. Jeksperimental'noe obosnovanie primenenija innovacionnyh tehnologij v izgotovlenii implantov, imejushhih jacheistuju strukturu, dlja zameshhenija kostnyh defektov licevogo skeleta (predvaritel'nye rezul'taty) [Experimental justification of application of innovative technologies in manufacturing of the implants having cellular structure, for substitution of bone defects of facial skeleton (preliminary results)] //Zdorov'e sem'i – 21 vek. 2014. №2. S. 42–54.
2. Mullen L. et al. Selective laser melting: a unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications. II. Randomized structures //Journal of Biomedical Materials Research. Part B Applied Biomaterials. 2010.
V. 92. №1. P. 178–188.
3. Hench L., Dzhons D. Biomaterialy, iskusstvennye organy i inzhiniring tkanej [Biomaterials, artificial organs and engineering of fabrics]. M.: Tehnosfera. 2007. 304 s.
4. Pattanayak D.K. et al. Bioactive Ti metal analogous to human cancellous bone: fabrication by selective laser melting and chemical treatments //Acta Biomaterialia. 2011. V. 7. №3. P. 1398–406.
5. Capel A.J. et al. Design and additive manufacture for flow chemistry //Lab Chip. 2013. V. 13. №23. P. 4583–4590.
6. Mazzoli A. Selective laser sintering in biomedical engineering //Medical & Biological Engineering & Computing. 2013. V. 51. №3. P. 245–256.
7. Anciferov V.N., Porozova S.E. Vysokoporistye jacheistye materialy [High-porous cellular materials]. Perm': Izd-vo Perm. gos. tehnich. un-ta. 1996. 207 s.
8. Ashkroft N., Mermin N. Fizika tverdogo tela [Solid state physics]. T. 1. M.: Mir. 1979. 399 s.
9. Vasiljuk V.P. i dr. Jeksperimental'noe obosnovanie primenenija innovacionnyh tehnologij v izgotovlenii implantov, imejushhih jacheistuju strukturu, dlja zameshhenija kostnyh defektov licevogo skeleta (predvaritel'nye rezul'taty) [Experimental justification of application of innovative technologies in manufacturing of the implants having cellular structure, for substitution of bone defects of facial skeleton (preliminary results)] //Zdorov'e sem'i – 21 vek. 2014. №2. S. 42–54.
8.
category: Testing of materials and structures
УДК 669.058
N.I. Artemenko1, V.N. Simonov2, D.A. Aleksandrov1
ASSESSMENT OF THE RELATIVE WEAR RESISTANCE OF ION-PLASMA FUSED COATINGS ON VT8 AND EP742 ALLOYS
The paper presents test data on the wear resistance of coatings. The tests were conducted according to
ASTM G99-05. The coatings were deposited by ion-plasma method on samples of alloys VT8 and EP742. Coating with high relative wear resistance were selected, the regularities of high adhesive strength of coatings were detected.
Keywords: wear resistance testing, titanium alloys, ion-plasma method, plasma-chemical method.
Reference List
1. Inozemcev A.A., Sandrackiy V.L. Gazoturbinnye dvigateli [Gas turbine engines]. Perm': OAO «Aviadvigatel'». 2006. 1204 s.
2. Abraimov N.V. Vysokotemperaturnye materialy i pokrytiya dlya gazovyh turbin [High-temperature materials and coverings for gas turbines]. M.: Mashinostroenie. 1993. 336 s.
3. Spravochnik po aviacionnym materialam [Directory on aviation materials]. 5-e izd. T. 2. Cvetnye splavy /Pod red. A.T. Tumanova. M.: Oborongiz. 1958. 528 s.
4. Aviacionnye materialy [Aviation materials]: Spravochnik v devyati tomah. 6-e izd. pererab. i dop. T. 3. CH. 1. Deformiruemye zharoprochnye stali i splavy /Pod red. R.E. Shalina. M.: ONTI VIAM. 1989. 568 s.
5. Chichinadze A.V., Braun EH.D., Bushe N.A. i dr. Osnovy tribologii (trenie, iznos, smazka) [Tribologiya bases (friction, wear, lubricant)]. M.: Mashinostroenie. 2001. 664 s.
6. Samsonov G.V., Vinickiy I.M. Tugoplavkie soedineniya [High-melting connections]. M.: Metallurgiya. 1976. 560 s.
7. Ryahovskiy O.A., Klypin A.V. Detali mashin [Details of machines]. M.: Drofa. 2002. 288 s.
8. Andrienko L.A., Baykov B.A., Ganulich I.K. Detali mashin [Details of machines]: Ucheb. dlya vuzov. M.: Izd-vo MGTU im. N.EH. Baumana. 2002. 544 s.
9. Lyashchenko A.B., Mel'nichuk P.I., Francevich I.N. Metallurgiya vol'frama [Tungsten metallurgy]
//Poroshkovaya metallurgiya. 1961. №5. S. 10–14.
10. Rybakova L.M., Kuksenova L.I. Struktura i iznosostoykkost' metalla [Structure and wear resistance of metal]. M.: Mashinostroenie. 1982. 212 s.
11. Muboyadzhyan S.A. Osobennosti osazhdeniya potoka mnogokomponentnoy plazmy vakuumno-dugovogo razryada, soderzhashchego mikrokapli isparyaemogo materiala [Features of sedimentation of flow of multicomponent plasma of the vacuum arc discharge containing microdrops of evaporated material] //Metally. 2008. №2. S. 20–34.
12. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye liteynye zharoprochnye splavy novogo pokoleniya [Nickel foundry hot strength alloys of new generation] //Aviacionnye materialy i tekhnologii. 2012. №S. S. 36–52.
13. Bazyleva O.A., Arginbaeva Eh.G., Turenko E.Yu. Zharoprochnye liteynye intermetallidnye splavy [Heat resisting cast intermetallidny alloys] //Aviacionnye materialy i tekhnologii. 2012. №S. S. 57–60.
14. Kablov E.N., Muboyadzhyan S.A. Zharostoykie i teplozashchitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTD] //Aviacionnye materialy i tekhnologii. 2012. №S. S. 60–70.
15. Matveev P.V., Budinovskiy S.A., Muboyadzhyan S.A., Kos'min A.A. Zashchitnye zharostoykie pokrytiya dlya splavov na osnove intermetallidov nikelya [Protective heat resisting coverings for alloys on the basis of nickel intermetallic compound] //Aviacionnye materialy i tekhnologii. 2013. №2. S. 12–15.
16. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S. Nanosloynye uprochnyayushchie pokrytiya dlya zashchity stal'nyh i titanovyh lopatok kompressora GTD [Nanolayer strengthening coverings for protection of steel and titanic compressor blades of GTD] //Aviacionnye materialy i tekhnologii. 2011. №3. S. 3–8.
17. Budinovskiy S.A., Muboyadzhyan S.A., Gayamov A.M., Stepanova S.V. Ionno-plazmennye zharostoykie pokrytiya s kompozicionnym bar'ernym sloem dlya zashchity ot okisleniya splava ZHS36VI [Ion-plasma heat resisting coverings with composition barrier layer for protection against oxidation of alloy ЖС36ВИ]
//MiTOM. 2011. №1. S. 34–40.
18. Gayamov A.M. Zharostoykoe pokrytie s kompozicionnym bar'ernym sloem dlya zashchity vneshney poverhnosti rabochih lopatok GTD iz reniysoderzhashchih zharoprochnyh nikelevyh splavov [Heat resisting covering with composition barrier layer for protection of exterior surface of working blades of GTD from reniysoderzhashchy heat resisting nickel alloys] /V sb. materialov XI Rossiyskoy ezhegodnoy konf. molodyh nauchnyh sotrudnikov i aspirantov «Fiziko-himiya i tekhnologiya neorganicheskih materialov». M.: IMET RAN. 2012. C. 473–475.
19. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Zashchitnye i uprochnyayushchie ionno-plazmennye pokrytiya dlya lopatok i drugih otvetstvennyh detaley kompressora GTD [Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTD compressor] //Aviacionnye materialy i tekhnologii. 2012. №S. S. 71–81.
20. Muboyadzhyan S.A., Budinovskiy S.A., Gayamov A.M., Matveev P.V. Vysokotemperaturnye zharostoykie pokrytiya i zharostoykie sloi dlya teplozashchitnyh pokrytiy [High-temperature heat resisting coverings and heat resisting layers for heat-protective coverings]
//Aviacionnye materialy i tekhnologii. 2013. №1.
S. 17–20.
21. Sposob obrabotki poverhnosti metallicheskogo izdeliya [Way of surface treatment of metal product]: pat. 2368701 Ros. Federaciya; opubl. 27.09.2009.
22. Kablov E.N., Muboyadzhyan S.A. Teplozashchitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat-protective coverings for turbine blades of high pressure of perspective GTD]
//Metally. 2012. №1. S. 5–13.
23. Sposob naneseniya kombinirovannogo zharostoykogo pokrytiya [Way of drawing the combined heat resisting covering]: pat. 2402633 Ros. Federaciya; opubl. 31.03.2009.
24. Budinovskiy S.A., Muboyadzhyan S.A., Gayamov A.M., Kos'min A.A. Zharostoykie ionno-plazmennye pokrytiya dlya lopatok turbin iz nikelevyh splavov, legirovannyh reniem [Heat resisting ion-plasma coverings for blades of turbines from the nickel alloys alloyed by reniye] //MiTOM. 2008. №6. S. 3136.
25. Budinovskiy S.A., Kablov E.N., Muboyadzhyan S.A. Primenenie analiticheskoy modeli opredeleniya uprugih napryazheniy v mnogosloynoy sisteme pri reshenii zadach po sozdaniyu vysokotemperaturnyh zharostoykih pokrytiy dlya rabochih lopatok aviacionnyh turbin [Application of analytical model of determination of elastic stresses in multi-layer system at the solution of tasks on creation of high-temperature heat resisting coverings for working blades of aviation turbines] //Vestnik MGTU im. N.Eh. Baumana. (Ser.: Mashinostroenie). 2011. №2. S. 26–37.
26. Budinovskiy S.A. Primenenie analiticheskoy modeli opredeleniya uprugih mekhanicheskih i termicheskih napryazheniy v mnogosloynoy sisteme v reshenii zadach po sozdaniyu zharostoykih alyuminidnyh pokrytiy [Application of analytical model of determination of elastic mechanical and thermal stresses in multi-layer system in the solution of tasks on creation of heat resisting alyuminidny coverings] //Uprochnyayushchie tekhnologii i pokrytiya. 2013. №3. S. 3–11.
2. Abraimov N.V. Vysokotemperaturnye materialy i pokrytiya dlya gazovyh turbin [High-temperature materials and coverings for gas turbines]. M.: Mashinostroenie. 1993. 336 s.
3. Spravochnik po aviacionnym materialam [Directory on aviation materials]. 5-e izd. T. 2. Cvetnye splavy /Pod red. A.T. Tumanova. M.: Oborongiz. 1958. 528 s.
4. Aviacionnye materialy [Aviation materials]: Spravochnik v devyati tomah. 6-e izd. pererab. i dop. T. 3. CH. 1. Deformiruemye zharoprochnye stali i splavy /Pod red. R.E. Shalina. M.: ONTI VIAM. 1989. 568 s.
5. Chichinadze A.V., Braun EH.D., Bushe N.A. i dr. Osnovy tribologii (trenie, iznos, smazka) [Tribologiya bases (friction, wear, lubricant)]. M.: Mashinostroenie. 2001. 664 s.
6. Samsonov G.V., Vinickiy I.M. Tugoplavkie soedineniya [High-melting connections]. M.: Metallurgiya. 1976. 560 s.
7. Ryahovskiy O.A., Klypin A.V. Detali mashin [Details of machines]. M.: Drofa. 2002. 288 s.
8. Andrienko L.A., Baykov B.A., Ganulich I.K. Detali mashin [Details of machines]: Ucheb. dlya vuzov. M.: Izd-vo MGTU im. N.EH. Baumana. 2002. 544 s.
9. Lyashchenko A.B., Mel'nichuk P.I., Francevich I.N. Metallurgiya vol'frama [Tungsten metallurgy]
//Poroshkovaya metallurgiya. 1961. №5. S. 10–14.
10. Rybakova L.M., Kuksenova L.I. Struktura i iznosostoykkost' metalla [Structure and wear resistance of metal]. M.: Mashinostroenie. 1982. 212 s.
11. Muboyadzhyan S.A. Osobennosti osazhdeniya potoka mnogokomponentnoy plazmy vakuumno-dugovogo razryada, soderzhashchego mikrokapli isparyaemogo materiala [Features of sedimentation of flow of multicomponent plasma of the vacuum arc discharge containing microdrops of evaporated material] //Metally. 2008. №2. S. 20–34.
12. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye liteynye zharoprochnye splavy novogo pokoleniya [Nickel foundry hot strength alloys of new generation] //Aviacionnye materialy i tekhnologii. 2012. №S. S. 36–52.
13. Bazyleva O.A., Arginbaeva Eh.G., Turenko E.Yu. Zharoprochnye liteynye intermetallidnye splavy [Heat resisting cast intermetallidny alloys] //Aviacionnye materialy i tekhnologii. 2012. №S. S. 57–60.
14. Kablov E.N., Muboyadzhyan S.A. Zharostoykie i teplozashchitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTD] //Aviacionnye materialy i tekhnologii. 2012. №S. S. 60–70.
15. Matveev P.V., Budinovskiy S.A., Muboyadzhyan S.A., Kos'min A.A. Zashchitnye zharostoykie pokrytiya dlya splavov na osnove intermetallidov nikelya [Protective heat resisting coverings for alloys on the basis of nickel intermetallic compound] //Aviacionnye materialy i tekhnologii. 2013. №2. S. 12–15.
16. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S. Nanosloynye uprochnyayushchie pokrytiya dlya zashchity stal'nyh i titanovyh lopatok kompressora GTD [Nanolayer strengthening coverings for protection of steel and titanic compressor blades of GTD] //Aviacionnye materialy i tekhnologii. 2011. №3. S. 3–8.
17. Budinovskiy S.A., Muboyadzhyan S.A., Gayamov A.M., Stepanova S.V. Ionno-plazmennye zharostoykie pokrytiya s kompozicionnym bar'ernym sloem dlya zashchity ot okisleniya splava ZHS36VI [Ion-plasma heat resisting coverings with composition barrier layer for protection against oxidation of alloy ЖС36ВИ]
//MiTOM. 2011. №1. S. 34–40.
18. Gayamov A.M. Zharostoykoe pokrytie s kompozicionnym bar'ernym sloem dlya zashchity vneshney poverhnosti rabochih lopatok GTD iz reniysoderzhashchih zharoprochnyh nikelevyh splavov [Heat resisting covering with composition barrier layer for protection of exterior surface of working blades of GTD from reniysoderzhashchy heat resisting nickel alloys] /V sb. materialov XI Rossiyskoy ezhegodnoy konf. molodyh nauchnyh sotrudnikov i aspirantov «Fiziko-himiya i tekhnologiya neorganicheskih materialov». M.: IMET RAN. 2012. C. 473–475.
19. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Zashchitnye i uprochnyayushchie ionno-plazmennye pokrytiya dlya lopatok i drugih otvetstvennyh detaley kompressora GTD [Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTD compressor] //Aviacionnye materialy i tekhnologii. 2012. №S. S. 71–81.
20. Muboyadzhyan S.A., Budinovskiy S.A., Gayamov A.M., Matveev P.V. Vysokotemperaturnye zharostoykie pokrytiya i zharostoykie sloi dlya teplozashchitnyh pokrytiy [High-temperature heat resisting coverings and heat resisting layers for heat-protective coverings]
//Aviacionnye materialy i tekhnologii. 2013. №1.
S. 17–20.
21. Sposob obrabotki poverhnosti metallicheskogo izdeliya [Way of surface treatment of metal product]: pat. 2368701 Ros. Federaciya; opubl. 27.09.2009.
22. Kablov E.N., Muboyadzhyan S.A. Teplozashchitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat-protective coverings for turbine blades of high pressure of perspective GTD]
//Metally. 2012. №1. S. 5–13.
23. Sposob naneseniya kombinirovannogo zharostoykogo pokrytiya [Way of drawing the combined heat resisting covering]: pat. 2402633 Ros. Federaciya; opubl. 31.03.2009.
24. Budinovskiy S.A., Muboyadzhyan S.A., Gayamov A.M., Kos'min A.A. Zharostoykie ionno-plazmennye pokrytiya dlya lopatok turbin iz nikelevyh splavov, legirovannyh reniem [Heat resisting ion-plasma coverings for blades of turbines from the nickel alloys alloyed by reniye] //MiTOM. 2008. №6. S. 3136.
25. Budinovskiy S.A., Kablov E.N., Muboyadzhyan S.A. Primenenie analiticheskoy modeli opredeleniya uprugih napryazheniy v mnogosloynoy sisteme pri reshenii zadach po sozdaniyu vysokotemperaturnyh zharostoykih pokrytiy dlya rabochih lopatok aviacionnyh turbin [Application of analytical model of determination of elastic stresses in multi-layer system at the solution of tasks on creation of high-temperature heat resisting coverings for working blades of aviation turbines] //Vestnik MGTU im. N.Eh. Baumana. (Ser.: Mashinostroenie). 2011. №2. S. 26–37.
26. Budinovskiy S.A. Primenenie analiticheskoy modeli opredeleniya uprugih mekhanicheskih i termicheskih napryazheniy v mnogosloynoy sisteme v reshenii zadach po sozdaniyu zharostoykih alyuminidnyh pokrytiy [Application of analytical model of determination of elastic mechanical and thermal stresses in multi-layer system in the solution of tasks on creation of heat resisting alyuminidny coverings] //Uprochnyayushchie tekhnologii i pokrytiya. 2013. №3. S. 3–11.