Articles

1.
category: Heat-resistant materials
УДК 669.018.44
Bondarenko Yu.A.1, Yechin A.B.1, Kolodyazhny M.Yu.1
MODERN RESEARCH IN THE FIELD OF TECHNOLOGY
OF MELTING AND CRYSTALLIZATION FOR THE FORMATION
OF THE NATURAL COMPOSITE STRUCTURE IN A HIGHLY
TEMPERATURE-RESISTANT ALLOYS BASED ON NIOBIUM-SILICON
FOR DETAILS OF THE HOT PATH OF GAS TURBINE ENGINES
Actual engine design due to the creation with new highly heat resistant material, especially for blades and other components of gas turbine engines. An analysis of the scientific and technical documentation that the and development of high-temperature composite materials based on niobium and niobium-silicon hardening phases involved in a number of major countries, including Russia, US, Germany, France, Britain, China, Japan. The study identified the main development trends in this area and the main indicators of the level of technical development.
Keywords: directional solidification; gas turbine engine; superalloy; niobium; in-situ composite structure.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Kablov E.N., Tolorajja V.N., Orehov N.G. Monokristallicheskie nikelevye renijsoderzhashhie splavy dlja turbinnyh lopatok GTD [Single-crystal nickel reniysoderzhashchy alloys for turbine blades of GTD] //MiTOM. 2002. №7. S. 7–11.
3. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokolenija [Nickel foundry hot strength alloys of new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 36–52.
4. Bazyleva O.A., Bondarenko Ju.A., Timofeeva O.B., Chabina E.B. Intermetallidnye kompozicii na osnove Ni3Al, legirovannye reniem [Intermetallidnye of composition on the basis of Ni3Al, alloyed by reniye] //Metallurgija mashinostroenija. 2011. №4. S. 30–34.
5. Bondarenko Ju.A., Kablov E.N., Echin A.B., Surova V.A., Kablov D.E. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh i intermetallidnyh splavov s monokristallicheskoj strukturoj [Development of process of the directed crystallization of blades of GTD from heat resisting and intermetallidny alloys with single-crystal structure] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2. C. 20–25.
6. Kablov E.N., Bondarenko Ju.A., Echin A.B., Surova V.A. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh splavov s monokristallicheskoj i kompozicionnoj strukturoj [Development of process of the directed crystallization of blades of GTD from hot strength alloys with single-crystal and composition structure] //Aviacionnye materialy i tehnologii. 2012. №1. S. 3–8.
7. Bondarenko Ju.A., Bazyleva O.A., Echin A.B., Surova V.A., Narskij A.R. Vysokogradientnaja napravlennaja kristallizacija detalej iz splava VKNA-1V [The high-gradient directed crystallization of details from alloy VKNA-1B] //Litejnoe proizvodstvo. 2012. №6. S. 12–16.
8. Echin A.B., Bondarenko Ju.A. Osobennosti vysokogradientnoj napravlennoj kristallizacii i sovremennoe oborudovanie, ispol'zuemoe pri proizvodstve lopatok gazoturbinnyh dvigatelej [Features of the high-gradient directed crystallization and the modern equipment used by production of blades of gas turbine engines] //Trudy VIAM. 2014. №12. St. 03 (viam-works.ru).
9. Kablov E.N., Gerasimov V.V., Visik E.M., Demonis I.M. Rol' napravlennoj kri-stallizacii v resursosberegajushhej tehnologii proizvodstva detalej GTD [Role of the directed crystallization in the resource-saving production technology of details of GTD] //Trudy VIAM. 2013. №3. St. 01
(viam-works.ru).
10. Kablov E.N., Mubojadzhjan S.A. Zharostojkie i teplozashhitnye pokrytija dlja lopatok turbiny vysokogo davlenija perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTD] //Aviacionnye materialy i tehno-logii. 2012. №S.
S. 60–70.
11. Mubojadzhjan S.A., Budinovskij S.A., Gajamov A.M., Matveev P.V. Vysokotemperaturnye zharostojkie pokrytija i zharostojkie sloi dlja teplozashhitnyh pokrytij [High-temperature heat resisting coverings and heat resisting layers for heat-protective coverings] //Aviacionnye materialy i tehnologii. 2013. №1. S. 17–20.
12. Bondarenko Ju.A., Kablov E.N., Pankratov V.A. Osobennosti poluchenija rabochih lopatok malogabaritnyh GTD iz splavov tipa VKLS-20 [Features of receiving working blades of small-size GTD from VKLS-20 type alloys] //Aviacionnaja promyshlen-nost'. 1993. №2. S. 9–10.
13. Himushin F.F. Zharoprochnye stali i splavy [Heat resisting there were also alloys]. 2-e izd. M.: Metallurgija. 1969. 752 s.
14. Zaharov M.V., Zaharova A.M. Zharoprochnye splavy [Hot strength alloys]. M.: Metallurgija, 1972. 384 s.
15. Sposob poluchenija kompozicionnogo materiala [Way of receiving composite material]: pat. 2393060 Ros. Federacija; opubl. 27.06.2010. Bjul. №18.
16. Svetlov I.L., Abuzin Ju.A., Babich B.N., Vlasenko S.Ja., Efimochkin I.Ju., Timofeeva O.B. Vysokotemperaturnye niobievye kompozity, uprochnennye silicidami niobija [The high-temperature niobic composites strengthened by silicides of niobium] //Zhurnal funkcional'nyh materialov. 2007. T. 1. №2. S. 48–53.
17. Karpov M.I., Vnukov V.I., Korzhov V.P., Stroganova T.S. i dr. Struktura i mehanicheskie svojstva zharoprochnogo splava sistemy Nb–Si jevtekticheskogo sostava, poluchennogo metodami napravlennoj kristallizacii [Structure and mechanical properties of hot strength alloy of Nb-Si system of the evtektichesky structure received by methods of directed crystallization] //Deformacija i razrushenie materialov. 2012. №12. S. 2–8.
18. Dimiduk D.M., Mendiratta M.G., Subramanian P.R. In Structural Intermetallics. TMS Publica-tions, Warrendale. PA. 1993. Р. 619–630.
19. Bewlay B.P., Jackson M.R., Lipsitt H.A. The Balance of Mechanical and Environmental Properties of a Multielement Niobium-Niobium Silicide-Based In-Situ Composite //Metallurgical and Materials Transactions А. 1996. V. 27A. №12. Р. 3801–3808.
20. Bewlay B.P., Davidenco K. The Effect of alloying on Nb-silicide phase stability //Microsc Microanal. 2005. V. 11. №2. Р. 2030–2031.
21. Povolockij D.Ja., Roshhin V.E., Ryss M.A., Stroganov A.I., Jarcev M.A. Jelektrome-tallurgija stali i ferrosplavov [Electrometallurgy of steel and ferroalloys]. M.: Metallurgija. 1974. 550 s.
22. Huang Q., Guo X.P., Kang Y.W., Song J.X., Qu S.Y., Han Y.F. Microstructures and me-chanical properties of directionally solidified multi-element Nb-Si alloy //Progress in Natural Science: Materials International. 2011. V. 21. Р. 146–152.
23. Drawin S., Justin J.F. Advanced Lightweight Silicide and Nitride Based Materials for Turbo-Engine Applications //Journal Aerospace Lab. 2011. №3. Р. 1–11.
24. Kurc V., Zam P.R. Napravlennaja kristallizacija jevtekticheskih materialov [The directed crystallization of evtektichesky materials]. M.: Metallurgija. 1980. 272 s.
25. Guo H., Guo X. Microstructure evolution and room temperature fracture toughness of an integrally directionally solidified Nb–Ti–Si based ultrahigh temperature alloy //Scripta Materialia. 2011.
V. 64. Р. 637–640.
26. Bewlay B.P., Jackson M.R., Zhao J.C., Subramanian P.R. A Review of Very High-Temperature Nb-Silicide Based Composites //Metallurgical & Materials Transactions A. 2003. V. 34A. №10.
Р. 2043–2052.
2. Kablov E.N., Tolorajja V.N., Orehov N.G. Monokristallicheskie nikelevye renijsoderzhashhie splavy dlja turbinnyh lopatok GTD [Single-crystal nickel reniysoderzhashchy alloys for turbine blades of GTD] //MiTOM. 2002. №7. S. 7–11.
3. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokolenija [Nickel foundry hot strength alloys of new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 36–52.
4. Bazyleva O.A., Bondarenko Ju.A., Timofeeva O.B., Chabina E.B. Intermetallidnye kompozicii na osnove Ni3Al, legirovannye reniem [Intermetallidnye of composition on the basis of Ni3Al, alloyed by reniye] //Metallurgija mashinostroenija. 2011. №4. S. 30–34.
5. Bondarenko Ju.A., Kablov E.N., Echin A.B., Surova V.A., Kablov D.E. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh i intermetallidnyh splavov s monokristallicheskoj strukturoj [Development of process of the directed crystallization of blades of GTD from heat resisting and intermetallidny alloys with single-crystal structure] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2. C. 20–25.
6. Kablov E.N., Bondarenko Ju.A., Echin A.B., Surova V.A. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh splavov s monokristallicheskoj i kompozicionnoj strukturoj [Development of process of the directed crystallization of blades of GTD from hot strength alloys with single-crystal and composition structure] //Aviacionnye materialy i tehnologii. 2012. №1. S. 3–8.
7. Bondarenko Ju.A., Bazyleva O.A., Echin A.B., Surova V.A., Narskij A.R. Vysokogradientnaja napravlennaja kristallizacija detalej iz splava VKNA-1V [The high-gradient directed crystallization of details from alloy VKNA-1B] //Litejnoe proizvodstvo. 2012. №6. S. 12–16.
8. Echin A.B., Bondarenko Ju.A. Osobennosti vysokogradientnoj napravlennoj kristallizacii i sovremennoe oborudovanie, ispol'zuemoe pri proizvodstve lopatok gazoturbinnyh dvigatelej [Features of the high-gradient directed crystallization and the modern equipment used by production of blades of gas turbine engines] //Trudy VIAM. 2014. №12. St. 03 (viam-works.ru).
9. Kablov E.N., Gerasimov V.V., Visik E.M., Demonis I.M. Rol' napravlennoj kri-stallizacii v resursosberegajushhej tehnologii proizvodstva detalej GTD [Role of the directed crystallization in the resource-saving production technology of details of GTD] //Trudy VIAM. 2013. №3. St. 01
(viam-works.ru).
10. Kablov E.N., Mubojadzhjan S.A. Zharostojkie i teplozashhitnye pokrytija dlja lopatok turbiny vysokogo davlenija perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTD] //Aviacionnye materialy i tehno-logii. 2012. №S.
S. 60–70.
11. Mubojadzhjan S.A., Budinovskij S.A., Gajamov A.M., Matveev P.V. Vysokotemperaturnye zharostojkie pokrytija i zharostojkie sloi dlja teplozashhitnyh pokrytij [High-temperature heat resisting coverings and heat resisting layers for heat-protective coverings] //Aviacionnye materialy i tehnologii. 2013. №1. S. 17–20.
12. Bondarenko Ju.A., Kablov E.N., Pankratov V.A. Osobennosti poluchenija rabochih lopatok malogabaritnyh GTD iz splavov tipa VKLS-20 [Features of receiving working blades of small-size GTD from VKLS-20 type alloys] //Aviacionnaja promyshlen-nost'. 1993. №2. S. 9–10.
13. Himushin F.F. Zharoprochnye stali i splavy [Heat resisting there were also alloys]. 2-e izd. M.: Metallurgija. 1969. 752 s.
14. Zaharov M.V., Zaharova A.M. Zharoprochnye splavy [Hot strength alloys]. M.: Metallurgija, 1972. 384 s.
15. Sposob poluchenija kompozicionnogo materiala [Way of receiving composite material]: pat. 2393060 Ros. Federacija; opubl. 27.06.2010. Bjul. №18.
16. Svetlov I.L., Abuzin Ju.A., Babich B.N., Vlasenko S.Ja., Efimochkin I.Ju., Timofeeva O.B. Vysokotemperaturnye niobievye kompozity, uprochnennye silicidami niobija [The high-temperature niobic composites strengthened by silicides of niobium] //Zhurnal funkcional'nyh materialov. 2007. T. 1. №2. S. 48–53.
17. Karpov M.I., Vnukov V.I., Korzhov V.P., Stroganova T.S. i dr. Struktura i mehanicheskie svojstva zharoprochnogo splava sistemy Nb–Si jevtekticheskogo sostava, poluchennogo metodami napravlennoj kristallizacii [Structure and mechanical properties of hot strength alloy of Nb-Si system of the evtektichesky structure received by methods of directed crystallization] //Deformacija i razrushenie materialov. 2012. №12. S. 2–8.
18. Dimiduk D.M., Mendiratta M.G., Subramanian P.R. In Structural Intermetallics. TMS Publica-tions, Warrendale. PA. 1993. Р. 619–630.
19. Bewlay B.P., Jackson M.R., Lipsitt H.A. The Balance of Mechanical and Environmental Properties of a Multielement Niobium-Niobium Silicide-Based In-Situ Composite //Metallurgical and Materials Transactions А. 1996. V. 27A. №12. Р. 3801–3808.
20. Bewlay B.P., Davidenco K. The Effect of alloying on Nb-silicide phase stability //Microsc Microanal. 2005. V. 11. №2. Р. 2030–2031.
21. Povolockij D.Ja., Roshhin V.E., Ryss M.A., Stroganov A.I., Jarcev M.A. Jelektrome-tallurgija stali i ferrosplavov [Electrometallurgy of steel and ferroalloys]. M.: Metallurgija. 1974. 550 s.
22. Huang Q., Guo X.P., Kang Y.W., Song J.X., Qu S.Y., Han Y.F. Microstructures and me-chanical properties of directionally solidified multi-element Nb-Si alloy //Progress in Natural Science: Materials International. 2011. V. 21. Р. 146–152.
23. Drawin S., Justin J.F. Advanced Lightweight Silicide and Nitride Based Materials for Turbo-Engine Applications //Journal Aerospace Lab. 2011. №3. Р. 1–11.
24. Kurc V., Zam P.R. Napravlennaja kristallizacija jevtekticheskih materialov [The directed crystallization of evtektichesky materials]. M.: Metallurgija. 1980. 272 s.
25. Guo H., Guo X. Microstructure evolution and room temperature fracture toughness of an integrally directionally solidified Nb–Ti–Si based ultrahigh temperature alloy //Scripta Materialia. 2011.
V. 64. Р. 637–640.
26. Bewlay B.P., Jackson M.R., Zhao J.C., Subramanian P.R. A Review of Very High-Temperature Nb-Silicide Based Composites //Metallurgical & Materials Transactions A. 2003. V. 34A. №10.
Р. 2043–2052.
2.
category: Heat-resistant materials
УДК 669.018.44:669.245
ABOUT THE INFLUENCE OF THE FRACTIONAL COMPOSITION OF
SPHERICAL-SHAPED PARTICLES OF SUPERALLOYS ON THE PRESENCE IN A COMPACTED MATERIAL STRUCTURAL ANOMALY NAMELY THAT INDIVIDUAL IN SPHERICAL-SHAPED PARTICLES RETAIN THE SIGNS OF THE CAST STRUCTURE
The article examines the relationship between the difference in the temperature of Y'-phase complete dissolution in the spherical-shaped particles of various sizes of superalloys and anomaly patterns of HIP-material, namely that individual spherical-shaped particles in HIP-material retain the signs of the cast structure after HIP.
Keywords: powder metallurgy, molded structure, superalloys.
Reference List
1. Belov A.F. Nastojashhee i budushhee metallurgii granul [Present and future of metallurgy of granules]. V kn.: Metallurgija granul. VILS. 1983. vyp. 1. S. 3.
2. Anoshkin N.F. Nekotorye aspekty kachestva zharoprochnyh i vysokoprochnyh materialov, izgotavlivaemyh metodom metallurgii granul [Some aspects of quality of the heat resisting and high-strength materials made by method of metallurgy of granules]. V kn.: Metallurgija granul. VILS. 1986. vyp. 3. S. 3.
3. Belov A.F., Anoshkin N.F., Fatkullin O.H. Struktura i svojstva granuliruemyh nikelevyh splavov[Structure and properties of granulated nickel alloys] //M.: Metallurgija. 1984. 128 s.
4. Vinogradova N.I., Mahanek G.V., Nikolaeva N.V., Petrova S.N. Ustojchivost' litoj struktury granuliruemyh splavov na nikelevoj osnove pri termomehanicheskoj obrabotke [Stability of cast structure of granulated nickel-based alloys at thermomechanical processing]. V kn: Metallurgija granul. VILS. 1989. vyp. 5. S. 297.
5. Eremenko V.I., Mahanek G.V., Petrova S.N. Formirovanie struktury granuliruemyh nikelevyh splavov pri gorjachem izotermicheskom pressovanii [Forming of structure of granulated nickel alloys at hot isothermal pressing]. V kn: Metallurgija granul. VILS. 1989. vyp. 5. S. 218.
6. Garibov G.S., Grinc N.M. Jevoljucija harakteristik granuliruemyh splavov dlja aviadvigatelej [Evolution of characteristics of granulated alloys for aircraft engines] //Tehnologija legkih splavov. 2013. №4. S. 106–112.
7. Ryndenkov D.V., Perevozov A.S., Nikitina A.Ju., Rybancova E.N. Nerekristallizovannye granuly v kompaktirovannom monolite iz zharoprochnyh nikelevyh splavov[Nerekristallizovannye of granule in kompaktirovanny monolith from heat resisting nickel alloys] //Metallovedenie i termicheskaja obrabotka metallov. 2014. №8. S. 9–12.
8. Ryndenkov D.V., Astapov A.N., Rybancova E.N. Vlijanie razmera granul iz zharoprochnyh nikelevyh splavov na temperaturu polnogo rastvorenija -fazy [Influence of the size of granules from heat resisting nickel alloys on temperature of complete dissolution of Y'-phase] //Aviacionnaja promyshlennost'. 2015. №2. S. 49–54.
2. Anoshkin N.F. Nekotorye aspekty kachestva zharoprochnyh i vysokoprochnyh materialov, izgotavlivaemyh metodom metallurgii granul [Some aspects of quality of the heat resisting and high-strength materials made by method of metallurgy of granules]. V kn.: Metallurgija granul. VILS. 1986. vyp. 3. S. 3.
3. Belov A.F., Anoshkin N.F., Fatkullin O.H. Struktura i svojstva granuliruemyh nikelevyh splavov[Structure and properties of granulated nickel alloys] //M.: Metallurgija. 1984. 128 s.
4. Vinogradova N.I., Mahanek G.V., Nikolaeva N.V., Petrova S.N. Ustojchivost' litoj struktury granuliruemyh splavov na nikelevoj osnove pri termomehanicheskoj obrabotke [Stability of cast structure of granulated nickel-based alloys at thermomechanical processing]. V kn: Metallurgija granul. VILS. 1989. vyp. 5. S. 297.
5. Eremenko V.I., Mahanek G.V., Petrova S.N. Formirovanie struktury granuliruemyh nikelevyh splavov pri gorjachem izotermicheskom pressovanii [Forming of structure of granulated nickel alloys at hot isothermal pressing]. V kn: Metallurgija granul. VILS. 1989. vyp. 5. S. 218.
6. Garibov G.S., Grinc N.M. Jevoljucija harakteristik granuliruemyh splavov dlja aviadvigatelej [Evolution of characteristics of granulated alloys for aircraft engines] //Tehnologija legkih splavov. 2013. №4. S. 106–112.
7. Ryndenkov D.V., Perevozov A.S., Nikitina A.Ju., Rybancova E.N. Nerekristallizovannye granuly v kompaktirovannom monolite iz zharoprochnyh nikelevyh splavov[Nerekristallizovannye of granule in kompaktirovanny monolith from heat resisting nickel alloys] //Metallovedenie i termicheskaja obrabotka metallov. 2014. №8. S. 9–12.
8. Ryndenkov D.V., Astapov A.N., Rybancova E.N. Vlijanie razmera granul iz zharoprochnyh nikelevyh splavov na temperaturu polnogo rastvorenija -fazy [Influence of the size of granules from heat resisting nickel alloys on temperature of complete dissolution of Y'-phase] //Aviacionnaja promyshlennost'. 2015. №2. S. 49–54.
3.
category: Heat-resistant materials
УДК 621.791
V.G. Shmorgun1
INTERACTION OF ALUMINUM AND NICKEL IN CONTACT FUSION
The article examines the processes of liquid-phase interaction in layered intermetallic nickel-aluminum composite material. The study was performed on obtained by the explosion welding samples of composite material nickel AD1+NP2 (4+4 mm) after isothermal heat treatment. As a result of the interaction of nickel with the molten aluminium in the heat treatment the structure of crystallized melt becomes a matrix with dispersed intermetallic inclusions NiAl3 in the solid solution on the aluminum basis. On the nickel side diffusion zone consists of two layers of aluminide NiAl3 and Ni2Al3. The increase of temperature and time of liquid-phase interaction leads to an increase in total thickness of the diffusion zone and concentration of NiAl3 crystallized in an aluminum melt.
Keywords: layered composite material, intermetallic, phase composition, microhardness, diffusion zone.
Reference List
1. Shmorgun V.G., Trykov Ju.P., Slautin O.V., Abramenko S.A., Pisarev S.P. Vlijanie vysokotemperaturnoj termoobrabotki na strukturu i svojstva medno-aljuminievogo sloistogo intermetallidnogo kompozita [Influence of high-heat treatment on structure and property of copper-aluminum layered intermetallidny composite] //Konstrukcii iz kompozicionnyh materialov. 2007. №2. C. 37–42.
2. Krasheninnikov S.V., Kuz'min S.V., Lysak V.I., Chistjakova N.I. Issledovanie kinetiki processa kontaktnogo jevtekticheskogo plavlenija v svarennyh vzryvom titano-medno-stal'nyh kompozitah [Research of kinetics of process of contact evtektichesky melting in welded by explosion titano-copper-steel composites] //Perspektivnye materialy. 2005. №3. C. 75–80.
3. Gurevich L.M., Trykov Ju.P., Zhorov A.N., Gurulev D.N., Loktjushin V.A. Strukturoobrazovanie v titano-aljuminievyh kompozitah v prisutstvii zhidkoj fazy [Structurization in titano-aluminum composites in the presence of liquid phase] //Zhurnal funkcional'nyh materialov. 2008. T.2. №4.
S. 153–157.
4. Slama G., Vignes A. Coating of niobium and niobium alloys with aluminium. Part II. Hot-dipped coatings //Journal of the Less-common Metals. 1971. №24. P. l–21.
2. Krasheninnikov S.V., Kuz'min S.V., Lysak V.I., Chistjakova N.I. Issledovanie kinetiki processa kontaktnogo jevtekticheskogo plavlenija v svarennyh vzryvom titano-medno-stal'nyh kompozitah [Research of kinetics of process of contact evtektichesky melting in welded by explosion titano-copper-steel composites] //Perspektivnye materialy. 2005. №3. C. 75–80.
3. Gurevich L.M., Trykov Ju.P., Zhorov A.N., Gurulev D.N., Loktjushin V.A. Strukturoobrazovanie v titano-aljuminievyh kompozitah v prisutstvii zhidkoj fazy [Structurization in titano-aluminum composites in the presence of liquid phase] //Zhurnal funkcional'nyh materialov. 2008. T.2. №4.
S. 153–157.
4. Slama G., Vignes A. Coating of niobium and niobium alloys with aluminium. Part II. Hot-dipped coatings //Journal of the Less-common Metals. 1971. №24. P. l–21.
4.
УДК 621.762.55
O.V. Vasileva1, P.A. Kuznetcov1, V.V. Bobyr1
STRUCTURE AND PROPERTIES OF STAINLESS STEEL 316L, 410L, 17-4 PH, MANUFACTURED BY SELECTIVE LASER MELTING PROCESS
Technologies of additive manufacturing widely used in various fields of industry. In this article the results of structure and mechanical properties research of stainless steels different grades manufactured by SLM are presented. In comparsion to the traditional technologies, there is a trend to increase strength and decrease ductility.
Keywords: additive manufacturing, selective laser melting, stainless steel powders.
Reference List
нет
5.
category: Composite materials
УДК 620.17
COMPARISON OF THE GEOMETRICAL SIZES POLYMER MATRIX
COMPOSITE MATERIALS SAMPLES WHICH ARE USING
INTERNATIONAL ASTM STANDARDS AND DOMESTIC GOST
In this work comparison of geometry of samples specified in the international ASTM standards, on mechanical tests of Polymer Matrix Composite Materials and in the domestic GOST standards is carried out.
Keywords: mechanical tests, composite materials, carbon, fiberglass, organic plastic, stretching, compression, bending, shear, shear in the plane.
Reference List
1. Guljaev I.N., Zelenina I.V., Raskutin A.E. Ugleplastiki na osnove uglerodnyh tkanej importnogo proizvodstva i rossijskih rastvornyh svjazujushhih [Сarbon fibers on the basis of carbon fabrics of import production and the Russian solution binding]//Voprosy materialovedenija. 2014. №1 (77). S. 116–125.
2. Sloistyj kompozicionnyj material i izdelie, vypolnennoe iz nego [Layered composite material and the product which has been executed of it]: pat. 2238850 Ros. Federacija; opubl. 12.03.2003.
3. Litvinov V.B., Kobec L.P., Toksanbaev M.S., Deev I.S., Buchnev L.M. Strukturno-mehanicheskie svojstva vysokoprochnyh uglerodnyh volokon [Structural and mechanical properties of high-strength carbon fibers] //Kompozity i nanostruktury. 2011. №3. S. 36–50.
4. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokolenija [Сarbon fibers and fibreglasses of new generation]//Trudy VIAM. 2013. №4. St. 09 (viam-works.ru).
5. Prepreg i izdelie, vypolnennoe iz nego [Prepreg and the product which has been executed of it]: pat. 2427594 Ros. Federacija; opubl. 21.12.2009.
6. Jepoksidnoe svjazujushhee dlja prepregov, prepreg na ego osnove i izdelie, vypolnennoe iz nego [Epoxy binding for prepregs, prepreg on its basis and the product which has been executed of it]: pat. 2335515 Ros. Federacija; opubl. 25.10.2006.
7. Jepoksidnoe svjazujushhee, prepreg na ego osnove i izdelie, vypolnennoe iz nego [Epoxy binding, prepreg on its basis and the product which has been executed of it]: pat. 2424259 Ros. Federacija; opubl. 22.10.2009.
8. Adamov A.A., Laptev M.Ju., Gorshkova E.G. Analiz otechestvennoj i zarubezhnoj normativnoj bazy po mehanicheskim ispytanijam polimernyh kompozicionnyh materialov [The analysis of domestic and foreign regulatory base on mechanical tests of polymeric composite materials] //Konstrukcii iz kompozicionnyh materialov. 2012. №3. S. 72–77.
9. Shah V. Spravochnoe rukovodstvo po ispytanijam plastmass i analizu prichin ih razrushenija [Reference guide on tests of plastic and the analysis of the reasons of their destruction]: Per. s angl. SPb.: Nauchnye osnovy i tehnologii. 2009. 732 s.
10. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). C. 3–33.
11. Efimov V.A., Shvedkova A.K., Koren'kova T.G., Kirillov V.N. Issledovanie polimernyh konstrukcionnyh materialov pri vozdejstvii klimaticheskih faktorov i nagruzok v laboratornyh i naturnyh uslovijah [Research of polymeric constructional materials at influence of climatic factors and loadings in laboratory and natural conditions]//Aviacionnye materialy i tehnologii. 2013. №S2. S. 68–73.
12. Zozulja V.V., Martynenko A.V., Lukin A.N. Mehanika materialov [Mechanics of materials]. M.: «NUVD». 2001. 404 s.
13. Vasil'ev V.V. Mehanika konstrukcij iz kompozicionnyh materialov [Mechanics of designs from composite materials]. M.: Mashinostroenie. 1988. 272 s.
14. Cherepanov G.P. Mehanika razrushenija kompozicionnyh materialov [Fracture mechanics of composite materials]. M.: Nauka. 1983. 296 s.
15. Vil'deman V.Je., Tret'jakova (Sannikova) T.V., Tret'jakov M.P. Jeksperimental'noe issledovanie zakonomernostej deformirovanija i razrushenija materialov pri ploskom naprjazhennom sostojanii [Pilot study of patterns of deformation and destruction of materials at flat tension] //Problemy mashinostroenija i nadezhnosti mashin. 2010. №5. S. 106–111.
16. Il'ichev A.V. Sravnenie standartov GOST i ASTM dlja provedenija mehanicheskih ispytanij PKM na rastjazhenie [Comparison of state standard specifications and ASTM standards for carrying out mechanical tests of PKM on stretching] //Vse materialy. Jenciklopedicheskij spra-vochnik. 2015. №8. S. 2–9.
17. Doneckij K.I., Kogan D.I., Hrul'kov A.V. Svojstva polimernyh kompozi-cionnyh materialov, izgotovlennyh na osnove pletenyh preform [Properties of the polymeric composite materials made on the basis of wattled preform]//Trudy VIAM. 2014. №3. St. 05 (viam-works.ru).
18. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svjazujushhie dlja perspektivnyh metodov izgotovlenija konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PKM]//Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
19. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svjazujushhie dlja perspektivnyh metodov izgotovlenija PKM novogo pokolenija [Molten binding for perspective methods of manufacturing of PKM of new generation]//Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
20. Muhametov R.R., Merkulova Ju.I., Chursova L.V. Termoreaktivnye polimernye svjazujushhie s prognoziruemym urovnem reologicheskih deformacionnyh svojstv [Thermosetting polymeric binding with predicted level of rheological deformation properties]//Klei. Germetiki. Tehnologii. 2012. №5. S. 19–21.
2. Sloistyj kompozicionnyj material i izdelie, vypolnennoe iz nego [Layered composite material and the product which has been executed of it]: pat. 2238850 Ros. Federacija; opubl. 12.03.2003.
3. Litvinov V.B., Kobec L.P., Toksanbaev M.S., Deev I.S., Buchnev L.M. Strukturno-mehanicheskie svojstva vysokoprochnyh uglerodnyh volokon [Structural and mechanical properties of high-strength carbon fibers] //Kompozity i nanostruktury. 2011. №3. S. 36–50.
4. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokolenija [Сarbon fibers and fibreglasses of new generation]//Trudy VIAM. 2013. №4. St. 09 (viam-works.ru).
5. Prepreg i izdelie, vypolnennoe iz nego [Prepreg and the product which has been executed of it]: pat. 2427594 Ros. Federacija; opubl. 21.12.2009.
6. Jepoksidnoe svjazujushhee dlja prepregov, prepreg na ego osnove i izdelie, vypolnennoe iz nego [Epoxy binding for prepregs, prepreg on its basis and the product which has been executed of it]: pat. 2335515 Ros. Federacija; opubl. 25.10.2006.
7. Jepoksidnoe svjazujushhee, prepreg na ego osnove i izdelie, vypolnennoe iz nego [Epoxy binding, prepreg on its basis and the product which has been executed of it]: pat. 2424259 Ros. Federacija; opubl. 22.10.2009.
8. Adamov A.A., Laptev M.Ju., Gorshkova E.G. Analiz otechestvennoj i zarubezhnoj normativnoj bazy po mehanicheskim ispytanijam polimernyh kompozicionnyh materialov [The analysis of domestic and foreign regulatory base on mechanical tests of polymeric composite materials] //Konstrukcii iz kompozicionnyh materialov. 2012. №3. S. 72–77.
9. Shah V. Spravochnoe rukovodstvo po ispytanijam plastmass i analizu prichin ih razrushenija [Reference guide on tests of plastic and the analysis of the reasons of their destruction]: Per. s angl. SPb.: Nauchnye osnovy i tehnologii. 2009. 732 s.
10. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). C. 3–33.
11. Efimov V.A., Shvedkova A.K., Koren'kova T.G., Kirillov V.N. Issledovanie polimernyh konstrukcionnyh materialov pri vozdejstvii klimaticheskih faktorov i nagruzok v laboratornyh i naturnyh uslovijah [Research of polymeric constructional materials at influence of climatic factors and loadings in laboratory and natural conditions]//Aviacionnye materialy i tehnologii. 2013. №S2. S. 68–73.
12. Zozulja V.V., Martynenko A.V., Lukin A.N. Mehanika materialov [Mechanics of materials]. M.: «NUVD». 2001. 404 s.
13. Vasil'ev V.V. Mehanika konstrukcij iz kompozicionnyh materialov [Mechanics of designs from composite materials]. M.: Mashinostroenie. 1988. 272 s.
14. Cherepanov G.P. Mehanika razrushenija kompozicionnyh materialov [Fracture mechanics of composite materials]. M.: Nauka. 1983. 296 s.
15. Vil'deman V.Je., Tret'jakova (Sannikova) T.V., Tret'jakov M.P. Jeksperimental'noe issledovanie zakonomernostej deformirovanija i razrushenija materialov pri ploskom naprjazhennom sostojanii [Pilot study of patterns of deformation and destruction of materials at flat tension] //Problemy mashinostroenija i nadezhnosti mashin. 2010. №5. S. 106–111.
16. Il'ichev A.V. Sravnenie standartov GOST i ASTM dlja provedenija mehanicheskih ispytanij PKM na rastjazhenie [Comparison of state standard specifications and ASTM standards for carrying out mechanical tests of PKM on stretching] //Vse materialy. Jenciklopedicheskij spra-vochnik. 2015. №8. S. 2–9.
17. Doneckij K.I., Kogan D.I., Hrul'kov A.V. Svojstva polimernyh kompozi-cionnyh materialov, izgotovlennyh na osnove pletenyh preform [Properties of the polymeric composite materials made on the basis of wattled preform]//Trudy VIAM. 2014. №3. St. 05 (viam-works.ru).
18. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svjazujushhie dlja perspektivnyh metodov izgotovlenija konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PKM]//Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
19. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svjazujushhie dlja perspektivnyh metodov izgotovlenija PKM novogo pokolenija [Molten binding for perspective methods of manufacturing of PKM of new generation]//Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
20. Muhametov R.R., Merkulova Ju.I., Chursova L.V. Termoreaktivnye polimernye svjazujushhie s prognoziruemym urovnem reologicheskih deformacionnyh svojstv [Thermosetting polymeric binding with predicted level of rheological deformation properties]//Klei. Germetiki. Tehnologii. 2012. №5. S. 19–21.
6.
УДК 621.74:669.295
L.I. Rassohina1, Bityutskaya O.N.1, P.I. Parfenovich1
STUDY OF THE PROPERTIES OF LATEX BINDER «REMAL 20» AND SUSPENSIONS FOR THE MANUFACTURE OF SHELL SHAPE IN THE PRODUCTION OF CASTINGS FROM γ-TiAl ALLOYS
The study involved issues of development of structures of molds for the production of castings of γ-TiAl alloys on the basis of water dispersion of aluminum oxide, suspension, mechanical properties of ceramic samples. The conclusions about the need to continue exploration in this sphere
Keywords: casting alloys based on titanium, ceramic slurry, a binder, shell shape, fused.
Reference List
1. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokolenija [Nickel foundry hot strength alloys of new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 36–52.
2. Kablov E.N., Deev V.V., Bondarenko Ju.A., Narskij A.R. Beskremnezemnye keramicheskie formy dlja napravlennoj kristallizacii pri lit'e lopatok gazoturbinnyh dvigatelej [Beskremnezemnye ceramic forms for the directed crystallization when molding blades of gas turbine engines] //Litejnoe proizvodstvo. 2003. № 5. S. 17–20.
3. Kablov E.N., Tolorajja V.N. VIAM – osnovopolozhnik otechestvennoj tehnologii lit'ja monokristallicheskih turbinnyh lopatok GTD i GTU [VIAM – the founder of domestic casting technology of single-crystal turbine blades of GTD and GTU] //Aviacionnye materialy i tehnologii. 2012. №S.
S. 105–117.
4. Kablov E.N., Petrushin N.V., Eljutin E.S. Monokristallicheskie zharoprochnye splavy dlja gazoturbinnyh dvigatelej [Single-crystal hot strength alloys for gas turbine engines] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 38–52.
5. Pavlinich S.P., Belov V.D., Alikin P.V., Petrovskij P.V., Fadeev A.V. Intermetallid Ti–Al nachinaet put' v rossijskuju aviaciju [Ti-Al intermetallic compound begins way to the Russian aircraft] //Litejshhik Rossii. 2013. № 3. S. 21–24.
6. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
7. Nochovnaja N.A., Ivanov V.I., Alekseev E.B., Kochetkov A.S. Puti optimizacii jekspluatacionnyh svojstv splavov na osnove intermetallidov titana [Ways of optimization of operational properties of alloys on the basis of titanium intermetallic compound] //Aviacionnye materialy i tehnologii. 2012. №S. S. 196–206.
8. Kulakov B.A., Dubrovin V.K., Pavlinich S.P., Gojhenberg Ju.N., Karpinskij A.V. Otlivki iz intermetallidnyh titanovyh splavov [Casting from intermetallidny titanium alloys] //Litejnoe proizvodstvo. 2012. № 7. S. 6–9.
2. Kablov E.N., Deev V.V., Bondarenko Ju.A., Narskij A.R. Beskremnezemnye keramicheskie formy dlja napravlennoj kristallizacii pri lit'e lopatok gazoturbinnyh dvigatelej [Beskremnezemnye ceramic forms for the directed crystallization when molding blades of gas turbine engines] //Litejnoe proizvodstvo. 2003. № 5. S. 17–20.
3. Kablov E.N., Tolorajja V.N. VIAM – osnovopolozhnik otechestvennoj tehnologii lit'ja monokristallicheskih turbinnyh lopatok GTD i GTU [VIAM – the founder of domestic casting technology of single-crystal turbine blades of GTD and GTU] //Aviacionnye materialy i tehnologii. 2012. №S.
S. 105–117.
4. Kablov E.N., Petrushin N.V., Eljutin E.S. Monokristallicheskie zharoprochnye splavy dlja gazoturbinnyh dvigatelej [Single-crystal hot strength alloys for gas turbine engines] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 38–52.
5. Pavlinich S.P., Belov V.D., Alikin P.V., Petrovskij P.V., Fadeev A.V. Intermetallid Ti–Al nachinaet put' v rossijskuju aviaciju [Ti-Al intermetallic compound begins way to the Russian aircraft] //Litejshhik Rossii. 2013. № 3. S. 21–24.
6. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
7. Nochovnaja N.A., Ivanov V.I., Alekseev E.B., Kochetkov A.S. Puti optimizacii jekspluatacionnyh svojstv splavov na osnove intermetallidov titana [Ways of optimization of operational properties of alloys on the basis of titanium intermetallic compound] //Aviacionnye materialy i tehnologii. 2012. №S. S. 196–206.
8. Kulakov B.A., Dubrovin V.K., Pavlinich S.P., Gojhenberg Ju.N., Karpinskij A.V. Otlivki iz intermetallidnyh titanovyh splavov [Casting from intermetallidny titanium alloys] //Litejnoe proizvodstvo. 2012. № 7. S. 6–9.
7.
category: Composite materials
УДК 678.049:541.126
Rozenenkova V.A.1, Zhuravleva P.L.1
PRECERAMIC POLYMER COMPOUNDS FOR CERAMIC MATRIX COMPOSITES
It is shown that application of some polyreactive organic-silicon and organic compounds allows to carry out process of cure polikarbosilanovy binding in the inert environment. On the basis of results of the research which has been carried out with attraction of methods of the thermogravimetric analysis (TGA), the rentgenofazovy analysis (RFA) and an ekstraktsiya, it is established that curing binding are products of interaction of initial components. Further pyrolysis leads to formation of the inorganic matrixes, which exit in 1,3 times above, than an yield pyrolyzates initial components.
Keywords: ceramic precursors, polycarbosilane, oligosilazane, cure, pyrolysis, ceramic matrixs, amorphous silicon carbide.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1(34). S. 3–33.
2. Kablov E.N., Solncev S.S., Rozenenkova V.A., Mironova N.A. Kompozicionnye steklokeramicheskie pokrytija dlja zashhity berillija pri vysokih temperaturah [Composition steklokeramichesky coverings for protection of beryllium at high temperatures] //Steklo i keramika. 2012. №4. S. 12−15.
3. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armirujushhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru).
4. Minakov V.T., Solncev S.S. Keramomatrichnye kompozity [Keramomatrichnye composites] //Vse materialy. Jenciklopedicheskij spravochnik. 2007. №2. S. 5–9.
5. Grashhenkov D.V., Gunjaev G.M., Minakov V.T., Sorina T.G. SiC–SiC-kompozity, armirovannye nitevidnymi kristallami [The SiC/SiC-composites reinforced by filamentary crystals] //Vse materialy. Jenciklopedicheskij spravochnik. 2012. №5. S. 43–48.
6. Colombo Р., Mera G., Riedel R., Soraru G.D. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics //J. Am. Ceram. Soc. 2010. V. 7. №93. P. 1805–1837.
7. Shvec N.I., Minakov V.T., Papkov V.S., Buzin M.I., Bad'ina L.Ju., Shimkin A.A. Issledovanie termohimicheskih prevrashhenij polikarbosilanovyh prekursorov v keramicheskuju matricu [Ricerca di trasformazioni thermochemical di polikarbosilanovy precoursors in matrice di ceramica] //Zhurnal prikladnoj himii. 2014. T. 87. №6. S. 793–799.
2. Kablov E.N., Solncev S.S., Rozenenkova V.A., Mironova N.A. Kompozicionnye steklokeramicheskie pokrytija dlja zashhity berillija pri vysokih temperaturah [Composition steklokeramichesky coverings for protection of beryllium at high temperatures] //Steklo i keramika. 2012. №4. S. 12−15.
3. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armirujushhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru).
4. Minakov V.T., Solncev S.S. Keramomatrichnye kompozity [Keramomatrichnye composites] //Vse materialy. Jenciklopedicheskij spravochnik. 2007. №2. S. 5–9.
5. Grashhenkov D.V., Gunjaev G.M., Minakov V.T., Sorina T.G. SiC–SiC-kompozity, armirovannye nitevidnymi kristallami [The SiC/SiC-composites reinforced by filamentary crystals] //Vse materialy. Jenciklopedicheskij spravochnik. 2012. №5. S. 43–48.
6. Colombo Р., Mera G., Riedel R., Soraru G.D. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics //J. Am. Ceram. Soc. 2010. V. 7. №93. P. 1805–1837.
7. Shvec N.I., Minakov V.T., Papkov V.S., Buzin M.I., Bad'ina L.Ju., Shimkin A.A. Issledovanie termohimicheskih prevrashhenij polikarbosilanovyh prekursorov v keramicheskuju matricu [Ricerca di trasformazioni thermochemical di polikarbosilanovy precoursors in matrice di ceramica] //Zhurnal prikladnoj himii. 2014. T. 87. №6. S. 793–799.
8.
category: Composite materials
УДК 678.844
Chaykun A.M.1, Naumov I.S.1, Venediktova M.A.1, Alifanov E.V.1
MODERN APPROACHES TO CREATION OF COMPOUNDING OF SPECIAL RUBBERS ON BASIS OF FLUOROSILICATE GROW RUBBERS (review)
The overview shows modern tendencies in synthesis of fluorosilicone virgin rubbers and vulcanizate rubbers Such approach is very actual. Serious increase of exploitation intensity of aircrafts claims new requirements to rubbers used. First of all these are increase in temperature range of exploitation and improvement of exploitation parameters.
That is why improvement of rubbers on these bases based on fluorosilicone virgin rubbers as these provide wide temperature range of exploitation and have high working characteristics. Rubbers based on silicone virgin rubbers can work in air at wide temperature range. However they have low fuel- and oil resistance. High-molecular fluorosilicone virgin and vulcanizate rubbers have balanced combination of resistance to aggressive environment and good working ability in wide temperature range.
Improving rubber compositions based on above-mentioned virgin rubbers allows to improve their exploitation parameters and thus increase the working tim
Keywords: rubber, rubber compounds, fluorosilicone rubbers.
Reference List
1. Bol'shoj spravochnik rezinshhika [Big directory of rezinshchik]. V 2 ch. M.: Tehinform. 2012. 1385 s.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34) S. 3–33.
3. Eliseev O.A., Krasnov L.L., Zajceva E.I., Savenkova A.V. Razrabotka i modificirovanie jelastomernyh materialov dlja primenenija vo vseklimaticheskih uslovijah [Development and modifying of elastomeric materials for application in vseklimatichesky conditions] //Aviacionnye materialy i tehnologii. 2012. №S. S. 309–314.
4. Mahlis F.A., Fedjukin D.L. Terminologicheskij spravochnik po rezine [Terminological directory on rubber]. M.: Himija. 1989. 400 s.
5. Tehnologija reziny: Recepturostroenie i ispytanija [Technology of rubber: Retsepturostroyeniye and tests]: Per. s angl. /Pod red. Dzh.S. Dika. SPb.: Nauchnye osnovy i tehnologii. 2010. 620 s.
6. Shvejcer F.A. Korrozija plastmass i rezin. SPb.: Nauchnye osnovy i tehnologii [Scientific bases and technologies]. 2010. 637 s.
7. Martin Dzh. M., Smit U.K. Proizvodstvo i primenenie rezinotehnicheskih izdelij [Production and application of industrial rubber products]: Per. s angl. /Pod red. S.Ch. Bhati. SPb.: Professija. 2006. 480 s.
8. Chajkun A.M., Eliseev O.A., Naumov I.S., Venediktova M.A. Osobennosti morozostojkih rezin na osnove razlichnyh kauchukov [Features of cold-resistant rubbers on the basis of different rubbers] //Trudy VIAM. 2013. №12. St. 04 (viam-works.ru).
9. Chajkun A.M., Eliseev O.A., Naumov I.S., Venediktova M.A. Osobennosti postroenija receptur dlja morozostojkih rezin [Features of creation of compoundings for cold-resistant rubbers] //Aviacionnye materialy i tehnologii. 2013. №3. S. 53–55.
10. Ito M., Yukutake S., Osawa O., Ueki H. Adhesion and Reinforcement of CNT-fluoroelastomers Composite for Oilfield Application /In: Symposium of Japan. 2013 (onepetro.org).
УДК 621.792
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34) S. 3–33.
3. Eliseev O.A., Krasnov L.L., Zajceva E.I., Savenkova A.V. Razrabotka i modificirovanie jelastomernyh materialov dlja primenenija vo vseklimaticheskih uslovijah [Development and modifying of elastomeric materials for application in vseklimatichesky conditions] //Aviacionnye materialy i tehnologii. 2012. №S. S. 309–314.
4. Mahlis F.A., Fedjukin D.L. Terminologicheskij spravochnik po rezine [Terminological directory on rubber]. M.: Himija. 1989. 400 s.
5. Tehnologija reziny: Recepturostroenie i ispytanija [Technology of rubber: Retsepturostroyeniye and tests]: Per. s angl. /Pod red. Dzh.S. Dika. SPb.: Nauchnye osnovy i tehnologii. 2010. 620 s.
6. Shvejcer F.A. Korrozija plastmass i rezin. SPb.: Nauchnye osnovy i tehnologii [Scientific bases and technologies]. 2010. 637 s.
7. Martin Dzh. M., Smit U.K. Proizvodstvo i primenenie rezinotehnicheskih izdelij [Production and application of industrial rubber products]: Per. s angl. /Pod red. S.Ch. Bhati. SPb.: Professija. 2006. 480 s.
8. Chajkun A.M., Eliseev O.A., Naumov I.S., Venediktova M.A. Osobennosti morozostojkih rezin na osnove razlichnyh kauchukov [Features of cold-resistant rubbers on the basis of different rubbers] //Trudy VIAM. 2013. №12. St. 04 (viam-works.ru).
9. Chajkun A.M., Eliseev O.A., Naumov I.S., Venediktova M.A. Osobennosti postroenija receptur dlja morozostojkih rezin [Features of creation of compoundings for cold-resistant rubbers] //Aviacionnye materialy i tehnologii. 2013. №3. S. 53–55.
10. Ito M., Yukutake S., Osawa O., Ueki H. Adhesion and Reinforcement of CNT-fluoroelastomers Composite for Oilfield Application /In: Symposium of Japan. 2013 (onepetro.org).
УДК 621.792
9.
category: Functional and smart materials
УДК 621.792
MODERN TENDENCIES OF DEVELOPMENT SILICONE
SEALANTS AND COMPOUND ABROAD (review)
The literary and patent overview is provided in work carried out for the purpose of assessment of tendencies of development organic silicon elastomer abroad. Modern fillers for organic silicon rubbers, modification of organic silicon sealants, and also the main directions in researches of catalysis process hydrosilication abroad are considered.
Keywords: polymers, sealants, hydrosilication catalysts, hybrid systems.
Reference List
1. Skljarov N.M. Put' dlinoju v 70 let – ot drevesiny do supermaterialov [Way of 70 years – from wood to supermaterials] /Pod obshh. red. E.N. Kablova. M.: MISiS–VIAM. 2002. 488 s.
2. Savenkova A.V., Tihonova I.V., Trebukova E.D.. Teplomorozostojkie germetiki [Heatcold-resistant hermetics] /V sb.: Aviacionnye materialy na rubezhe ХХ–XXI vekov. M.: VIAM. 1994.
S. 432–439.
3. Petrova A.P., Donskoj A.A., Chalyh A.E., Shherbina A.A. Klejashhie materialy. Germetiki [Gluing materials. Hermetics]: Spravochnik. SPb.: NPO «Professional». 2008. 589 s.
4. Minakov V.T., Savenkova A.V., Donskoj A.A. Kremnijorganicheskie germetiki [Organic silicon hermetics]//Rossijskie polimernye novosti. 2003. V. 8. №4. S. 37–41.
5. Pohmer K., Steinberger H. Silicone rubbers: innovative – high performance – efficient //Organosilicon Chemistry IV. Wiley-VCH. 2000. P. 699–709.
6. Zhao M., Feng Y., Li G., Li Y., Wang Y., Han Y., Sun X., Tan X. Synthesis of an adhesion-enhancing polysiloxane containing epoxy groups for addition-cure silicone light emitting diodes encapsulant //Polym. Adv. Technol. 2014. №25 (9). P. 927–933.
7. Pan K., Zeng X., Li H., Lai X. Synthesis of Siloxanes Containing Vinyl and Epoxy Group and its Enhancement for Adhesion of Addition-Cure Silicone Encapsulant //J. Macromol. 2013. №50 (11). P. 1126–1132.
8. Polysiloxane blends has good adhesion to substrates, able release from molds; homo- or copolymers of polysiloxane, polysilsesquioxanes, or polysilicates; bonding to metallic, plastic and thermoplastic substrates: pat. 7288322 US; pabl. 30.10.2007.
9. Caseri W., Pregosin P.S. Hydrosilylation chemistry and catalysis with CiS–PtCl2(PhCH=CH2)2 //Organometallics. 1988. №7 (6). P. 1373–1380.
10. Addition curable self-adhesive silicone rubber composition: pat. 8937123 US; pabl. 20.01.2015.
11. Preparation of silicone rubber elastomers: pat. 8329831 US; pabl. 11.12.2012.
12. Silicone rubber composition with improved fluidity: pat. 5352724 US; pabl. 04.10.1994.
13. Liquid silicone rubber composition of low specific gravity: pat. 6297291 US; pabl. 02.01.2001.
14. Peeters L. Low viscosity, high strength and fast curing //Adhesion, adhesives, sealants. 2013. №10(1). P. 14–17.
15. Silicone-acrylic copolymer: pat. 0012653 US; pabl. 04.02.14.
16. Kownacki I., Marciniec B., Steinberger H., Kubicki M., Hoffmann M., Ziarko A., Szubert K., Majchrzak M., Rubinsztajn S. Effect of triorganophosphites on platinum catalyzed curing of silicon rubber //Appl. Catalysis A. 2009. V. 362 (1–2). P. 106–114.
17. Addition-curable fluorosilicone rubber composition: pat. 2700677 EP; pabl. 26.02.14.
18. Gerlach E., Romanowski R., Jones B.A., Netto T.J. New technology to produce silicone sponge without chemical blowing agents or volatile organics /Proceedings of «Blowing agents and foaming processes» conference. 2004. P. 197–204.
19. High resilient silicone foam and process for preparing same: pat. 7393879 US; pabl. 01.07.2008.
20. Hydrosilation reaction utilizing a (cyclopentadiene)(sigma-aliphatic) platinum complex and a free radical photoinitiator: pat. 6376569 US; pabl. 23.04.2002.
21. Photoinitiators for hydrosilation of polysiloxanes; release agents: pat. 4510094 US; pabl. 09.04.1985.
22. Irradiation-curable silicone compositions, photo-active platinum (IV) compounds, and method: pat. 6150546 US; pabl. 21.11.2000.
23. Cyclopentadienylplatinum (iv) compounds having a trisubstituted-silyl aliphatic group attached to platinum by carbon-platinum linkages as hydrosilylation catalysts in irradiation-curable silicones: pat. 6127446 US; pabl. 03.10.2000.
34. Mayer T., Burget D., Mignani G., Fouassier J. P. Photohydrosilylation reaction of silicone polymers. Platinum-based photocatalysts: Trimethyl(β-dicarbonyl) platinum IV complexes //J. Polymer Sci. A. 1996. №34 (15). P. 3141–3146.
25. Wang F., Neckers D.C. Photoactivated hydrosilylation reaction of alkynes //Organomet J. Chem. 2003. №665 (1–2). P. 1–6.
26. Maciejewski H., Wawrzyńczak A., Dutkiewicz M., Fiedorow R. Silicone waxes–synthesis via hydrosilylation in homo- and heterogeneous systems //Molec J. Catalysis. 2006. №257 (1–2).
P. 141–148.
27. Brook A. Silicon in Organic, Organometallic, and Polymer Chemistry //Wiley. 2000. V. 123. №5. P. 403–405.
28. Ru sulfoxide complexes, their preparation and use: pat. 0098435 US; pabl. 28.04.2011.
29. Chauhan M., Hauck B.J., Keller L.P., Boudjouk P. Hydrosilylation of alkynes catalyzed by platinum on carbon //J. Organomet. Chem. 2002. №645 (1–2). P. 1–13.
30. Jiménez R., Martínez-Rosales J.M., Cervantes J. The activity of Pt/SiO2 catalysts obtained by the sol-gel method in the hydrosilylation of 1-alkynes //Canadian Journal of Chemistry. 2003. №81 (11). P. 1370–1375.
31. Alonso F., Buitrago R., Moglie Y., Ruiz-Martinez J., Sepulveda-Escribano A., Yus M. Hydrosilylation of alkynes catalysed by platinum on titania //J. Organomet. Chem. 2011. №696 (1).
P. 368–372.
32. Reddy C.B., Shil A.K., Guha N.R., Sharma D., Das P. Solid Supported Palladium(0) Nanoparticles: An Efficient Heterogeneous Catalyst for Regioselective Hydrosilylation of Alkynes and Suzuki Coupling of β-Arylvinyl Iodides //Catalysis Letters. 2014. №144 (9). P. 1530–1536.
33. High activity catalyst for hydrosilylation reactions and methods of making the same: pat. 0051357 US; pabl. 19.02.2015.
34. Activation of metal salts with silylhydrides and their use in hydrosilylation reactions: pat. 0343311 US; pabl. 20.11.2014.
35. Unsaturated ketones as accelerators for hydrosilation: pat. 5424470 US; pabl. 13.06.1995.
36. Acetylenic alcohols and ethers as accelerators for hydrosilation: pat. 5449802 US; pabl. 12.09.1995.
37. Aldehydes as accelerators for hydrosilation: pat. 5616763 US; pabl. 01.04.1997.
38. Addition-curable silicone rubber composition: pat. 6274658 US; pabl. 14.08.2001.
39. Method for maintaining catalytic activity during a hydrosilylation reaction: pat. 5359113 US; pabl. 25.10.1994.
40. Hydrosilylation of unsaturated organic compounds in presence of platinum-based catalyst involves adding organic per-acid e.g. peracetic acid, during the reaction to activate or reactivate the catalyst: pat. 10133008 DE; pabl. 27.06.2002.
41. Hydrosilylation process and polymers produced by the process: pat. 6303728 US; pabl. 16.10.2001.
42. Promoted hydrosilation reactions: pat. 6590117 US; pabl. 08.07.2003.
43. Process and composition for promoting hydrosilylation reactions using sterically hindered nitrogen-containing and phosphorus-containing compounds: pat. 5191103 US; pabl. 02.03.1993.
2. Savenkova A.V., Tihonova I.V., Trebukova E.D.. Teplomorozostojkie germetiki [Heatcold-resistant hermetics] /V sb.: Aviacionnye materialy na rubezhe ХХ–XXI vekov. M.: VIAM. 1994.
S. 432–439.
3. Petrova A.P., Donskoj A.A., Chalyh A.E., Shherbina A.A. Klejashhie materialy. Germetiki [Gluing materials. Hermetics]: Spravochnik. SPb.: NPO «Professional». 2008. 589 s.
4. Minakov V.T., Savenkova A.V., Donskoj A.A. Kremnijorganicheskie germetiki [Organic silicon hermetics]//Rossijskie polimernye novosti. 2003. V. 8. №4. S. 37–41.
5. Pohmer K., Steinberger H. Silicone rubbers: innovative – high performance – efficient //Organosilicon Chemistry IV. Wiley-VCH. 2000. P. 699–709.
6. Zhao M., Feng Y., Li G., Li Y., Wang Y., Han Y., Sun X., Tan X. Synthesis of an adhesion-enhancing polysiloxane containing epoxy groups for addition-cure silicone light emitting diodes encapsulant //Polym. Adv. Technol. 2014. №25 (9). P. 927–933.
7. Pan K., Zeng X., Li H., Lai X. Synthesis of Siloxanes Containing Vinyl and Epoxy Group and its Enhancement for Adhesion of Addition-Cure Silicone Encapsulant //J. Macromol. 2013. №50 (11). P. 1126–1132.
8. Polysiloxane blends has good adhesion to substrates, able release from molds; homo- or copolymers of polysiloxane, polysilsesquioxanes, or polysilicates; bonding to metallic, plastic and thermoplastic substrates: pat. 7288322 US; pabl. 30.10.2007.
9. Caseri W., Pregosin P.S. Hydrosilylation chemistry and catalysis with CiS–PtCl2(PhCH=CH2)2 //Organometallics. 1988. №7 (6). P. 1373–1380.
10. Addition curable self-adhesive silicone rubber composition: pat. 8937123 US; pabl. 20.01.2015.
11. Preparation of silicone rubber elastomers: pat. 8329831 US; pabl. 11.12.2012.
12. Silicone rubber composition with improved fluidity: pat. 5352724 US; pabl. 04.10.1994.
13. Liquid silicone rubber composition of low specific gravity: pat. 6297291 US; pabl. 02.01.2001.
14. Peeters L. Low viscosity, high strength and fast curing //Adhesion, adhesives, sealants. 2013. №10(1). P. 14–17.
15. Silicone-acrylic copolymer: pat. 0012653 US; pabl. 04.02.14.
16. Kownacki I., Marciniec B., Steinberger H., Kubicki M., Hoffmann M., Ziarko A., Szubert K., Majchrzak M., Rubinsztajn S. Effect of triorganophosphites on platinum catalyzed curing of silicon rubber //Appl. Catalysis A. 2009. V. 362 (1–2). P. 106–114.
17. Addition-curable fluorosilicone rubber composition: pat. 2700677 EP; pabl. 26.02.14.
18. Gerlach E., Romanowski R., Jones B.A., Netto T.J. New technology to produce silicone sponge without chemical blowing agents or volatile organics /Proceedings of «Blowing agents and foaming processes» conference. 2004. P. 197–204.
19. High resilient silicone foam and process for preparing same: pat. 7393879 US; pabl. 01.07.2008.
20. Hydrosilation reaction utilizing a (cyclopentadiene)(sigma-aliphatic) platinum complex and a free radical photoinitiator: pat. 6376569 US; pabl. 23.04.2002.
21. Photoinitiators for hydrosilation of polysiloxanes; release agents: pat. 4510094 US; pabl. 09.04.1985.
22. Irradiation-curable silicone compositions, photo-active platinum (IV) compounds, and method: pat. 6150546 US; pabl. 21.11.2000.
23. Cyclopentadienylplatinum (iv) compounds having a trisubstituted-silyl aliphatic group attached to platinum by carbon-platinum linkages as hydrosilylation catalysts in irradiation-curable silicones: pat. 6127446 US; pabl. 03.10.2000.
34. Mayer T., Burget D., Mignani G., Fouassier J. P. Photohydrosilylation reaction of silicone polymers. Platinum-based photocatalysts: Trimethyl(β-dicarbonyl) platinum IV complexes //J. Polymer Sci. A. 1996. №34 (15). P. 3141–3146.
25. Wang F., Neckers D.C. Photoactivated hydrosilylation reaction of alkynes //Organomet J. Chem. 2003. №665 (1–2). P. 1–6.
26. Maciejewski H., Wawrzyńczak A., Dutkiewicz M., Fiedorow R. Silicone waxes–synthesis via hydrosilylation in homo- and heterogeneous systems //Molec J. Catalysis. 2006. №257 (1–2).
P. 141–148.
27. Brook A. Silicon in Organic, Organometallic, and Polymer Chemistry //Wiley. 2000. V. 123. №5. P. 403–405.
28. Ru sulfoxide complexes, their preparation and use: pat. 0098435 US; pabl. 28.04.2011.
29. Chauhan M., Hauck B.J., Keller L.P., Boudjouk P. Hydrosilylation of alkynes catalyzed by platinum on carbon //J. Organomet. Chem. 2002. №645 (1–2). P. 1–13.
30. Jiménez R., Martínez-Rosales J.M., Cervantes J. The activity of Pt/SiO2 catalysts obtained by the sol-gel method in the hydrosilylation of 1-alkynes //Canadian Journal of Chemistry. 2003. №81 (11). P. 1370–1375.
31. Alonso F., Buitrago R., Moglie Y., Ruiz-Martinez J., Sepulveda-Escribano A., Yus M. Hydrosilylation of alkynes catalysed by platinum on titania //J. Organomet. Chem. 2011. №696 (1).
P. 368–372.
32. Reddy C.B., Shil A.K., Guha N.R., Sharma D., Das P. Solid Supported Palladium(0) Nanoparticles: An Efficient Heterogeneous Catalyst for Regioselective Hydrosilylation of Alkynes and Suzuki Coupling of β-Arylvinyl Iodides //Catalysis Letters. 2014. №144 (9). P. 1530–1536.
33. High activity catalyst for hydrosilylation reactions and methods of making the same: pat. 0051357 US; pabl. 19.02.2015.
34. Activation of metal salts with silylhydrides and their use in hydrosilylation reactions: pat. 0343311 US; pabl. 20.11.2014.
35. Unsaturated ketones as accelerators for hydrosilation: pat. 5424470 US; pabl. 13.06.1995.
36. Acetylenic alcohols and ethers as accelerators for hydrosilation: pat. 5449802 US; pabl. 12.09.1995.
37. Aldehydes as accelerators for hydrosilation: pat. 5616763 US; pabl. 01.04.1997.
38. Addition-curable silicone rubber composition: pat. 6274658 US; pabl. 14.08.2001.
39. Method for maintaining catalytic activity during a hydrosilylation reaction: pat. 5359113 US; pabl. 25.10.1994.
40. Hydrosilylation of unsaturated organic compounds in presence of platinum-based catalyst involves adding organic per-acid e.g. peracetic acid, during the reaction to activate or reactivate the catalyst: pat. 10133008 DE; pabl. 27.06.2002.
41. Hydrosilylation process and polymers produced by the process: pat. 6303728 US; pabl. 16.10.2001.
42. Promoted hydrosilation reactions: pat. 6590117 US; pabl. 08.07.2003.
43. Process and composition for promoting hydrosilylation reactions using sterically hindered nitrogen-containing and phosphorus-containing compounds: pat. 5191103 US; pabl. 02.03.1993.