Articles

1.
category: Structural metallic materials
УДК 629.1.032.1
Operational destructions of elements of running systems of caterpillar transport systems
Factors defining conditions of destruction of elements of running gear of tracked vehicles of easy category on weight are considered and the bases for offers on optimization of configuration of elements of link of torak and the balance weight which will allow will be raised by reliability of links without further increase in weight.
Keywords: running gear, torak, balance weight, destruction, tension, tension.
Reference List
нет
2.
category: Protection against climatic and microbiological degradations
УДК 621.793.1
The analysis and forecasting of operational damages of coverings of TiN at influence of climatic factors and corrosion and active environments
Effect of vacuum ion plasma coating parameters on part operation abilities was studied. Comparative analysis showed an insufficiency of coating perfection factors specified by drawing technical requirements and parameters and parameters required to provide parts operation abilities. Studies Quality specifications of TiN coated parts working under influence of climatic factors and corrosion-active media were developed. The necessity of standard preparation re-gulating coating perfection factors was established.
Keywords: surface roughness, coating thickness, microhardness.
Reference List
1. Budilov V.V., Kireev R.M., Shehtman S.R. Tehnologija vakuumnoj ionno-plazmennoj obrabotki [Technology of vacuum ion-plasma processing]. M.: MAI. 2007. 155 s.
2. Il'in A.A., Spektor V.S., Petrov L.M. Kompleksnaja sistema obespechenija rabotosposobnosti izdelij iz titanovyh splavov pri ionno-vakuumnoj obrabotke [Complex system of ensuring operability of products from titanium alloys at ion-vacuum processing] //Aviacionnaja promyshlennost'. 2005. №2. S. 27–32.
3. Suslov A.G., Fedorov V.P., Gorlenko O.A. i dr. Tehnologicheskoe obespechenie i povyshenie jekspluatacionnyh svojstv detalej i ih soedinenij [Technological support and increase of operational properties of details and their connections]. M.: Mashinostroenie. 2006. 448 s.
4. Budilov V.V., Ivanov V.Ju., Muhin V.S. Integrirovannye vakuumnye ionno-plazmennye tehnologii obrabotki detalej gazoturbinnyh dvigatelej. Fizicheskie osnovy, modelirovanie i proektirovanie [The integrated vacuum ion-plasma technologies of processing of details of gas turbine engines. Physical bases, modeling and design]. Ufa: Gilem. 2004. 216 s.
5. Barvinok V.A., Bogdanovich V.I. Fizicheskie osnovy i matematicheskoe modelirovanie processov vakuumnogo ionno-plazmennogo napylenija [Physical bases and mathematical modeling of processes of vacuum ion-plasma dusting]. M.: Mashinostroenie. 1999. 309 s.
6. Zenin B.S., Ovechkin B.B. Sovremennye tehnologii modificirovanija poverhnosti i nanesenija pokrytij [Modern technologies of modifying of surface and drawing coverings]. Tomsk. 2008. 75 s.
7. Tehnologicheskie rekomendacii «Nanesenie nitridov titana i cirkonija metodom kondensacii s ionnoj bombardirovkoj na detali GTD iz stalej 13H11N2V2MF-Sh, 12H18N9T, 38HA i splavov VT18U, VT9, VT3-1» [Technological recommendations «Putting titanium nitrides and zirconium condensation method with ionic bombing on GTD detail from staly 13kh11n2v2mf-Sh, 12Х18Н9Т, 38ХА and alloys ВТ18У, BT9, BT3-1»]. Ufa: UMPO–UAI. 1992.
8. Mubojadzhjan S.A., Kablov E.N., Budinovskij S.A., Pomelov Ja.A. Nanesenie zashhitnyh pokrytij na detali ionno-plazmennym metodom [Drawing protecting covers on detail ion-plasma method] //Aviacionnaja promyshlennost' 1997. №3–4. S. 65–70.
9. Vasil'ev V.V., Luchaninov A.A., Reshetnjak E.N., Strel'nickij V.E., Tolmacheva G.N. Reshetnjak M.V. Strukturam i tverdost' Ti–N- i Ti–Si–N-pokrytij, osazhdennyh iz fil'trovannoj vakuumno-dugovoj plazmy [To structures and Ti–N-and Ti hardness – Si – the N-coverings besieged from filtered vacuum and arc plasma] //Voprosy atomnoj nauki i tehniki. 2009. №2. S. 173–180.
10. Matjunin V.M. Opredelenie mehanicheskih svojstv i adgezionnoj prochnosti ion-no-plazmennyh pokrytij sklerometricheskim metodom [Determination of mechanical properties and adhesive durability of ion-plasma coverings sclerometric method] //MiTOM. 2002. №3. S. 36–38.
11. Mihajlova E.A. Osobennosti nanesenija vakuumnyh ionno-plazmennyh pokrytij na vnutrennie poverhnosti izdelij mashinostroenija [Features of drawing vacuum ion-plasma coverings on inner surfaces of products of mechanical engineering] //Uprochnjajushhie tehnologii i pokrytija. 2006. №4. S. 32–35.
2. Il'in A.A., Spektor V.S., Petrov L.M. Kompleksnaja sistema obespechenija rabotosposobnosti izdelij iz titanovyh splavov pri ionno-vakuumnoj obrabotke [Complex system of ensuring operability of products from titanium alloys at ion-vacuum processing] //Aviacionnaja promyshlennost'. 2005. №2. S. 27–32.
3. Suslov A.G., Fedorov V.P., Gorlenko O.A. i dr. Tehnologicheskoe obespechenie i povyshenie jekspluatacionnyh svojstv detalej i ih soedinenij [Technological support and increase of operational properties of details and their connections]. M.: Mashinostroenie. 2006. 448 s.
4. Budilov V.V., Ivanov V.Ju., Muhin V.S. Integrirovannye vakuumnye ionno-plazmennye tehnologii obrabotki detalej gazoturbinnyh dvigatelej. Fizicheskie osnovy, modelirovanie i proektirovanie [The integrated vacuum ion-plasma technologies of processing of details of gas turbine engines. Physical bases, modeling and design]. Ufa: Gilem. 2004. 216 s.
5. Barvinok V.A., Bogdanovich V.I. Fizicheskie osnovy i matematicheskoe modelirovanie processov vakuumnogo ionno-plazmennogo napylenija [Physical bases and mathematical modeling of processes of vacuum ion-plasma dusting]. M.: Mashinostroenie. 1999. 309 s.
6. Zenin B.S., Ovechkin B.B. Sovremennye tehnologii modificirovanija poverhnosti i nanesenija pokrytij [Modern technologies of modifying of surface and drawing coverings]. Tomsk. 2008. 75 s.
7. Tehnologicheskie rekomendacii «Nanesenie nitridov titana i cirkonija metodom kondensacii s ionnoj bombardirovkoj na detali GTD iz stalej 13H11N2V2MF-Sh, 12H18N9T, 38HA i splavov VT18U, VT9, VT3-1» [Technological recommendations «Putting titanium nitrides and zirconium condensation method with ionic bombing on GTD detail from staly 13kh11n2v2mf-Sh, 12Х18Н9Т, 38ХА and alloys ВТ18У, BT9, BT3-1»]. Ufa: UMPO–UAI. 1992.
8. Mubojadzhjan S.A., Kablov E.N., Budinovskij S.A., Pomelov Ja.A. Nanesenie zashhitnyh pokrytij na detali ionno-plazmennym metodom [Drawing protecting covers on detail ion-plasma method] //Aviacionnaja promyshlennost' 1997. №3–4. S. 65–70.
9. Vasil'ev V.V., Luchaninov A.A., Reshetnjak E.N., Strel'nickij V.E., Tolmacheva G.N. Reshetnjak M.V. Strukturam i tverdost' Ti–N- i Ti–Si–N-pokrytij, osazhdennyh iz fil'trovannoj vakuumno-dugovoj plazmy [To structures and Ti–N-and Ti hardness – Si – the N-coverings besieged from filtered vacuum and arc plasma] //Voprosy atomnoj nauki i tehniki. 2009. №2. S. 173–180.
10. Matjunin V.M. Opredelenie mehanicheskih svojstv i adgezionnoj prochnosti ion-no-plazmennyh pokrytij sklerometricheskim metodom [Determination of mechanical properties and adhesive durability of ion-plasma coverings sclerometric method] //MiTOM. 2002. №3. S. 36–38.
11. Mihajlova E.A. Osobennosti nanesenija vakuumnyh ionno-plazmennyh pokrytij na vnutrennie poverhnosti izdelij mashinostroenija [Features of drawing vacuum ion-plasma coverings on inner surfaces of products of mechanical engineering] //Uprochnjajushhie tehnologii i pokrytija. 2006. №4. S. 32–35.
3.
category: Testing of materials and structures
УДК 620.179.18:620.172.2
Express mechanical characteristics control of aluminum alloys and their welds
A new method of aluminum alloys and their welded joints mechanical properties determination is developed. The method is based on the instrumented indentation test with the registration of “load – displacement” curve during loading and unloading. This method allows to evaluate the yield stress, ultimate stress and ultimate uniform elongation of metal in local zones of welded joints as well as to find the weakest area in the joint. The experimental approbation of the proposed method on hardenable and non-hardenable aluminum alloys was realized.
Keywords: aluminum alloys, mechanical characteristics, indentation diagrams.
Reference List
1. Markovec M.P. Opredelenie mehanicheskih svojstv metallov po tverdosti [Determination of mechanical properties of metals on hardness]. M.: Mashinostroenie. 1979. 191 s.
2. Matjunin V.M. Operativnaja diagnostika mehanicheskih svojstv konstrukcionnyh materialov [Operational diagnostics of mechanical properties of constructional materials]. M.: Izdatel'skij dom MJeI. 2006. 216 s.
3. Sposob opredelenija mehanicheskih harakteristik materialov [Way of definition of mechanical characteristics of materials]: pat. 2451282 Ros. Federacija; zajavl. 26.10.10; opubl. 20.05.12.
4. ISO 14577-1:2002 «Metallic materials – Instrumented indentation test for hardness and materials parameters – Part 1: Test method».
5. Fedosov S.A., Peshek L. Opredelenie mehanicheskih svojstv materialov mikroindentirovaniem [Determination of mechanical properties of materials by microindenting]. M.: MGU im. M.V. Lomonosova. 2004. 98 s.
6. Matyunin V.M., Dubov A.A., Marchenkov A.Yu. Regularities in the manifestation of the scale factor during determination of the strength and hardness of a metal //Inorganic materials. 2011. V. 47. №15. P. 78–83.
7. Matjunin V.M. Razmernyj jeffekt i ego vlijanie na mehanicheskie svojstva materialov [Size effect and its influence on mechanical properties of materials] //Zavodskaja laboratorija. Diagnostika materialov. 2012. №2. S. 64–68.
8. Golovin Ju.I. Nanoindentirovanie i ego vozmozhnosti [Nanoindenting and its opportunities]. M.: Mashinostroenie. 2009. 312 s.
2. Matjunin V.M. Operativnaja diagnostika mehanicheskih svojstv konstrukcionnyh materialov [Operational diagnostics of mechanical properties of constructional materials]. M.: Izdatel'skij dom MJeI. 2006. 216 s.
3. Sposob opredelenija mehanicheskih harakteristik materialov [Way of definition of mechanical characteristics of materials]: pat. 2451282 Ros. Federacija; zajavl. 26.10.10; opubl. 20.05.12.
4. ISO 14577-1:2002 «Metallic materials – Instrumented indentation test for hardness and materials parameters – Part 1: Test method».
5. Fedosov S.A., Peshek L. Opredelenie mehanicheskih svojstv materialov mikroindentirovaniem [Determination of mechanical properties of materials by microindenting]. M.: MGU im. M.V. Lomonosova. 2004. 98 s.
6. Matyunin V.M., Dubov A.A., Marchenkov A.Yu. Regularities in the manifestation of the scale factor during determination of the strength and hardness of a metal //Inorganic materials. 2011. V. 47. №15. P. 78–83.
7. Matjunin V.M. Razmernyj jeffekt i ego vlijanie na mehanicheskie svojstva materialov [Size effect and its influence on mechanical properties of materials] //Zavodskaja laboratorija. Diagnostika materialov. 2012. №2. S. 64–68.
8. Golovin Ju.I. Nanoindentirovanie i ego vozmozhnosti [Nanoindenting and its opportunities]. M.: Mashinostroenie. 2009. 312 s.
4.
category: Testing of materials and structures
УДК 621.45:629.76:620.49.
Features of growth of cracks in the pipeline unloadings of the booster pump of fuel ZhRD
It is shown that the fracture of pipelines occur on the fatigue mechanism. Finite element method of calculation of the SDC (stress deformation condition) pipeline under the influence of internal pressure was used. The mechanism of crack growth, and it is shown that the main cause of the fracture were of the dynamic stresses are high-level, dependent of the internal pressure and the size of oval tube bends in the pipeline. It was found that the conduit having a bend in the pipe ovality of not more than 0,4 mm has a grate resource when CT (control tests), of not less than 3600 s.
Keywords: pipeline, ovality of pipeline, fatigue cracks, pressure impulses, cavitations wear.
Reference List
. Logocheva E.V., Poljanskij A.M., Poljanskij V.M., Sarafaslanjan H.B. O povyshenii ustalostnoj prochnosti truboprovodov ZhRD [About increase of fatigue resistance of ZhRD pipelines] /Trudy NPO Jenergomash. 2011. №28. S. 70–78.
2. Kishkina S.I. Soprotivlenie razrusheniju aljuminievyh splavov [Failure resistance of aluminum alloys]. M.: Metallurgija. 1981. 280 s.
3. Spravochnik po kojefficientam intensivnosti naprjazhenij [Directory on factors of intensity of tension] /Pod red. Ju. Murakami. T. 2. M.: Mir. 1990. S. 554–560.
2. Kishkina S.I. Soprotivlenie razrusheniju aljuminievyh splavov [Failure resistance of aluminum alloys]. M.: Metallurgija. 1981. 280 s.
3. Spravochnik po kojefficientam intensivnosti naprjazhenij [Directory on factors of intensity of tension] /Pod red. Ju. Murakami. T. 2. M.: Mir. 1990. S. 554–560.
5.
category: Testing of materials and structures
УДК 621.787:539.319
The computing-experimental method of surface hardened
parts endurance limit prediction
The possibility of cylindrical specimens made of steel 30ХГСА and D16-T alloy with circular cuts of 0,3 mm radius endurance limit prediction after outstripping superficial plastic deforming (hydro shot blasting) by the residual stresses (initial deformations) of reference specimens (bushes of 51,5/45 mm/mm diameter) hardened simultaneously with the smooth specimens has been examined using the computing-experimental method carried out by the authors. The difference between the compressive residual stresses calculated for the cut specimens by the initial deformations of reference specimens and the experimentally found ones doesn’t exceed 6%. Hardened specimens with the cuts endurance limit increases have been calculated using the average integral residual stresses criterion. It’s established that the values of the cut specimens endurance limit increase under bending in the case of symmetric cycle calculated using the carried out computing-experimental method differ from the experimental
Keywords: surface hardening, endurance limit, reference specimen, initial deformations.
Reference List
1. Pavlov V.F. O svjazi ostatochnyh naprjazhenij i predela vynoslivosti pri izgibe v uslovijah koncentracii naprjazhenij [About communication of residual stresses and endurance limit at bend in the conditions of concentration of tension] //Izvestija vuzov. Ser. Mashinostroenie. 1986. №8. S. 29–32.
2. Pavlov V.F. Vlijanie na predel vynoslivosti velichiny i raspredelenija ostatochnyh naprjazhenij v poverhnostnom sloe detali s koncentratorom. Soobshhenie I. Sploshnye detali [Influence on limit of endurance of size and distribution of residual stresses in detail surface layer with the concentrator. Message of I. Continuous details] //Izvestija vuzov. Ser. Mashinostroenie. 1988. №8. S. 22–26.
3. Pavlov V.F. Vlijanie na predel vynoslivosti velichiny i raspredelenija ostatochnyh naprjazhenij v poverhnostnom sloe detali s koncentratorom. Soobshhenie II. Polye detali [Influence on limit of endurance of size and distribution of residual stresses in detail surface layer with the concentrator. Message of II. Hollow parts] //Izvestija vuzov. Ser. Mashinostroenie. 1988. №12. S. 37–40.
4. Ivanov S.I., Pavlov V.F., Konovalov G.V., Minin B.V. Tehnologicheskie ostatochnye naprjazhenija i soprotivlenie ustalosti aviacionnyh rez'bovyh detalej [Technological residual stresses and resistance of fatigue of aviation threaded details]. M.: MAP. 1992. 192 s. (Ser. Otraslevaja biblioteka «Tehnicheskij progress i povyshenie kvalifikacii»).
5. Radchenko V.P., Afanas'eva O.S. Metodika rascheta predela vynoslivosti uprochnennyh cilindricheskih obrazcov s koncentratorami naprjazhenij pri temperaturnyh vyderzhkah v uslovijah polzuchesti [Method of calculation of limit of endurance of the strengthened cylindrical samples with concentrators of tension at temperature excerpts in the conditions of creep] //Vestnik SamGTU. Ser. Fiz.-mat. nauki. 2009. №2 (19). S. 264–268.
6. Pavlov V.F., Kirpichev V.A., Vakuljuk V.S. Prognozirovanie soprotivlenija ustalosti poverhnostno uprochnennyh detalej po ostatochnym naprjazhenijam [Forecasting of resistance of fatigue of superficially strengthened details on residual stresses]. Samara: Izd-vo SNC RAN. 2012. 125 s.
7. Vakuljuk V.S. Soprotivlenie ustalosti detali v zavisimosti ot tolshhiny uprochnennogo sloja pri operezhajushhem poverhnostnom plasticheskom deformirovanii [Resistance of fatigue of detail depending on thickness of the strengthened layer at advancing surface plastic deformation] //Vestnik SGAU. 2012. №3(34). S. 172–176.
8. Kirpichev V.A., Saushkin M.N., Sazanov V.P., Semenova O.Ju. Ostatochnye naprjazhenija i soprotivlenie ustalosti obrazcov s V-obraznymi nadrezami iz stali VNS40 Ch. 1 [Residual stresses and resistance of fatigue of samples with V-shaped cuts from BHC40 steel P.1] //Vestnik SGAU. 2012. №5 (36). S. 95–99.
9. Serensen S.V., Borisov S.P., Borodin N.A. K voprosu ob ocenke soprotivlenija ustalosti poverhnostno uprochnennyh obrazcov s uchetom kinetiki ostatochnoj naprjazhennosti [To question of assessment of resistance of fatigue of superficially strengthened samples taking into account kinetics of residual strength] //Problemy prochnosti. 1969. №2. S. 3–7.
10. Turovskij M.L., Shifrin N.M. Koncentracija naprjazhenij v poverhnostnom sloe cementirovannoj stali [Concentration of tension in cemented steel surface layer] //Vestnik mashinostroenija. 1970. №11. S. 37–40.
11. Ivanov S.I., Pavlov V.F. Vlijanie ostatochnyh naprjazhenij i naklepa na ustalostnuju prochnost' [Influence of residual stresses and peening on fatigue resistance] //Problemy prochnosti. 1976. №5. S. 25–27.
12. Ivanov S.I., Pavlov V.F., Prohorov A.A. Vlijanie ostatochnyh naprjazhenij na soprotivlenie ustalosti pri kruchenii v uslovijah koncentracii naprjazhenij [Influence of residual stresses on fatigue resistance at torsion in the conditions of concentration of tension] //Problemy prochnosti. 1988. №5. S. 31–33.
13. Pavlov V.F., Prohorov A.A. Svjaz' ostatochnyh naprjazhenij i predela vynoslivosti pri kruchenii v uslovijah koncentracii naprjazhenij [Communication of residual stresses and endurance limit at torsion in the conditions of concentration of tension] //Problemy prochnosti. 1991. №5. S. 43–46.
14. Kirpichev V.A., Bukatyj A.S., Chirkov A.V. Prognozirovanie soprotivlenija ustalosti poverhnostno uprochnennyh gladkih detalej [Forecasting of resistance of fatigue of superficially strengthened smooth details] //Izvestija vuzov. Povolzhskij region. Tehnicheskie nauki. 2012. №3 (23). S. 102–107.
15. Ivanov S.I. K opredeleniju ostatochnyh naprjazhenij v cilindre metodom kolec i polosok [To determination of residual stresses in the cylinder method of rings and strips] //Ostatochnye naprjazhenija. Kujbyshev: KuAI. 1971. Vyp. 53. S. 32–42.
16. Birger I.A. Ostatochnye naprjazhenija [Residual stresses]. M.: Mashgiz. 1963. 232 s.
17. Struzhanov V.V. Ob ostatochnyh naprjazhenijah posle prokatki i rassloenii dvuhslojnyh polos [About residual stresses after rolling and stratification of two-layer strips] //Vestnik SamGTU. Ser. Fiz.-mat. nauki. 2010. №5 (21). S. 55–63.
18. Sazanov V.P., Chirkov A.V., Samojlov V.A., Larionova Ju.S. Modelirovanie pereraspredelenija ostatochnyh naprjazhenij v uprochnennyh cilindricheskih obrazcah pri operezhajushhem poverhnostnom plasticheskom deformirovanii Р. 3 [Modeling of redistribution of residual stresses in the strengthened cylindrical samples at advancing surface plastic deformation of H. 3] //Vestnik SGAU. 2011. №3 (27). S. 171–174.
19. Pavlov V.F., Stoljarov A.K., Vakuljuk V.S., Kirpichev V.A. Raschet ostatochnyh naprjazhenij v detaljah s koncentratorami naprjazhenij po pervonachal'nym deformacijam [Calculation of residual stresses in details with concentrators of tension on initial deformations]. Samara: Izd-vo SNC RAN. 2008. 124 s.
20. Vakuljuk V.S. Issledovanie vlijanija tolshhiny uprochnennogo sloja na ostatochnye naprjazhenija vo vpadine koncentratora metodom pervonachal'nyh deformacij [Research of influence of thickness of the strengthened layer on residual stresses in concentrator hollow method of initial deformations] //Vestnik SamGTU. Ser. Fiz.-mat. nauki. 2010. №1 (20). S. 222–225.
21. Saushkin M.N., Radchenko V.P., Pavlov V.F. Metod rascheta polej ostatochnyh naprjazhenij i plasticheskih deformacij v cilindricheskih obrazcah s uchetom anizotropii poverhnostnogo uprochnenija [Method of calculation of fields of residual stresses and plastic strains in cylindrical samples taking into account anisotropy of surface strengthening] //Prikladnaja mehanika i tehnicheskaja fizika. 2011. T. 52. №2. S. 173–182.
22. Ivanov S.I., Shatunov M.P., Pavlov V.F. Vlijanie ostatochnyh naprjazhenij na vynoslivost' obrazcov s nadrezom [Influence of residual stresses on endurance of samples with cut] /V kn. Voprosy prochnosti jelementov aviacionnyh konstrukcij: Mezhvuzov. sb. Vyp. 3. Kujbyshev: KuAI. 1974. S. 88–95.
23. Sazanov V.P. Issledovanie raspredelenija komponentov ostatochnogo naprjazhennogo sostojanija v oblasti naimen'shego sechenija poverhnostno uprochnennoj detali s kol'cevym nadrezom metodom konechno-jelementnogo modelirovanija [Research of distribution of components of residual tension in the field of the smallest section of superficially strengthened detail with ring cut method of final and element modeling] //Vestnik SGAU. 2012. №3 (34). S. 158–161.
24. Sazanov V.P., Chirkov A.V., Semenova O.Ju., Ivanova A.V. Modelirovanie ostatochnogo naprjazhennogo sostojanija detali v uslovijah koncentracii naprjazhenij s ispol'zovaniem programmnogo kompleksa PATRAN/NASTRAN [Modeling of residual tension of detail in the conditions of concentration of tension with use of the program PATRAN/NASTRAN complex] //Vestnik SamGTU. Ser. Tehnich. nauki. 2012. №1 (33). S. 106–114.
25. Kirpichev V.A., Bukatyj A.S., Filatov A.P., Chirkov A.V. Prognozirovanie predela vynoslivosti poverhnostno uprochnennyh detalej pri razlichnoj stepeni koncentracii naprjazhenij [Forecasting of limit of endurance of superficially strengthened details at different degree of concentration of tension] //Vestnik UGATU. 2011. T. 15. №4 (44). S. 81–85.
26. Peterson R.E. Kojefficienty koncentracii naprjazhenij [Factors of concentration of tension]. M.: Mir. 1977. 304 s.
2. Pavlov V.F. Vlijanie na predel vynoslivosti velichiny i raspredelenija ostatochnyh naprjazhenij v poverhnostnom sloe detali s koncentratorom. Soobshhenie I. Sploshnye detali [Influence on limit of endurance of size and distribution of residual stresses in detail surface layer with the concentrator. Message of I. Continuous details] //Izvestija vuzov. Ser. Mashinostroenie. 1988. №8. S. 22–26.
3. Pavlov V.F. Vlijanie na predel vynoslivosti velichiny i raspredelenija ostatochnyh naprjazhenij v poverhnostnom sloe detali s koncentratorom. Soobshhenie II. Polye detali [Influence on limit of endurance of size and distribution of residual stresses in detail surface layer with the concentrator. Message of II. Hollow parts] //Izvestija vuzov. Ser. Mashinostroenie. 1988. №12. S. 37–40.
4. Ivanov S.I., Pavlov V.F., Konovalov G.V., Minin B.V. Tehnologicheskie ostatochnye naprjazhenija i soprotivlenie ustalosti aviacionnyh rez'bovyh detalej [Technological residual stresses and resistance of fatigue of aviation threaded details]. M.: MAP. 1992. 192 s. (Ser. Otraslevaja biblioteka «Tehnicheskij progress i povyshenie kvalifikacii»).
5. Radchenko V.P., Afanas'eva O.S. Metodika rascheta predela vynoslivosti uprochnennyh cilindricheskih obrazcov s koncentratorami naprjazhenij pri temperaturnyh vyderzhkah v uslovijah polzuchesti [Method of calculation of limit of endurance of the strengthened cylindrical samples with concentrators of tension at temperature excerpts in the conditions of creep] //Vestnik SamGTU. Ser. Fiz.-mat. nauki. 2009. №2 (19). S. 264–268.
6. Pavlov V.F., Kirpichev V.A., Vakuljuk V.S. Prognozirovanie soprotivlenija ustalosti poverhnostno uprochnennyh detalej po ostatochnym naprjazhenijam [Forecasting of resistance of fatigue of superficially strengthened details on residual stresses]. Samara: Izd-vo SNC RAN. 2012. 125 s.
7. Vakuljuk V.S. Soprotivlenie ustalosti detali v zavisimosti ot tolshhiny uprochnennogo sloja pri operezhajushhem poverhnostnom plasticheskom deformirovanii [Resistance of fatigue of detail depending on thickness of the strengthened layer at advancing surface plastic deformation] //Vestnik SGAU. 2012. №3(34). S. 172–176.
8. Kirpichev V.A., Saushkin M.N., Sazanov V.P., Semenova O.Ju. Ostatochnye naprjazhenija i soprotivlenie ustalosti obrazcov s V-obraznymi nadrezami iz stali VNS40 Ch. 1 [Residual stresses and resistance of fatigue of samples with V-shaped cuts from BHC40 steel P.1] //Vestnik SGAU. 2012. №5 (36). S. 95–99.
9. Serensen S.V., Borisov S.P., Borodin N.A. K voprosu ob ocenke soprotivlenija ustalosti poverhnostno uprochnennyh obrazcov s uchetom kinetiki ostatochnoj naprjazhennosti [To question of assessment of resistance of fatigue of superficially strengthened samples taking into account kinetics of residual strength] //Problemy prochnosti. 1969. №2. S. 3–7.
10. Turovskij M.L., Shifrin N.M. Koncentracija naprjazhenij v poverhnostnom sloe cementirovannoj stali [Concentration of tension in cemented steel surface layer] //Vestnik mashinostroenija. 1970. №11. S. 37–40.
11. Ivanov S.I., Pavlov V.F. Vlijanie ostatochnyh naprjazhenij i naklepa na ustalostnuju prochnost' [Influence of residual stresses and peening on fatigue resistance] //Problemy prochnosti. 1976. №5. S. 25–27.
12. Ivanov S.I., Pavlov V.F., Prohorov A.A. Vlijanie ostatochnyh naprjazhenij na soprotivlenie ustalosti pri kruchenii v uslovijah koncentracii naprjazhenij [Influence of residual stresses on fatigue resistance at torsion in the conditions of concentration of tension] //Problemy prochnosti. 1988. №5. S. 31–33.
13. Pavlov V.F., Prohorov A.A. Svjaz' ostatochnyh naprjazhenij i predela vynoslivosti pri kruchenii v uslovijah koncentracii naprjazhenij [Communication of residual stresses and endurance limit at torsion in the conditions of concentration of tension] //Problemy prochnosti. 1991. №5. S. 43–46.
14. Kirpichev V.A., Bukatyj A.S., Chirkov A.V. Prognozirovanie soprotivlenija ustalosti poverhnostno uprochnennyh gladkih detalej [Forecasting of resistance of fatigue of superficially strengthened smooth details] //Izvestija vuzov. Povolzhskij region. Tehnicheskie nauki. 2012. №3 (23). S. 102–107.
15. Ivanov S.I. K opredeleniju ostatochnyh naprjazhenij v cilindre metodom kolec i polosok [To determination of residual stresses in the cylinder method of rings and strips] //Ostatochnye naprjazhenija. Kujbyshev: KuAI. 1971. Vyp. 53. S. 32–42.
16. Birger I.A. Ostatochnye naprjazhenija [Residual stresses]. M.: Mashgiz. 1963. 232 s.
17. Struzhanov V.V. Ob ostatochnyh naprjazhenijah posle prokatki i rassloenii dvuhslojnyh polos [About residual stresses after rolling and stratification of two-layer strips] //Vestnik SamGTU. Ser. Fiz.-mat. nauki. 2010. №5 (21). S. 55–63.
18. Sazanov V.P., Chirkov A.V., Samojlov V.A., Larionova Ju.S. Modelirovanie pereraspredelenija ostatochnyh naprjazhenij v uprochnennyh cilindricheskih obrazcah pri operezhajushhem poverhnostnom plasticheskom deformirovanii Р. 3 [Modeling of redistribution of residual stresses in the strengthened cylindrical samples at advancing surface plastic deformation of H. 3] //Vestnik SGAU. 2011. №3 (27). S. 171–174.
19. Pavlov V.F., Stoljarov A.K., Vakuljuk V.S., Kirpichev V.A. Raschet ostatochnyh naprjazhenij v detaljah s koncentratorami naprjazhenij po pervonachal'nym deformacijam [Calculation of residual stresses in details with concentrators of tension on initial deformations]. Samara: Izd-vo SNC RAN. 2008. 124 s.
20. Vakuljuk V.S. Issledovanie vlijanija tolshhiny uprochnennogo sloja na ostatochnye naprjazhenija vo vpadine koncentratora metodom pervonachal'nyh deformacij [Research of influence of thickness of the strengthened layer on residual stresses in concentrator hollow method of initial deformations] //Vestnik SamGTU. Ser. Fiz.-mat. nauki. 2010. №1 (20). S. 222–225.
21. Saushkin M.N., Radchenko V.P., Pavlov V.F. Metod rascheta polej ostatochnyh naprjazhenij i plasticheskih deformacij v cilindricheskih obrazcah s uchetom anizotropii poverhnostnogo uprochnenija [Method of calculation of fields of residual stresses and plastic strains in cylindrical samples taking into account anisotropy of surface strengthening] //Prikladnaja mehanika i tehnicheskaja fizika. 2011. T. 52. №2. S. 173–182.
22. Ivanov S.I., Shatunov M.P., Pavlov V.F. Vlijanie ostatochnyh naprjazhenij na vynoslivost' obrazcov s nadrezom [Influence of residual stresses on endurance of samples with cut] /V kn. Voprosy prochnosti jelementov aviacionnyh konstrukcij: Mezhvuzov. sb. Vyp. 3. Kujbyshev: KuAI. 1974. S. 88–95.
23. Sazanov V.P. Issledovanie raspredelenija komponentov ostatochnogo naprjazhennogo sostojanija v oblasti naimen'shego sechenija poverhnostno uprochnennoj detali s kol'cevym nadrezom metodom konechno-jelementnogo modelirovanija [Research of distribution of components of residual tension in the field of the smallest section of superficially strengthened detail with ring cut method of final and element modeling] //Vestnik SGAU. 2012. №3 (34). S. 158–161.
24. Sazanov V.P., Chirkov A.V., Semenova O.Ju., Ivanova A.V. Modelirovanie ostatochnogo naprjazhennogo sostojanija detali v uslovijah koncentracii naprjazhenij s ispol'zovaniem programmnogo kompleksa PATRAN/NASTRAN [Modeling of residual tension of detail in the conditions of concentration of tension with use of the program PATRAN/NASTRAN complex] //Vestnik SamGTU. Ser. Tehnich. nauki. 2012. №1 (33). S. 106–114.
25. Kirpichev V.A., Bukatyj A.S., Filatov A.P., Chirkov A.V. Prognozirovanie predela vynoslivosti poverhnostno uprochnennyh detalej pri razlichnoj stepeni koncentracii naprjazhenij [Forecasting of limit of endurance of superficially strengthened details at different degree of concentration of tension] //Vestnik UGATU. 2011. T. 15. №4 (44). S. 81–85.
26. Peterson R.E. Kojefficienty koncentracii naprjazhenij [Factors of concentration of tension]. M.: Mir. 1977. 304 s.
6.
category: Structural metallic materials
УДК 539.3
BRAKING OF SMALL CRACKS BY OVERLOADS IN STEELS
WITH DIFFERENT STRUCTURE AT CYCLIC LOADINGS
The influence of congestion on the propagation of small fatigue cracks in steels with different structural state and mechanical properties.
Keywords: structural damage, fatigue cracks, overload.
Reference List
1. Botvina L.R. Kinetika razrushenija konstrukcionnyh materialov [Kinetics of destruction of constructional materials] . M.: Nauka. 1989. 230 s.
2. Matvienko Ju.G. Modeli i kriterii mehaniki razrushenija [Models and criteria of fracture mechanics]. M.: Fizmatlit. 2006. 328 s.
3. Kogaev V.P. Raschety na prochnosti pri naprjazhenijah, peremennyh vo vremeni [Calculations on durability at tension, variables in time]. M.: Mashinostroenie. 1977. 232 s.
4. Dronov V.S., Repkov M.Ju. Nakoplenie ustalostnoj povrezhdennosti i rost treshhin v vysokoprochnoj uglerodistoj stali pri nestacionarnyh nagruzhenijah [Accumulation of fatigue povrezhdennost and growth of cracks in high-strength carbon steel at non-stationary loadings] //Izvestija Tul'skogo gosudarstvennogo universiteta. Tehnicheskie nauki. 2013. №7-1. S. 226–235.
2. Matvienko Ju.G. Modeli i kriterii mehaniki razrushenija [Models and criteria of fracture mechanics]. M.: Fizmatlit. 2006. 328 s.
3. Kogaev V.P. Raschety na prochnosti pri naprjazhenijah, peremennyh vo vremeni [Calculations on durability at tension, variables in time]. M.: Mashinostroenie. 1977. 232 s.
4. Dronov V.S., Repkov M.Ju. Nakoplenie ustalostnoj povrezhdennosti i rost treshhin v vysokoprochnoj uglerodistoj stali pri nestacionarnyh nagruzhenijah [Accumulation of fatigue povrezhdennost and growth of cracks in high-strength carbon steel at non-stationary loadings] //Izvestija Tul'skogo gosudarstvennogo universiteta. Tehnicheskie nauki. 2013. №7-1. S. 226–235.
7.
category: Testing of materials and structures
УДК 620.192.6
COMPARATIVE ANALYSIS OF RESULTS THE AUTOMATED NONDESTRUCTIVE CONTROL
Questions of accuracy determination areas of defects by automation process nondestructive control is very important, that be needed analysis process of scanning in point of view evaluation highest possible result nondestructive testing. In this article examine question calculation precision space artificial flaw by automatize ultrasonic flaw detection construction with noncontact passing method. To be execute theoretical calculation possible error flaw area by use scanning system. Showing experimental facts, complete estimate measurement inaccuracy. Execute critical evaluation of final result working data.
Keywords: noncontact flaw detection, automation, precision flaw evaluation.
Reference List
1. Shherbinskij V.G. O vozmozhnosti bezobrazcovoj apriornoj validacii metodik ul'trazvukovogo kontrolja [About possibility of bezobraztsovy apriori validation of techniques of ultrasonic control] //Defektoskopija. 2012. №11. S. 14–31.
2. OST 92-1482–79. Materialy nemetallicheskie teplozashhitnogo i konstrukcionnogo naznachenija. Metody nerazrushajushhego kontrolja tolshhiny, vyjavlenie neprikleja i rassloenij [Materials nonmetallic heat-protective and constructional assignment. Methods of non-destructive testing of thickness, identification neprikleya and stratifications].
2. OST 92-1482–79. Materialy nemetallicheskie teplozashhitnogo i konstrukcionnogo naznachenija. Metody nerazrushajushhego kontrolja tolshhiny, vyjavlenie neprikleja i rassloenij [Materials nonmetallic heat-protective and constructional assignment. Methods of non-destructive testing of thickness, identification neprikleya and stratifications].
8.
category: Testing of materials and structures
УДК 621.669.296.011
Mastering of procedure and estimation of threshold stress intensity factor K1н in dhc tests of Zircaloy-4 cladding tube
Proposed new procedure of testing cladding tubes for determination of threshold stress intensity factor (K1н) during delayed hydride cracking (DHC). In the range of temperatures
228–303°C determined temperature dependence K1н and assessment of DHC velocity for the hydrogenated Zircaloy-4 fuel cladding.
Keywords: delayed hydride cracking (DHC), threshold stress intensity factor (K1н), DHC velocity, method, specimen, fuel cladding, load, displacement, crack.
Reference List
1. Markelov V.A. Zamedlennoe gidridnoe rastreskivanie splavov cirkonija: uslovija projavlenija i osnovnye zakonomernosti [The slowed-down gidridny cracking of alloys of zirconium: conditions of manifestation and main patterns] //Deformacija i razrushenie materialov. 2010. №1. S. 31–37.
2. Perryman E.C.W. Pickering Pressure Tube Cracking Experience //Nuclear Energy. 1978. V. 17.
P. 95–105.
3. Platonov P.A., Ryazantseva A.V., Saenko G.P. et al. The Study of Cause of Cracking in Zirconium Alloy Channel Tubes /In: Zirconium in the Nuclear Industry: Poster Paper at ASTM 8th Int. Sympos. 1988 (available as AECL Report RC-87).
4. Schrire D., Grapengiesser B., Hallstadius L. et al. Secondary Defect Behaviour in ABB BWR Fuel /In: Light Water Reactor Fuel Performance: Proc. Int. Topical Meeting. ANS, West Palm Beach. 1994. P. 398–409.
5. Shimada S., Etoh E., Hayashi H., Tukuta Y.A. Metallographic and Fractographic Study of Outside-In Cracking Caused by Power Ramp Test //J. Nucl. Mater. 2004. V. 327. №2. P. 97–113.
6. Coleman C., Inozemtsev V. Measurement of Rates of delayed Hydride Cracking (DHC) in Zr–2.5Nb Alloys – An IAEA Coordinated Research Project /In: Zirconium in the Nuclear Industry: 15th Int. Sympos. ASTM STP 1505. 2009. P. 244–266.
7. Delayed Hydride Cracking in zirconium alloys in pressure tube nuclear reactors /In: IAEA-TECDOC-1410. Vienna. 2004. 86 p.
8. Coleman C., Grigoriev V., Inozemtsev V., Markelov V. et al. The Effect of Microstructure on Delayed Hydride Cracking Behavior of Zircaloy-4 Fuel Cladding – An International Atomic Energy Agency Coordinated Research Programme //J. ASTM Int. 2010. V. 7. №5. Paper ID JAI103008 (Available online at www.astm.org).
9. Delayed Hydride Cracking of Zirconium Alloy Fuel Cladding /In: IAEA-TECDOC-1649. Vienna. 2010. 66 p.
10. Coleman C., Inozemtsev V., Markelov V. et al. The Threshold Stress-Intensity Factor, K1н, for Delayed Hydride Cracking (DHC) in Zircaloy-4 Fuel Cladding – an IAEA Coordinated Research Project (CRP) /Proceedings of 2014 Water Reactor Fuel Performance Meeting / Top Fuel / LWR Fuel Performance Meeting. Sendai. 2014. №100048.
11. Grigoriev V., Josefsson B., Lind A., Rosborg B.A. Pin-Loading Tension Test for Evaluation of Thin-Walled Tubular Materials //Scr. Metall. Mater. 1995. V. 33. №1. P. 109–114.
12. Grigoriev V., Jakobsson R. DHC Axial Crack Velocity Measurements in Zirconium Alloy Fuel Cladding //STUDSVIK/N – 05/281, Studsvik Nuclear AB. 2005.
13. Markelov V.A., Gusev A.Ju., Kotov P.V., Mal'gin A.G. Temperaturnaja zavisimost' i vysokotemperaturnyj predel skorosti zamedlennogo gidridnogo rastreskivanija splavov cirkonija [Temperature dependence and high-temperature limit of speed of the slowed-down gidridny cracking of alloys of zirconium] //Deformacija i razrushenie materialov. 2011. №8. S. 24–30.
14. Markelov V.A., Gusev A.Ju., Kotov P.V., Novikov V.V., Saburov N.S. Temperaturnye zavisimosti skorosti zamedlennogo gidridnogo rastreskivanija obolochek tvjelov iz splavov cirkonija razlichnogo sostava [Temperature dependences of speed of the slowed-down gidridny cracking of covers tvelov from alloys of zirconium of different structure]//Deformacija i razrushenie materialov. 2012. №11. S. 42–47.
15. Resta Levi M., Puls M.P. DHC Behaviour of Irradiated Zr–2.5Nb Pressure Tubes up to 365°C /Proc. of the 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18). Beijing. 2006. P. G10-3.
2. Perryman E.C.W. Pickering Pressure Tube Cracking Experience //Nuclear Energy. 1978. V. 17.
P. 95–105.
3. Platonov P.A., Ryazantseva A.V., Saenko G.P. et al. The Study of Cause of Cracking in Zirconium Alloy Channel Tubes /In: Zirconium in the Nuclear Industry: Poster Paper at ASTM 8th Int. Sympos. 1988 (available as AECL Report RC-87).
4. Schrire D., Grapengiesser B., Hallstadius L. et al. Secondary Defect Behaviour in ABB BWR Fuel /In: Light Water Reactor Fuel Performance: Proc. Int. Topical Meeting. ANS, West Palm Beach. 1994. P. 398–409.
5. Shimada S., Etoh E., Hayashi H., Tukuta Y.A. Metallographic and Fractographic Study of Outside-In Cracking Caused by Power Ramp Test //J. Nucl. Mater. 2004. V. 327. №2. P. 97–113.
6. Coleman C., Inozemtsev V. Measurement of Rates of delayed Hydride Cracking (DHC) in Zr–2.5Nb Alloys – An IAEA Coordinated Research Project /In: Zirconium in the Nuclear Industry: 15th Int. Sympos. ASTM STP 1505. 2009. P. 244–266.
7. Delayed Hydride Cracking in zirconium alloys in pressure tube nuclear reactors /In: IAEA-TECDOC-1410. Vienna. 2004. 86 p.
8. Coleman C., Grigoriev V., Inozemtsev V., Markelov V. et al. The Effect of Microstructure on Delayed Hydride Cracking Behavior of Zircaloy-4 Fuel Cladding – An International Atomic Energy Agency Coordinated Research Programme //J. ASTM Int. 2010. V. 7. №5. Paper ID JAI103008 (Available online at www.astm.org).
9. Delayed Hydride Cracking of Zirconium Alloy Fuel Cladding /In: IAEA-TECDOC-1649. Vienna. 2010. 66 p.
10. Coleman C., Inozemtsev V., Markelov V. et al. The Threshold Stress-Intensity Factor, K1н, for Delayed Hydride Cracking (DHC) in Zircaloy-4 Fuel Cladding – an IAEA Coordinated Research Project (CRP) /Proceedings of 2014 Water Reactor Fuel Performance Meeting / Top Fuel / LWR Fuel Performance Meeting. Sendai. 2014. №100048.
11. Grigoriev V., Josefsson B., Lind A., Rosborg B.A. Pin-Loading Tension Test for Evaluation of Thin-Walled Tubular Materials //Scr. Metall. Mater. 1995. V. 33. №1. P. 109–114.
12. Grigoriev V., Jakobsson R. DHC Axial Crack Velocity Measurements in Zirconium Alloy Fuel Cladding //STUDSVIK/N – 05/281, Studsvik Nuclear AB. 2005.
13. Markelov V.A., Gusev A.Ju., Kotov P.V., Mal'gin A.G. Temperaturnaja zavisimost' i vysokotemperaturnyj predel skorosti zamedlennogo gidridnogo rastreskivanija splavov cirkonija [Temperature dependence and high-temperature limit of speed of the slowed-down gidridny cracking of alloys of zirconium] //Deformacija i razrushenie materialov. 2011. №8. S. 24–30.
14. Markelov V.A., Gusev A.Ju., Kotov P.V., Novikov V.V., Saburov N.S. Temperaturnye zavisimosti skorosti zamedlennogo gidridnogo rastreskivanija obolochek tvjelov iz splavov cirkonija razlichnogo sostava [Temperature dependences of speed of the slowed-down gidridny cracking of covers tvelov from alloys of zirconium of different structure]//Deformacija i razrushenie materialov. 2012. №11. S. 42–47.
15. Resta Levi M., Puls M.P. DHC Behaviour of Irradiated Zr–2.5Nb Pressure Tubes up to 365°C /Proc. of the 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18). Beijing. 2006. P. G10-3.
9.
category: Testing of materials and structures
УДК 629.113
RATED PILOT STUDIES OF MECHANICS OF DESTRUCTIONS
OF LOAD-CARRYING STRUCTURES OF THE LAND VEHICLES
EXECUTED FROM METAL AND NON-METALLIC MATERIALS
The paper presents the results of computational and experimental research of fracture mechanics of ground vehicles bearing structures (such as shift buses) in emergency static and dynamic loads conditions in accordance with international regulations.
Keywords: elastoplastic fracture, deformation, sandwich panels.
Reference List
1. Vashurin A.S. Razrabotka metodiki i ocenka passivnoj bezopasnosti kuzovov iz mnogoslojnyh panelej vahtovyh avtobusov [Development of technique and assessment of passive safety of bodies from multi-layer panels of crew buses]: dis. kand. teh. nauk. N.-Novgorod. 2014. 225 s.
2. Hercberg R.V. Deformacija i mehanika razrushenija konstrukcionnyh materialov [Deformation and fracture mechanics of constructional materials]. M.: Metallurgija. 1989. 576 s.
3. Kryzhanovskij V.K., Burlov V.V., Panimatchenko A.D., Kryzhanovskaja Ju.V. Tehnicheskie svojstva polimernyh materialov [Engineering properties of polymeric materials]: spravochnik. 2-e izd., dop. SPb.: Professija. 2005. 248 s.
4. Ustrojstvo dlja ispytanij konstrukcionnyh materialov na izgib pri normal'nyh, kriogennyh i povyshennyh temperaturah [The device for tests of constructional materials for bend at normal, cryogenic and elevated temperatures]: pat. na poleznuju model' 135136U1 Ros. Federacija; opubl. 27.11.2013.
2. Hercberg R.V. Deformacija i mehanika razrushenija konstrukcionnyh materialov [Deformation and fracture mechanics of constructional materials]. M.: Metallurgija. 1989. 576 s.
3. Kryzhanovskij V.K., Burlov V.V., Panimatchenko A.D., Kryzhanovskaja Ju.V. Tehnicheskie svojstva polimernyh materialov [Engineering properties of polymeric materials]: spravochnik. 2-e izd., dop. SPb.: Professija. 2005. 248 s.
4. Ustrojstvo dlja ispytanij konstrukcionnyh materialov na izgib pri normal'nyh, kriogennyh i povyshennyh temperaturah [The device for tests of constructional materials for bend at normal, cryogenic and elevated temperatures]: pat. na poleznuju model' 135136U1 Ros. Federacija; opubl. 27.11.2013.