Articles

1.
category: Testing of materials and structures
УДК 629.7.018.4:669.245
FRACTOGRAPHIC RESEARCH OF LOW-CYCLIC FATIGUE FAILURE OF TURBINE DISK BY METHOD OF SCANNING ELECTRON MICROSCOPY
Fractographic research of the mechanism of development of fatigue crack in the turbine disk of alloy ЭП742 in combination application of numerical and analytical methods of calculation intense the deformed condition of alloy in top of crack has allowed to determine by method of scanning electron microscopy the speed of low-cyclic fatigue failure of disk in use.
Keywords: fraktografiya, scanning electron microscopy, low-cyclic fatigue, factor of intensity of tension, nickel-base superalloy EP742, kinetic model of fatigue failure.
Reference List
1. Zharoprochnyj deformiruemyj splav na osnove nikelja i izdelie, vypolnennoe iz jetogo splava [Heat resisting deformable alloy on the basis of nickel and the product executed from this alloy]: pat. 2365657 Ros. Federacija; opubl. 27.08.2009.
2. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh splavov i tehnologij ih proizvodstva dlja aviacionnogo dvigatelestroenija [Creation of modern hot strength alloys and technologies of their production for aviation engine building] //Kryl'ja Rodiny. 2012. №3–4. S. 34–38.
3. Sposob poluchenija izdelija iz deformiruemogo zharoprochnogo nikelevogo splava [Way of receiving product from deformable heat resisting nickel alloy]: pat. 2387733 Ros. Federacija; opubl. 31.03.2009.
4. Sposob izgotovlenija shtampovok diskov iz slitkov vysokogradientnoj kristallizacii iz nikelevyh splavov [Way of manufacturing of punchings of disks from ingots of high-gradient crystallization from nickel alloys]: pat. 2389822 Ros. Federacija; opubl. 29.04.2009.
5. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaja innovacionnaja tehnologija iz-otermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharoprochnyh splavov [Complex innovative technology of isothermal punching on air in mode of superplasticity of disks from superhot strength alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.
6. Orlov M.R. Strategicheskie napravlenija razvitija Ispytatel'nogo centra FGUP «VIAM» [Strategic directions of development of the Test center VIAM Federal State Unitary Enterprise] //Aviacionnye materialy i tehnologii. 2012. №S. S. 387–393.
7. Stepanov A.V. Metody rentgenovskogo nerazrushajushhego kontrolja v proizvodstve aviacionnyh dvigatelej [Methods of x-ray non-destructive testing in production of aircraft engines] //Aviacionnye materialy i tehnologii. 2010. №3. S. 28–32.
8. Lomberg B.S., Ovsepjan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharoprochnye nikelevye splavy dlja detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] //Aviacionnye materialy i tehnologii. 2012. №S. S. 52−57.
9. Orlov M.R., Kolotnikov M.E., Vysotskij A.V. Issledovanie kinetiki ustalostnogo razrushenija diska turbiny vysokogo davlenija iz splava JeP742 [Research of kinetics of fatigue failure of the turbine disk of high pressure from alloy ЭП742] //Deformacija i razrushenie materialov. 2013. №7. S. 7–15.
10. Paris P., Erdogan F. A critical analysis of crack propagation laws //Journal of Basic Engineering. 1963. №85 (4). P. 528–534.
11. Ivanova V.S. Razrushenie metallov [Destruction of metals]. M.: Metallurgija. 1979. 168 s.
12. Tumanov N.V. Fiziko-mehanicheskie aspekty ustojchivogo rosta ustalostnyh treshhin [Physicomechanical aspects of strong growth of fatigue cracks] //Vestnik MATI. 2011. T. 18. №2. S. 132–136.
13. Inozemcev A.A., Ratchiev A.M., Nihamkin M.Sh. i dr. Malociklovaja ustalost' i ciklicheskaja treshhinostojkost' nikelevogo splava pri nagruzhenii, harakternom dlja diskov turbin [Low-cyclic fatigue and cyclic treshchinostoykost of nickel alloy when loading, characteristic for disks of turbines] //Tjazheloe mashinostroenie. 2011. №4. S. 30–33.
14. Nott Dzh. F. Osnovy mehaniki razrushenija [Fracture mechanics bases]: Per. s angl. M.: Metallurgija. 1978. 256 s.
15. Zhang G., Yuan H., Li G. Analysis of creep-fatigue life prediction models for nickel-based super alloys //Computational Materials Science. 2012. №57. P. 80–88.
16. Newman J.C. Jr., Annigeri B.S. Fatigue-Life Prediction Method Based on Small-Crack Theory in an engine Material //Journal of Engineering for Gas Turbines and Power. 2012. V. 134.
P. 032501-1–032501-8.
17. Newman J.C. Jr., Yamada Y. Compression precracking methods to generate near-threshold fatigue-crack-growth-rate data //International Journal of Fatigue. 2010. №32. P. 879–885.
18. Orlov M.R., Orlov E.M. Analiticheskaja ocenka kinetiki relaksacionnyh processov v nikelevom zharoprochnom splave ZhS6U-VI [Analytical assessment of kinetics of relaxation processes in nickel ZhS6U-VI hot strength alloy] //Aviacionno-kosmicheskaja tehnika i tehnologija. 2005. №1/17. S. 26–29.
19. Orlov M.R., Ospennikova O.G., Avtaev V.V. Deformacija i razrushenie monokristallov zharoprochnyh nikelevyh splavov pri kratkovremennom i dlitel'nom staticheskom nagruzhenii [Deformation and destruction of monocrystals of heat resisting nickel alloys at short-term and long static loading] //Deformacija i razrushenie materialov. 2014. №3. S. 17–23.
20. Ospennikova O.G., Orlov M.R., Avtaev V.V. Anizotropija uprugoplasticheskih harakteristik zharoprochnyh nikelevyh splavov – osnova konstruirovanija monokristallicheskih turbinnyh lopatok [Anisotropy of elasto-plastic characteristics of heat resisting nickel alloys – basis of designing of single-crystal turbine blades] //Deformacija i razrushenie materialov. 2013. №11. S. 12–19.
21. Orlov M.R., Ospennikova O.G., Jakimova M.S., Naprienko S.A., Nikitin Ja.Ju. Staticheskoe razrushenie monokristallov zharoprochnyh nikelevyh splavov v uslovijah vozdejstvija korrozionno-aktivnyh sred [Static destruction of monocrystals of heat resisting nickel alloys in the conditions of influence of corrosion and active environments] //Deformacija i razrushenie materialov. 2015. №2. S. 2–8.
22. Orlov M.R., Jakimova M.S., Letov A.F. Analiz rabotosposobnosti monokristallicheskih lopatok turbiny vysokogo davlenija v sostave nazemnyh gazoturbinnyh ustanovok [The analysis of operability of single-crystal turbine blades of high pressure as a part of land gas turbine units] //Aviacionnye materialy i tehnologii. 2012. №S. S. 399–407.
23. Orlov M.R., Jakimova M.S. Zamedlennoe razrushenie monokristallicheskih lopatok iz zharoprochnogo splava ZhS26-VI v processe jekspluatacii GTU [Delayed fracture of single-crystal blades from ZhS26-VI hot strength alloy in use GTU] //Gazoturbinnye tehnologii. 2011. №8. S. 10–15.
2. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh splavov i tehnologij ih proizvodstva dlja aviacionnogo dvigatelestroenija [Creation of modern hot strength alloys and technologies of their production for aviation engine building] //Kryl'ja Rodiny. 2012. №3–4. S. 34–38.
3. Sposob poluchenija izdelija iz deformiruemogo zharoprochnogo nikelevogo splava [Way of receiving product from deformable heat resisting nickel alloy]: pat. 2387733 Ros. Federacija; opubl. 31.03.2009.
4. Sposob izgotovlenija shtampovok diskov iz slitkov vysokogradientnoj kristallizacii iz nikelevyh splavov [Way of manufacturing of punchings of disks from ingots of high-gradient crystallization from nickel alloys]: pat. 2389822 Ros. Federacija; opubl. 29.04.2009.
5. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaja innovacionnaja tehnologija iz-otermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharoprochnyh splavov [Complex innovative technology of isothermal punching on air in mode of superplasticity of disks from superhot strength alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.
6. Orlov M.R. Strategicheskie napravlenija razvitija Ispytatel'nogo centra FGUP «VIAM» [Strategic directions of development of the Test center VIAM Federal State Unitary Enterprise] //Aviacionnye materialy i tehnologii. 2012. №S. S. 387–393.
7. Stepanov A.V. Metody rentgenovskogo nerazrushajushhego kontrolja v proizvodstve aviacionnyh dvigatelej [Methods of x-ray non-destructive testing in production of aircraft engines] //Aviacionnye materialy i tehnologii. 2010. №3. S. 28–32.
8. Lomberg B.S., Ovsepjan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharoprochnye nikelevye splavy dlja detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] //Aviacionnye materialy i tehnologii. 2012. №S. S. 52−57.
9. Orlov M.R., Kolotnikov M.E., Vysotskij A.V. Issledovanie kinetiki ustalostnogo razrushenija diska turbiny vysokogo davlenija iz splava JeP742 [Research of kinetics of fatigue failure of the turbine disk of high pressure from alloy ЭП742] //Deformacija i razrushenie materialov. 2013. №7. S. 7–15.
10. Paris P., Erdogan F. A critical analysis of crack propagation laws //Journal of Basic Engineering. 1963. №85 (4). P. 528–534.
11. Ivanova V.S. Razrushenie metallov [Destruction of metals]. M.: Metallurgija. 1979. 168 s.
12. Tumanov N.V. Fiziko-mehanicheskie aspekty ustojchivogo rosta ustalostnyh treshhin [Physicomechanical aspects of strong growth of fatigue cracks] //Vestnik MATI. 2011. T. 18. №2. S. 132–136.
13. Inozemcev A.A., Ratchiev A.M., Nihamkin M.Sh. i dr. Malociklovaja ustalost' i ciklicheskaja treshhinostojkost' nikelevogo splava pri nagruzhenii, harakternom dlja diskov turbin [Low-cyclic fatigue and cyclic treshchinostoykost of nickel alloy when loading, characteristic for disks of turbines] //Tjazheloe mashinostroenie. 2011. №4. S. 30–33.
14. Nott Dzh. F. Osnovy mehaniki razrushenija [Fracture mechanics bases]: Per. s angl. M.: Metallurgija. 1978. 256 s.
15. Zhang G., Yuan H., Li G. Analysis of creep-fatigue life prediction models for nickel-based super alloys //Computational Materials Science. 2012. №57. P. 80–88.
16. Newman J.C. Jr., Annigeri B.S. Fatigue-Life Prediction Method Based on Small-Crack Theory in an engine Material //Journal of Engineering for Gas Turbines and Power. 2012. V. 134.
P. 032501-1–032501-8.
17. Newman J.C. Jr., Yamada Y. Compression precracking methods to generate near-threshold fatigue-crack-growth-rate data //International Journal of Fatigue. 2010. №32. P. 879–885.
18. Orlov M.R., Orlov E.M. Analiticheskaja ocenka kinetiki relaksacionnyh processov v nikelevom zharoprochnom splave ZhS6U-VI [Analytical assessment of kinetics of relaxation processes in nickel ZhS6U-VI hot strength alloy] //Aviacionno-kosmicheskaja tehnika i tehnologija. 2005. №1/17. S. 26–29.
19. Orlov M.R., Ospennikova O.G., Avtaev V.V. Deformacija i razrushenie monokristallov zharoprochnyh nikelevyh splavov pri kratkovremennom i dlitel'nom staticheskom nagruzhenii [Deformation and destruction of monocrystals of heat resisting nickel alloys at short-term and long static loading] //Deformacija i razrushenie materialov. 2014. №3. S. 17–23.
20. Ospennikova O.G., Orlov M.R., Avtaev V.V. Anizotropija uprugoplasticheskih harakteristik zharoprochnyh nikelevyh splavov – osnova konstruirovanija monokristallicheskih turbinnyh lopatok [Anisotropy of elasto-plastic characteristics of heat resisting nickel alloys – basis of designing of single-crystal turbine blades] //Deformacija i razrushenie materialov. 2013. №11. S. 12–19.
21. Orlov M.R., Ospennikova O.G., Jakimova M.S., Naprienko S.A., Nikitin Ja.Ju. Staticheskoe razrushenie monokristallov zharoprochnyh nikelevyh splavov v uslovijah vozdejstvija korrozionno-aktivnyh sred [Static destruction of monocrystals of heat resisting nickel alloys in the conditions of influence of corrosion and active environments] //Deformacija i razrushenie materialov. 2015. №2. S. 2–8.
22. Orlov M.R., Jakimova M.S., Letov A.F. Analiz rabotosposobnosti monokristallicheskih lopatok turbiny vysokogo davlenija v sostave nazemnyh gazoturbinnyh ustanovok [The analysis of operability of single-crystal turbine blades of high pressure as a part of land gas turbine units] //Aviacionnye materialy i tehnologii. 2012. №S. S. 399–407.
23. Orlov M.R., Jakimova M.S. Zamedlennoe razrushenie monokristallicheskih lopatok iz zharoprochnogo splava ZhS26-VI v processe jekspluatacii GTU [Delayed fracture of single-crystal blades from ZhS26-VI hot strength alloy in use GTU] //Gazoturbinnye tehnologii. 2011. №8. S. 10–15.
2.
УДК 669.295
BEHAVIOUR THE PSEUDO-ALPHA OF TITANIUM ALLOYS AS A PART
OF THE STEAM-ELECTRIC EQUIPMENT AT SUPERDESIGN LOADS
Designing of power equipment supposes, as a rule, its behavior under over calculated loaded conditions at a short time. For details and assemblies of steam turbine units, made by high strength weldable pseudo-alpha-titanium alloys, it is necessary to calculate their specific properties for saving serviceability.
Keywords: pseudo-alpha-titanium alloys, power-machine equipment, overloaded conditions.
Reference List
1. Maksimov Ju.A., Lysenko L.V., Travin V.V. Problemy i praktika ispol'zovanija titanovyh splavov v paroturbinnyh ustanovkah [Problems and practice of use of titanium alloys in steam-electric installations] /V sb. trudov Mezhdunarodnoj konf. «Ti–2007 v SNG». Kiev. 2007. S. 330–337.
2. Ivanova L.A., Kudrjavcev A.S., Chudakov E.V., Lysenko L.V., Travin V.V. Optimizacija kompleksa sluzhebnyh svojstv titanovyh splavov marok 5V i 37 dlja uzlov i detalej jenergeticheskogo oborudovanija [Optimization of complex of office properties of titanium alloys of brands 5В and 37 for nodes and details of utilities equipment] //Titan. 2010. №4 (30). S. 23–30.
3. Ivanova L.A., Kozlova I.R., Kudrjavcev A.S., Chudakov E.V. Issledovanie zharoprochnosti svarivaemyh titanovyh splavov marok 5V i 37 [Research of thermal stability of welded titanium alloys of brands 5В and 37] //Voprosy materialovedenija. 2009. №3 (59). S. 329.
4. Travin V.V. Raschetno-jeksperimental'noe obespechenie prochnosti cel'nosvarnogo rabochego kolesa turbiny [Rated and experimental ensuring durability of the tselnosvarny driving wheel of the turbine] /V sb. materialov Vserossijskoj konf. «Progressivnye tehnologii, konstrukcii i sistemy v priboro-, mashinostroenii». M.: MGTU im. N.Je. Baumana. 2004. S. 55–57.
5. Travin V.V. MKJe – sistema raschetov prochnosti mehanicheskih konstrukcij «PROKSIMA». Opyt jekspluatacii [MKE – system of calculations of durability of mechanical designs "PROXIMA". Operating experience] /V sb. trudov konf. «Metody i programmnoe obespechenie raschetov na prochnost'». M.: NIKIJeT. 2001. S. 169–173.
6. Vodop'janov V.I., Kondrat'ev O.V., Travin V.V. K voprosu postroenija istinnoj diagrammy dempfirovanija na stadii shejkoobrazovanija [To question of creation of the true chart of damping at sheykoobrazovaniye stage] //Zavodskaja laboratorija. Diagnostika materialov. 2007. T. 73. №7.
S. 53–58.
7. Travin V.V., Ivanova L.A., Kozlova I.R., Vodop'janov V.I. Soprotivlenie titanovyh splavov staticheskim i malociklovym nagruzkam v zonah koncentracii [Resistance of titanium alloys to static and low-cyclic loads in concentration zones] /V sb. trudov Mezhdunarodnoj konf. «Ti–2011 v SNG». Kiev. 2011. S. 215–222.
8. Rabinovich V.P. Prochnost' turbinnyh diskov [Durability of turbine disks]. M.: Mashinostroenie. 1966. 150 s.
9. RTM 108.022.106–86. Ustanovki gazoturbinnye. Raschet na prochnost' diskov i rotorov [Installations gas-turbine. Calculation on durability of disks and rotors]. M., L.: NPO CKTI. 1987. 23 s.
10. Lysenko L.V. Teoreticheskie osnovy konstruktorskih ocenok jenergotehnologicheskih processov [Theoretical bases of design estimates of power technological processes]. M.: Jenergoatomizdat. 1997. 64 s.
2. Ivanova L.A., Kudrjavcev A.S., Chudakov E.V., Lysenko L.V., Travin V.V. Optimizacija kompleksa sluzhebnyh svojstv titanovyh splavov marok 5V i 37 dlja uzlov i detalej jenergeticheskogo oborudovanija [Optimization of complex of office properties of titanium alloys of brands 5В and 37 for nodes and details of utilities equipment] //Titan. 2010. №4 (30). S. 23–30.
3. Ivanova L.A., Kozlova I.R., Kudrjavcev A.S., Chudakov E.V. Issledovanie zharoprochnosti svarivaemyh titanovyh splavov marok 5V i 37 [Research of thermal stability of welded titanium alloys of brands 5В and 37] //Voprosy materialovedenija. 2009. №3 (59). S. 329.
4. Travin V.V. Raschetno-jeksperimental'noe obespechenie prochnosti cel'nosvarnogo rabochego kolesa turbiny [Rated and experimental ensuring durability of the tselnosvarny driving wheel of the turbine] /V sb. materialov Vserossijskoj konf. «Progressivnye tehnologii, konstrukcii i sistemy v priboro-, mashinostroenii». M.: MGTU im. N.Je. Baumana. 2004. S. 55–57.
5. Travin V.V. MKJe – sistema raschetov prochnosti mehanicheskih konstrukcij «PROKSIMA». Opyt jekspluatacii [MKE – system of calculations of durability of mechanical designs "PROXIMA". Operating experience] /V sb. trudov konf. «Metody i programmnoe obespechenie raschetov na prochnost'». M.: NIKIJeT. 2001. S. 169–173.
6. Vodop'janov V.I., Kondrat'ev O.V., Travin V.V. K voprosu postroenija istinnoj diagrammy dempfirovanija na stadii shejkoobrazovanija [To question of creation of the true chart of damping at sheykoobrazovaniye stage] //Zavodskaja laboratorija. Diagnostika materialov. 2007. T. 73. №7.
S. 53–58.
7. Travin V.V., Ivanova L.A., Kozlova I.R., Vodop'janov V.I. Soprotivlenie titanovyh splavov staticheskim i malociklovym nagruzkam v zonah koncentracii [Resistance of titanium alloys to static and low-cyclic loads in concentration zones] /V sb. trudov Mezhdunarodnoj konf. «Ti–2011 v SNG». Kiev. 2011. S. 215–222.
8. Rabinovich V.P. Prochnost' turbinnyh diskov [Durability of turbine disks]. M.: Mashinostroenie. 1966. 150 s.
9. RTM 108.022.106–86. Ustanovki gazoturbinnye. Raschet na prochnost' diskov i rotorov [Installations gas-turbine. Calculation on durability of disks and rotors]. M., L.: NPO CKTI. 1987. 23 s.
10. Lysenko L.V. Teoreticheskie osnovy konstruktorskih ocenok jenergotehnologicheskih processov [Theoretical bases of design estimates of power technological processes]. M.: Jenergoatomizdat. 1997. 64 s.
3.
УДК 669.295
Influence of the corrosion and active environment on fracture toughness of titanium al-loys pseudo-β-class
Results of researches of phase composition, structure, corrosion and mechanical properties of the titanium pseudo-β-alloy ВТ22 forgings are presented. Influence of a microalloying by ruthenium on above-mentioned characteristics of the alloy, including fracture toughness in the corrosive environment is considered.
Keywords: titanium alloys, mechanical properties, corrosion resistance and mechanical strength, microalloying, microstructure.
Reference List
1. Gorynin I.V., Oryshhenko A.S., Kudrjavcev A.S., Ushakov B.G. Titanovye splavy dlja morskih konstrukcij i sudovogo mashinostroenija [Titanium alloys for sea designs and ship mechanical engineering] //Tehnologija legkih splavov. 2014. №3. S. 6–13.
2. Gorynin I.V., Oryshhenko A.S., Leonov V.P., Mihajlov V.I., Kudrjavcev A.S. Vysokoprochnye titanovye splavy – osnova dlja sozdanija glubokovodnoj tehniki [High-strength titanium alloys – basis for creation of deep-water equipment] //Sudostroitel'nye materialy. 2014. №3. S. 58–60.
3. Gorynin I.V., Kudrjavcev A.S., Oryshhenko A.S. Osnovnye aspekty sozdanija vysokoprochnyh titanovyh splavov dlja morskoj tehniki [The main aspects of creation of high-strength titanium alloys for sea equipment]/V sb. trudov Mezhdunarodnoj konf. «Ti–2010 v SNG». Ekaterinburg. 2010.
S. 7–13.
4. Il'in A.A., Kolachev B.A., Pol'kin I.S. Titanovye splavy. Sostav, struktura, svojstva [Titanium alloys. Structure, structure, properties]: Spravochnik. M.: VILS–MATI. 2009. 520 s.
5. Tomashov N.D., Al'tovskij R.M. Korrozija i zashhita titana [Corrosion and protection of titanium]. M.: Mashgiz. 1963. 295 s.
6. Ruskol Ju.S. Titanovye konstrukcionnye splavy v himicheskih proizvodstvah [Titanium structural alloys in chemical productions]. M.: Himija. 1989. 288 s.
7. Tomashov N.D. Titan i korrozionnostojkie splavy na ego osnove [Titanium and corrosion-resistant alloys on its basis]. M.: Metallurgija. 1985. 150 s.
8. Gorynin I.V., Ushkov S.S., Hatuncev A.N., Loshakova N.I. Titanovye splavy dlja morskoj tehniki [Titanium alloys for sea equipment]. SPb.: Politehnika. 2007. 387 s.
9. Raevskaja M.V., Sokolovskaja E.M. Fizikohimija rutenija i ego splavov [Fizikokhimiya of ruthenium and its alloys]. M.: Izd-vo MGU. 1979. 230 s.
10. Leonov V.P., Shherbinin V.F., Malinkina Ju.Ju. Povyshenie korrozionnoj stojkosti splava titana v koncentrirovannyh vodnyh rastvorah hloridov pri vysokih temperaturah [Increase of corrosion resistance of alloy of titanium in the concentrated aqueous solutions of chlorides at high temperatures] //Voprosy materialovedenija. 2013. №1 (73). S. 175–181.
11. Hesin Ju.D., Sher V.A., Shherbinin V.F., Lysenko L.V. Vlijanie sostojanija poverhnosti na korrozionno-mehanicheskuju prochnost' titanovyh splavov v vodnyh rastvorah hloridov [Influence of surface condition on corrosion mechanical strength of titanium alloys in aqueous solutions of chlorides] //Jenergotehnologicheskie processy. Problemy i perspektivy. 2000. S. 80–85.
2. Gorynin I.V., Oryshhenko A.S., Leonov V.P., Mihajlov V.I., Kudrjavcev A.S. Vysokoprochnye titanovye splavy – osnova dlja sozdanija glubokovodnoj tehniki [High-strength titanium alloys – basis for creation of deep-water equipment] //Sudostroitel'nye materialy. 2014. №3. S. 58–60.
3. Gorynin I.V., Kudrjavcev A.S., Oryshhenko A.S. Osnovnye aspekty sozdanija vysokoprochnyh titanovyh splavov dlja morskoj tehniki [The main aspects of creation of high-strength titanium alloys for sea equipment]/V sb. trudov Mezhdunarodnoj konf. «Ti–2010 v SNG». Ekaterinburg. 2010.
S. 7–13.
4. Il'in A.A., Kolachev B.A., Pol'kin I.S. Titanovye splavy. Sostav, struktura, svojstva [Titanium alloys. Structure, structure, properties]: Spravochnik. M.: VILS–MATI. 2009. 520 s.
5. Tomashov N.D., Al'tovskij R.M. Korrozija i zashhita titana [Corrosion and protection of titanium]. M.: Mashgiz. 1963. 295 s.
6. Ruskol Ju.S. Titanovye konstrukcionnye splavy v himicheskih proizvodstvah [Titanium structural alloys in chemical productions]. M.: Himija. 1989. 288 s.
7. Tomashov N.D. Titan i korrozionnostojkie splavy na ego osnove [Titanium and corrosion-resistant alloys on its basis]. M.: Metallurgija. 1985. 150 s.
8. Gorynin I.V., Ushkov S.S., Hatuncev A.N., Loshakova N.I. Titanovye splavy dlja morskoj tehniki [Titanium alloys for sea equipment]. SPb.: Politehnika. 2007. 387 s.
9. Raevskaja M.V., Sokolovskaja E.M. Fizikohimija rutenija i ego splavov [Fizikokhimiya of ruthenium and its alloys]. M.: Izd-vo MGU. 1979. 230 s.
10. Leonov V.P., Shherbinin V.F., Malinkina Ju.Ju. Povyshenie korrozionnoj stojkosti splava titana v koncentrirovannyh vodnyh rastvorah hloridov pri vysokih temperaturah [Increase of corrosion resistance of alloy of titanium in the concentrated aqueous solutions of chlorides at high temperatures] //Voprosy materialovedenija. 2013. №1 (73). S. 175–181.
11. Hesin Ju.D., Sher V.A., Shherbinin V.F., Lysenko L.V. Vlijanie sostojanija poverhnosti na korrozionno-mehanicheskuju prochnost' titanovyh splavov v vodnyh rastvorah hloridov [Influence of surface condition on corrosion mechanical strength of titanium alloys in aqueous solutions of chlorides] //Jenergotehnologicheskie processy. Problemy i perspektivy. 2000. S. 80–85.
4.
УДК 669.2:669.131
Development of manufacturing techniques of semi-finished products of alloys of the titanium, excluding defect formation and raising material inspectability
This article generalizes existing experience in production of critical parts of titanium alloys. It gives main approaches to maximum reduction of defectiveness level and increase in homoge-neity of final products. It is shown that quality of charge materials and subsequent remelting are of great importance. A rational approach to material conversion process allows increasing controllability. In this regard process parameters are of paramount importance as well as a correct selection of part geometry by a designer for nondestructive testing. It is also pointed out that a correct selection of a material grade influences structural homogeneity and a result-ing complex of mechanical and service properties.
Keywords: titanium alloys, charge materials, ultrasonic inspection, remelting, deformation.
Reference List
1. Tetjuhin V.V., Musatov M.I., Al'tman P.S., Savel'ev V.V. Rafinirovanie titanovyh splavov v drugoj podovoj pechi [Refinement of titanium alloys in other hearth furnace] /V sb. materialov IX Mezhdunarodnoj konf. po titanu. SPb. 1999. S. 1366–1371.
2. Tetyukhin V.V., Levin I.V., Musatov M.I., Puzakov I.U., Chechulin S.M., Tarenkova N.U. Experience of Using Scull Remelt for Production of multi-Component Titanium Alloys /Proceedings of the 11th World Conference on Titanium «Ti–2007 Science and Technology». Kyoto. 2007.
P. 167–172.
3. Brun M.Ja., Evmenov O.P., Kaganovich I.N., Tetjuhin V.V., Kataja G.K., Shibanov A.S. Uluchshenie struktury zagotovok iz dvuhfaznyh titanovyh splavov putem predvaritel'noj deformacii v (α+)-oblasti i okonchatel'noj obrabotki pri temperaturah b-oblasti [Improvement of structure of preparations from two-phase titanium alloys by preliminary deformation in (α+)-area and final processing at -area temperatures] //Tehnologija legkih splavov. 1978. №6. S. 43–47.
4. Sposob izgotovlenija promezhutochnoj zagotovki iz (α+)-titanovyh splavov [Way of manufacturing of intermediate preparation from (α+)-titanium alloys]: AS 2266171 S1. B21J5/00, C22F1/18./. Zajavl.04.06.2004. №2004116944/02.
5. Shibanov A.S., Kropotov V.A., Timohov V.B., Bogatov A.A. Vlijanie shemy i rezhimov pressovoj protjazhki slitkov na neravnomernosti raspredelenija temperatury i nakoplennoj deformacii v pokovke [Influence of the scheme and modes of pressovy broach of ingots on irregularities of distribution of temperature and the saved-up deformation in pokovka] /V sb. trudov nauch.-tehnich. konf. «Titan–2006». Kiev. 2006. S. 181–186.
6. Tetjuhin V.V., Timohov V.B., Shibanov A.S., Troshin A.N. Avtomatizacija konstruktorsko-tehnologicheskih rabot v kuznechnom proizvodstve [Automation of design and technological works in forge production] /V sb. trudov nauch.-tehnich. konf. «Titan–2006». Kiev. 2006.
S. 112–117.
2. Tetyukhin V.V., Levin I.V., Musatov M.I., Puzakov I.U., Chechulin S.M., Tarenkova N.U. Experience of Using Scull Remelt for Production of multi-Component Titanium Alloys /Proceedings of the 11th World Conference on Titanium «Ti–2007 Science and Technology». Kyoto. 2007.
P. 167–172.
3. Brun M.Ja., Evmenov O.P., Kaganovich I.N., Tetjuhin V.V., Kataja G.K., Shibanov A.S. Uluchshenie struktury zagotovok iz dvuhfaznyh titanovyh splavov putem predvaritel'noj deformacii v (α+)-oblasti i okonchatel'noj obrabotki pri temperaturah b-oblasti [Improvement of structure of preparations from two-phase titanium alloys by preliminary deformation in (α+)-area and final processing at -area temperatures] //Tehnologija legkih splavov. 1978. №6. S. 43–47.
4. Sposob izgotovlenija promezhutochnoj zagotovki iz (α+)-titanovyh splavov [Way of manufacturing of intermediate preparation from (α+)-titanium alloys]: AS 2266171 S1. B21J5/00, C22F1/18./. Zajavl.04.06.2004. №2004116944/02.
5. Shibanov A.S., Kropotov V.A., Timohov V.B., Bogatov A.A. Vlijanie shemy i rezhimov pressovoj protjazhki slitkov na neravnomernosti raspredelenija temperatury i nakoplennoj deformacii v pokovke [Influence of the scheme and modes of pressovy broach of ingots on irregularities of distribution of temperature and the saved-up deformation in pokovka] /V sb. trudov nauch.-tehnich. konf. «Titan–2006». Kiev. 2006. S. 181–186.
6. Tetjuhin V.V., Timohov V.B., Shibanov A.S., Troshin A.N. Avtomatizacija konstruktorsko-tehnologicheskih rabot v kuznechnom proizvodstve [Automation of design and technological works in forge production] /V sb. trudov nauch.-tehnich. konf. «Titan–2006». Kiev. 2006.
S. 112–117.
5.
category: Testing of materials and structures
УДК 621.785.532
Analysis and prognostication of operating failures of the gearbox of the gas turbine engine units after ion nitriding
Analysis of the causes of the typical failures of gears is presented in this paper, and also the method of ion nitriding with hollow cathode effect (HCE) to prevent them is offered. The influence of the ion nitriding with HCE on the microhardness and growth of the hardened layer was investigated.
Keywords: ion nitriding, hollow cathode effect, chemical heat treatment, gear.
Reference List
1. Lahtin Ju.M., Kogan Ja.D. Azotirovanie stali [Steel nitriding]. M.: Mashinostroenie. 1976. 256 s.
2. Zinchenko V.M. Inzhenerija poverhnosti zubchatyh koles metodami himiko-termicheskoj obrabotki [Engineering of surface of toothed wheels methods of chemical and thermal processing]. M: Izd-vo MGTU im. N.Je. Baumana. 2001. 303 s.
3. Gerasimov S.A., Kuksenova L.I., Lapteva V.G. Struktura i iznosostojkost' azotirovannyh konstrukcionnyh stalej i splavov [Structure and wear resistance nitrated constructional steels and alloys]. M.: Izd-vo MGTU im. N.Je. Baumana. 2012. 518 s.
4. Budilov V.V., Ramazanov K.N., Husainov Ju.G., Zolotov I.V. Perspektivy ispol'zovanija jeffekta pologo katoda pri lokal'nom azotirovanii detalej iz stali 16H3NVFMB-Sh [Perspectives of use of effect of the hollow cathode at local nitriding of details from steel 16KH3NVFMB-Sh] //Vestnik UGATU. 2014. T. 18. №1. S. 32–36.
5. Budilov V.V., Ramazanov K.N., Zolotov I.V., Husainov Ju.G. Primenenie jeffekta pologo katoda dlja lokal'nogo ionnogo azotirovanija konstrukcionnoj stali 16H3NVFMB-Sh [Application of effect of the hollow cathode for local ion nitriding of structural steel 16KH3NVFMB-Sh] //Uprochnjajushhie tehnologii i pokrytija. 2014. №12. S. 27–30.
2. Zinchenko V.M. Inzhenerija poverhnosti zubchatyh koles metodami himiko-termicheskoj obrabotki [Engineering of surface of toothed wheels methods of chemical and thermal processing]. M: Izd-vo MGTU im. N.Je. Baumana. 2001. 303 s.
3. Gerasimov S.A., Kuksenova L.I., Lapteva V.G. Struktura i iznosostojkost' azotirovannyh konstrukcionnyh stalej i splavov [Structure and wear resistance nitrated constructional steels and alloys]. M.: Izd-vo MGTU im. N.Je. Baumana. 2012. 518 s.
4. Budilov V.V., Ramazanov K.N., Husainov Ju.G., Zolotov I.V. Perspektivy ispol'zovanija jeffekta pologo katoda pri lokal'nom azotirovanii detalej iz stali 16H3NVFMB-Sh [Perspectives of use of effect of the hollow cathode at local nitriding of details from steel 16KH3NVFMB-Sh] //Vestnik UGATU. 2014. T. 18. №1. S. 32–36.
5. Budilov V.V., Ramazanov K.N., Zolotov I.V., Husainov Ju.G. Primenenie jeffekta pologo katoda dlja lokal'nogo ionnogo azotirovanija konstrukcionnoj stali 16H3NVFMB-Sh [Application of effect of the hollow cathode for local ion nitriding of structural steel 16KH3NVFMB-Sh] //Uprochnjajushhie tehnologii i pokrytija. 2014. №12. S. 27–30.
6.
УДК 669.245'1:620.178.38
STRUCTURAL CHANGES IN ALLOY EK-61 IN THE CONDITIONS
OF CYCLIC DEFORMATION AT ELEVATED TEMPERATURE
It has been shown that at high cyclic deformation at elevated temperatures in high-alloyed iron-nickel superalloy EK-61are forming crystallographically oriented lamellar preciptations identified as -phase Ni3Nb. Generation of -phase precipitates occurs at grain boundaries and incoherent interphase boundaries of carbides (Nb, Ti) C. Revealed that more -phase observed in samples with a high content of niobium within the brand EK-61. Fatigue tests and subsequent structural studies have proofed a decrease of fatigue limit in samples with a high content of -phase.
Keywords: ageing, instability of structure, over ageing, cyclic deformation, fatigue limit.
Reference List
1. Коррозионностойкие, жаростойкие и высокопрочные стали и сплавы. Справочник /Под ред.
Б.С. Литвака. М.: ПРОМЕТ – сплав. 2008. 333 с.
2. Риттер А.М., Брайент К.Л. Влияние частиц вторых фаз на разрушение в конструкционных сплавах /В кн. Охрупчивание конструкционных сталей и сплавов. М.: Металлургия. 1988. 552 с.
3. Han Y., Deb P., Chaturvedi M.C. //Met. Sci. 1982. V. 16. P. 555.
4. Браун Е.Е., Музика Д.Р. Сплавы на железоникелевой основе /В кн. Суперсплавы II. Кн. 1. Жаропрочные материалы для аэрокосмических и промышленных энергоустановок. М.: Металлургия. 1995. 384 с.
5. Sullivan C.P., Donachie M.J. //J. Met. Eng. Q. 1971. V. 11. P. 1.
6. Жаропрочные сплавы для газовых турбин: Материалы Международной конф. /Под ред. Д. Котсорадиса, П. Феликса, Х. Фишмайстера и др. М.: Металлургия. 1981. 480 с.
7. Fournier D., Pineau A. Low cycle fatigue behaviour of Inconel 718 at 238 K and 823 K //Metal. Trans. A. 1977. V. 8. P. 1095.
8. Kirkman I. //JISI. 1969. V. 207. P. 1612.
Б.С. Литвака. М.: ПРОМЕТ – сплав. 2008. 333 с.
2. Риттер А.М., Брайент К.Л. Влияние частиц вторых фаз на разрушение в конструкционных сплавах /В кн. Охрупчивание конструкционных сталей и сплавов. М.: Металлургия. 1988. 552 с.
3. Han Y., Deb P., Chaturvedi M.C. //Met. Sci. 1982. V. 16. P. 555.
4. Браун Е.Е., Музика Д.Р. Сплавы на железоникелевой основе /В кн. Суперсплавы II. Кн. 1. Жаропрочные материалы для аэрокосмических и промышленных энергоустановок. М.: Металлургия. 1995. 384 с.
5. Sullivan C.P., Donachie M.J. //J. Met. Eng. Q. 1971. V. 11. P. 1.
6. Жаропрочные сплавы для газовых турбин: Материалы Международной конф. /Под ред. Д. Котсорадиса, П. Феликса, Х. Фишмайстера и др. М.: Металлургия. 1981. 480 с.
7. Fournier D., Pineau A. Low cycle fatigue behaviour of Inconel 718 at 238 K and 823 K //Metal. Trans. A. 1977. V. 8. P. 1095.
8. Kirkman I. //JISI. 1969. V. 207. P. 1612.
7.
category: Testing of materials and structures
УДК 621.873:539.4
Destruction of the load gripping device in use
A diagnosis of the technical state of weight-handling straps in operation and those rejected in case of unacceptable damages is completed. A comprehensive study of mechanisms’ and causes of accidental destruction of the strap bracket has been conducted. The results of experiments and calculations are provided.
Keywords: weight-handling straps, diagnosis, safety, damages, defects, destruction, durability.
Reference List
1. RD 10-231–98. Stropy gruzovye obshhego naznachenija. Trebovanija k ustrojstvu i bezopasnoj jekspluatacii [Slings cargo general purpose. Requirements to the device and safe operation].
2. GOST 25573–82. Stropy gruzovye kanatnye dlja stroitel'stva. Tehnicheskie uslovija [Slings cargo rope for construction. Specifications].
3. RD 50-672–88. Metodicheskie ukazanija. Raschety i ispytanija na prochnost'. Klassifikacija vidov izlomov metallov [Methodical instructions. Calculations and strength tests. Classification of types of breaks of metals].
4. Mak-Ivili A.Dzh. Analiz avarijnyh razrushenij [Analysis of emergency destructions]: Per. s angl. M.: Tehnosfera. 2010. 413 s.
5. GOST 1778–70. Stal'. Metallograficheskie metody opredelenija nemetallicheskih vkljuchenij [Steel. Metallographic methods of definition of non-metallic inclusions].
6. Botvina L.R., Limar' L.V., Logovikov B.S. Ocenka parametrov skachkoobraznogo rosta ustalostnoj treshhiny v kompressornyh lopatkah iz titanovogo splava VT3-1 [Assessment of parameters of intermittent growth of fatigue crack in compressor blades from BT3-1 titanium alloy] //FHMM. 1981. №1. S. 71–74.
7. Spravochnik po kojefficientam intensivnosti naprjazhenij [Directory on factors of intensity of tension]: V 2-h tomah; Per. s angl. /Pod red. Ju. Murakami. M.: Mir. 1990. 1014 s.
8. Mahutov N.A. Konstrukcionnaja prochnost', resurs i tehnogennaja bezopasnost' [Constructional durability, resource and technogenic safety]: V 2 ch. Novosibirsk: Nauka. 2005. Ch. 1: Kriterii prochnosti i resursa. 494 s.
9. Mahutov N.A. Soprotivlenie jelementov konstrukcij hrupkomu razrusheniju [Resistance of elements of designs to brittle destruction]. M.: Mashinostroenie. 1973. 200 s.
10. Beljaev N.M. Soprotivlenie materialov [Resistance of materials]. M.: Nauka. 1976. 607 s.
2. GOST 25573–82. Stropy gruzovye kanatnye dlja stroitel'stva. Tehnicheskie uslovija [Slings cargo rope for construction. Specifications].
3. RD 50-672–88. Metodicheskie ukazanija. Raschety i ispytanija na prochnost'. Klassifikacija vidov izlomov metallov [Methodical instructions. Calculations and strength tests. Classification of types of breaks of metals].
4. Mak-Ivili A.Dzh. Analiz avarijnyh razrushenij [Analysis of emergency destructions]: Per. s angl. M.: Tehnosfera. 2010. 413 s.
5. GOST 1778–70. Stal'. Metallograficheskie metody opredelenija nemetallicheskih vkljuchenij [Steel. Metallographic methods of definition of non-metallic inclusions].
6. Botvina L.R., Limar' L.V., Logovikov B.S. Ocenka parametrov skachkoobraznogo rosta ustalostnoj treshhiny v kompressornyh lopatkah iz titanovogo splava VT3-1 [Assessment of parameters of intermittent growth of fatigue crack in compressor blades from BT3-1 titanium alloy] //FHMM. 1981. №1. S. 71–74.
7. Spravochnik po kojefficientam intensivnosti naprjazhenij [Directory on factors of intensity of tension]: V 2-h tomah; Per. s angl. /Pod red. Ju. Murakami. M.: Mir. 1990. 1014 s.
8. Mahutov N.A. Konstrukcionnaja prochnost', resurs i tehnogennaja bezopasnost' [Constructional durability, resource and technogenic safety]: V 2 ch. Novosibirsk: Nauka. 2005. Ch. 1: Kriterii prochnosti i resursa. 494 s.
9. Mahutov N.A. Soprotivlenie jelementov konstrukcij hrupkomu razrusheniju [Resistance of elements of designs to brittle destruction]. M.: Mashinostroenie. 1973. 200 s.
10. Beljaev N.M. Soprotivlenie materialov [Resistance of materials]. M.: Nauka. 1976. 607 s.
8.
УДК 620.193
Choice of materials for closing valves in the conditions of oil refining
The material choice for the equipment working under the influence of hostile environment, pressure and temperatures assumes integrated approach to tests. In this work steel 20Х13 researches for the purpose of assessment of possibility of its application for manufacturing of valves maintained in the conditions of oil refining are conducted.
Reference List
1. ST CKBA 005.1–2003 Armatura truboprovodnaja. Metally, primenjaemye v armaturostroenii. Chast' 1. Osnovnye trebovanija k vyboru materialov [Armature pipeline. The metals applied in armaturostroyeniye. Part 1. The main requirements to choice of materials].
2. GOST R 55509–2013 Armatura truboprovodnaja. Metally, primenjaemye v armaturostroenii. Osnovnye trebovanija k vyboru materialov [Armature pipeline. The metals applied in armaturostroyeniye. The main requirements to choice of materials].
3. ST CKBA 005.2–2004 Armatura truboprovodnaja. Metally, primenjaemye v armaturostroenii. Chast' 2. Spravochnye dannye o svojstvah materialov [Armature pipeline. The metals applied in armaturostroyeniye. Part 2. Help data on properties of materials].
4. ST CKBA 016–2005 Armatura truboprovodnaja. Termicheskaja obrabotka detalej, zagotovok i svarnyh sborok iz vysokolegirovannyh stalej, korrozionnostojkih i zharoprochnyh splavov [Armature pipeline. Thermal processing of details, preparations and welded assemblies from high-alloy steels, corrosion-resistant and hot strength alloys].
5. PB 03-585–03 Pravila ustrojstva i bezopasnoj jekspluatacii tehnologicheskih truboprovodov [Rules for the Construction and Safe Operation of process pipelines].
6. OST 26-07-2071–87 Armatura truboprovodnaja iz stalej, stojkih k sul'fidnomu korrozionnomu rastreskivaniju. Obshhie tehnicheskie uslovija [Armature pipeline from steels, resistant to sulfide corrosion cracking. General specifications].
7. Belous V.Ja., Gurvich L.Ja., Zhirnov A.D. Korrozionnoe rastreskivanie vysokoprochnyh nerzhavejushhih stalej i ego diagnostirovanie [Corrosion cracking of high-strength stainless steels and its diagnosing]. URL: http://viam.ru/public/index.php?year=1996
8. Ahmetov S.A. Tehnologija glubokoj pererabotki nefti i gaza [Technology of deep oil refining and gas]: Uchebnoe posobie dlja vuzov. Ufa: Gilem. 2002. 672 s.
9. Filimonova E.I. Osnovy tehnologii pererabotki nefti [Oil refining technology bases]: Uchebnoe posobie. Jaroslavl': Izd-vo JaGTU. 2010. 171 s.
10. ST CKBA 053–2008 Armatura truboprovodnaja. Naplavka i kontrol' kachestva naplavlennyh poverhnostej. Tehnicheskie trebovanija [Armature pipeline. Welding and quality control of naplavlenny surfaces. Technical requirements].
11. Chigal V. Mezhkristallitnaja korrozija nerzhavejushhih stalej [Mezhkristallitny corrosion of stainless steels]: Per. s chesh. M.: Himija. 1969. 232 s.
12. Davydkin M.V., Zolotenin G.G. Ustanovka dlja korrozionnyh issledovanij pri vysokih temperaturah i davlenijah [Installation for corrosion researches at high temperatures and pressure] //Himicheskaja tehnika. 2012. №4. S. 42.
2. GOST R 55509–2013 Armatura truboprovodnaja. Metally, primenjaemye v armaturostroenii. Osnovnye trebovanija k vyboru materialov [Armature pipeline. The metals applied in armaturostroyeniye. The main requirements to choice of materials].
3. ST CKBA 005.2–2004 Armatura truboprovodnaja. Metally, primenjaemye v armaturostroenii. Chast' 2. Spravochnye dannye o svojstvah materialov [Armature pipeline. The metals applied in armaturostroyeniye. Part 2. Help data on properties of materials].
4. ST CKBA 016–2005 Armatura truboprovodnaja. Termicheskaja obrabotka detalej, zagotovok i svarnyh sborok iz vysokolegirovannyh stalej, korrozionnostojkih i zharoprochnyh splavov [Armature pipeline. Thermal processing of details, preparations and welded assemblies from high-alloy steels, corrosion-resistant and hot strength alloys].
5. PB 03-585–03 Pravila ustrojstva i bezopasnoj jekspluatacii tehnologicheskih truboprovodov [Rules for the Construction and Safe Operation of process pipelines].
6. OST 26-07-2071–87 Armatura truboprovodnaja iz stalej, stojkih k sul'fidnomu korrozionnomu rastreskivaniju. Obshhie tehnicheskie uslovija [Armature pipeline from steels, resistant to sulfide corrosion cracking. General specifications].
7. Belous V.Ja., Gurvich L.Ja., Zhirnov A.D. Korrozionnoe rastreskivanie vysokoprochnyh nerzhavejushhih stalej i ego diagnostirovanie [Corrosion cracking of high-strength stainless steels and its diagnosing]. URL: http://viam.ru/public/index.php?year=1996
8. Ahmetov S.A. Tehnologija glubokoj pererabotki nefti i gaza [Technology of deep oil refining and gas]: Uchebnoe posobie dlja vuzov. Ufa: Gilem. 2002. 672 s.
9. Filimonova E.I. Osnovy tehnologii pererabotki nefti [Oil refining technology bases]: Uchebnoe posobie. Jaroslavl': Izd-vo JaGTU. 2010. 171 s.
10. ST CKBA 053–2008 Armatura truboprovodnaja. Naplavka i kontrol' kachestva naplavlennyh poverhnostej. Tehnicheskie trebovanija [Armature pipeline. Welding and quality control of naplavlenny surfaces. Technical requirements].
11. Chigal V. Mezhkristallitnaja korrozija nerzhavejushhih stalej [Mezhkristallitny corrosion of stainless steels]: Per. s chesh. M.: Himija. 1969. 232 s.
12. Davydkin M.V., Zolotenin G.G. Ustanovka dlja korrozionnyh issledovanij pri vysokih temperaturah i davlenijah [Installation for corrosion researches at high temperatures and pressure] //Himicheskaja tehnika. 2012. №4. S. 42.
9.
category: Composite materials
УДК 620.197
Maksimov V.G.1
HIGH TEMPERATURE CERAMIC HEAT INSULATION (review)
Keywords: Ceramic composite oxide-based materials last years more and more use in environments where metal materials exhibit a tendency to creep and oxidation.
Aluminum oxide is one of the most promising ceramic materials for a wide range of applications in extreme conditions thanks to its combination of high hardness, heat resistance, chemical inertness, with its accessibility and efficiency. However, the use of alumina-based materials in loaded conditions is limited for the low impact resistance, typic
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S. Perspektivnye vysokotemperaturnye keramicheskie kompozicionnye materialy [Perspective high-temperature ceramic composite materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 20–24.
3. Kablov E.N. Tendencii i orientiry innovacionnogo razvitija Rossii [Tendencies and reference points of innovative development of Russia]: Sb. nauch.-inform. mater. 3-e izd. M.: VIAM. 2015. 720 s.
4. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S., Sevast'janov V.G. Vysokotemperaturnye konstrukcionnye kompozicionnye materialy na osnove stekla i keramiki dlja perspektivnyh izdelij aviacionnoj tehniki [High-temperature constructional composite materials on the basis of glass and ceramics for perspective products of aviation engineering] //Steklo i keramika. 2012. №4. S. 7–11.
5. Zimichev A.M., Solov'eva E.P. Volokno dioksida cirkonija dlja vysokotemperaturnogo primenenija (obzor) [Zirconium dioxide fiber for high-temperature application (rеview)] //Aviacionnye materialy i tehnologii. №3. 2014. S. 55–61.
6. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armirujushhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru).
7. Hybrid ceramic material composed of insulating and structural ceramic layers: Pat. US 6733907; publ. 11.05.2004. 14 p.
8. Kompanija Siemens AG [Company Siemens AG]. Available at: http://www.siemens.com (accessed: October 28, 2015).
9. Kompanija Solar Turbines [Company Solar Turbines]. Available at: http:// www.solarturbines.com (accessed: October 28, 2015).
10. Mutassim Z. New Gas Turbines Materials //Turbomashinery International. 2008. September–October. P. 38–42.
11. Fiber reinforced ceramic matrix composite member and method for making: Pat. US 5601674; publ. 11.02.1997. 10 p.
12. Method of producing а ceramic matrix composite: Pat. US 7153379; publ. 26.12.2006. 7 p.
13. Desimone D. Oxide Fibre Reinforced Glass Matrix Composites with ZrO2 interfaces //European Journal of Glass Science & Technology. 2009. P. 1. V. 50. №2. P. 121–126.
14. Mall S., Ahn J.-M. Frequency Effects on Fatigue Behavior of Nextel 720/alumina at Room //Temperature Journal of the European Ceramic Society. 2008. V. 28. №14. P. 2783–2789.
15. Ruggles-Wrenn M.B., Szymczak N.R. Effect of Steam Environment on Compressive Creep Behavior of Nextel 720/alumina Ceramic Composite at 1200°C //Сomposites. 2008. Part A. V. 39. P. 1829–1837.
16. Balinova Ju.A., Shheglova T.M., Ljuljukina G.Ju., Timoshin A.S. Osobennosti formirovanija α-Al2O3 v polikristallicheskih voloknah s soderzhaniem oksida aljuminija 99% v prisutstvii dobavok Fe2O3, MgO, SiO2 [Features of forming α-Al2O3 in polycrystalline fibers with the content of aluminum oxide of 99% in the presence of additives of Fe2O3, MgO, SiO2] //Trudy VIAM. 2014. №3. St. 03 (www.viam-works.ru).
17. Babashov V.G. Varrik N.M. Vysokotemperaturnyj gibkij voloknistyj teploizoljacionnyj material [High-temperature flexible fibrous heatinsulating material] //Trudy VIAM. 2015. № 1. St. 03 (www.viam-works.ru).
18. Lugovoj A.A., Babashov V.G., Karpov Ju.V. Temperaturoprovodnost' gradientnogo tep-loizoljacionnogo materiala [Temperaturoprovodnost of gradient heatinsulating material] //Trudy VIAM. 2014. №2. St. 02 (www.viam-works.ru).
2. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S. Perspektivnye vysokotemperaturnye keramicheskie kompozicionnye materialy [Perspective high-temperature ceramic composite materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 20–24.
3. Kablov E.N. Tendencii i orientiry innovacionnogo razvitija Rossii [Tendencies and reference points of innovative development of Russia]: Sb. nauch.-inform. mater. 3-e izd. M.: VIAM. 2015. 720 s.
4. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S., Sevast'janov V.G. Vysokotemperaturnye konstrukcionnye kompozicionnye materialy na osnove stekla i keramiki dlja perspektivnyh izdelij aviacionnoj tehniki [High-temperature constructional composite materials on the basis of glass and ceramics for perspective products of aviation engineering] //Steklo i keramika. 2012. №4. S. 7–11.
5. Zimichev A.M., Solov'eva E.P. Volokno dioksida cirkonija dlja vysokotemperaturnogo primenenija (obzor) [Zirconium dioxide fiber for high-temperature application (rеview)] //Aviacionnye materialy i tehnologii. №3. 2014. S. 55–61.
6. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armirujushhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru).
7. Hybrid ceramic material composed of insulating and structural ceramic layers: Pat. US 6733907; publ. 11.05.2004. 14 p.
8. Kompanija Siemens AG [Company Siemens AG]. Available at: http://www.siemens.com (accessed: October 28, 2015).
9. Kompanija Solar Turbines [Company Solar Turbines]. Available at: http:// www.solarturbines.com (accessed: October 28, 2015).
10. Mutassim Z. New Gas Turbines Materials //Turbomashinery International. 2008. September–October. P. 38–42.
11. Fiber reinforced ceramic matrix composite member and method for making: Pat. US 5601674; publ. 11.02.1997. 10 p.
12. Method of producing а ceramic matrix composite: Pat. US 7153379; publ. 26.12.2006. 7 p.
13. Desimone D. Oxide Fibre Reinforced Glass Matrix Composites with ZrO2 interfaces //European Journal of Glass Science & Technology. 2009. P. 1. V. 50. №2. P. 121–126.
14. Mall S., Ahn J.-M. Frequency Effects on Fatigue Behavior of Nextel 720/alumina at Room //Temperature Journal of the European Ceramic Society. 2008. V. 28. №14. P. 2783–2789.
15. Ruggles-Wrenn M.B., Szymczak N.R. Effect of Steam Environment on Compressive Creep Behavior of Nextel 720/alumina Ceramic Composite at 1200°C //Сomposites. 2008. Part A. V. 39. P. 1829–1837.
16. Balinova Ju.A., Shheglova T.M., Ljuljukina G.Ju., Timoshin A.S. Osobennosti formirovanija α-Al2O3 v polikristallicheskih voloknah s soderzhaniem oksida aljuminija 99% v prisutstvii dobavok Fe2O3, MgO, SiO2 [Features of forming α-Al2O3 in polycrystalline fibers with the content of aluminum oxide of 99% in the presence of additives of Fe2O3, MgO, SiO2] //Trudy VIAM. 2014. №3. St. 03 (www.viam-works.ru).
17. Babashov V.G. Varrik N.M. Vysokotemperaturnyj gibkij voloknistyj teploizoljacionnyj material [High-temperature flexible fibrous heatinsulating material] //Trudy VIAM. 2015. № 1. St. 03 (www.viam-works.ru).
18. Lugovoj A.A., Babashov V.G., Karpov Ju.V. Temperaturoprovodnost' gradientnogo tep-loizoljacionnogo materiala [Temperaturoprovodnost of gradient heatinsulating material] //Trudy VIAM. 2014. №2. St. 02 (www.viam-works.ru).