Articles

1.
УДК 669.14
Mikhaylov M.S.1
The study of carbide formation in middle-carbon high-strength steels
The paper examined the process of carbide formation and phase transformations in the medium-carbon high-strength steels for the agricultural industry. The research was performed by analysis of differential dilatometric curves and transmission electron microscopy.
Keywords: middle-carbon highstrength steel, carbides, diathometry, TEM.
Reference List
1. Agrosnabzhencheskaja kompanija OOO «JePF» [Agrosupplying company JSC EPF]. Available at: http://www.agrotambov.ru/texnika/pochvoobrabotka (accessed: December 15, 2015).
2. Monitoring sostojanija predprijatij inzhenerno-tehnologicheskoj infrastruktury APK po tehnicheskomu obsluzhivaniju i remontu otechestvennoj i importnoj sel'hoztehniki [Monitoring of condition of the enterprises of engineering and technological infrastructure of agrarian and industrial complex on technical maintenance and repair of domestic and import agricultural machinery] /pod red. V.I. Chernoivanov. M.: Minselhoz Rossii, 2009. 98 s.
3. Strategija razvitija sel'skohozjajstvennogo mashinostroenija Rossii do 2020 goda [Strategy of development of agricultural mechanical engineering of Russia till 2020] // Rossijskaja associacija proizvoditelej selhoztehniki. Available at: http://www.rosagromash.ru/attachments/Development Strategy.doc (accessed: December 15, 2015).
4. Rjabov V.V., Hlusova E.I., Golosienko S.A., Motovilina G.D. Novye stali dlja selskohozjajstvennogo mashinostroenija [New became for agricultural mechanical engineering] // Metallurg. 2015. №6. S. 59–65.
5. Pacyna J. Dilatometric investigations of phase transformations at heating and cooling of hardened, unalloyed, high-carbon steel // Journal of Achievements in Materials and Manufacturing Engineering. 2011. V. 46. Issue 1. P. 7–17.
6. Grinberg E.M., Alekseev A.A. Rentgenograficheskoe issledovanie nizkotemperaturnogo raspada martensita zakalennoj sredneuglerodistoj stali [Radiographic research of low-temperature disintegration of martensite of the tempered medium carbon steel] // Voprosy materialovedenija. 2015. №3 (83). C. 26–29.
2. Monitoring sostojanija predprijatij inzhenerno-tehnologicheskoj infrastruktury APK po tehnicheskomu obsluzhivaniju i remontu otechestvennoj i importnoj sel'hoztehniki [Monitoring of condition of the enterprises of engineering and technological infrastructure of agrarian and industrial complex on technical maintenance and repair of domestic and import agricultural machinery] /pod red. V.I. Chernoivanov. M.: Minselhoz Rossii, 2009. 98 s.
3. Strategija razvitija sel'skohozjajstvennogo mashinostroenija Rossii do 2020 goda [Strategy of development of agricultural mechanical engineering of Russia till 2020] // Rossijskaja associacija proizvoditelej selhoztehniki. Available at: http://www.rosagromash.ru/attachments/Development Strategy.doc (accessed: December 15, 2015).
4. Rjabov V.V., Hlusova E.I., Golosienko S.A., Motovilina G.D. Novye stali dlja selskohozjajstvennogo mashinostroenija [New became for agricultural mechanical engineering] // Metallurg. 2015. №6. S. 59–65.
5. Pacyna J. Dilatometric investigations of phase transformations at heating and cooling of hardened, unalloyed, high-carbon steel // Journal of Achievements in Materials and Manufacturing Engineering. 2011. V. 46. Issue 1. P. 7–17.
6. Grinberg E.M., Alekseev A.A. Rentgenograficheskoe issledovanie nizkotemperaturnogo raspada martensita zakalennoj sredneuglerodistoj stali [Radiographic research of low-temperature disintegration of martensite of the tempered medium carbon steel] // Voprosy materialovedenija. 2015. №3 (83). C. 26–29.
2.
УДК 621.742.4
Ospennikova O.G.1, L.I. Rassohina1, P.I. Parfenovich1
Development of the compositions оf the model compositions of a new generation with improved characteristics for the manufacture of blades and other turbine engine parts
The results of studies of the development of the composition of the model composition of a new generation for the manufacture of lost wax models of parts of gas turbine engines were discussed. Experimental compositions of the model compositions were tasted and their physic-mechanical properties and rheological characteristics were studied.
The interaction of the model composition with the materials of ceramic forms, including the oxides of rare earth metals was studied. The ceramic forms were made by serial technology using the model composition MK-24. The ceramic forms were filled with alloy VZHL21 on the installation UPPF-U. Quality control of castings by non-destructive methods showed the absence of metallurgical defects.
The developed compositions fully meet of domestic and foreign counterparts, as evidenced by the test results. The following names were assigned to the model compositions: VIAM MK-1 (MK-24), VIAM MK-2 (MK-26), VIAM MK-L (VIAM-2MK).
Keywords: investment casting, model compositions, shell shape, polymeric resin, terephtalic acid, gas-turbine engine blade
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] // Nauka i zhizn'. 2010. №4. S. 2–7.
3. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskie napravlenija razvitija kon-strukcionnyh materialov i tehnologij ih pererabotki dlja aviacionnyh dvigatelej nastojashhego i budushhego [The strategic directions of development of constructional materials and technologies of their processing for aircraft engines of the present and the future] // Avtomaticheskaja svarka. 2013. №10. S. 23–32.
4. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
5. Kablov E.N. Aviacionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossijskoj akademii nauk. 2002. T. 72. №1. S. 3–12.
6. Litye lopatki gazoturbinnyh dvigatelej: splavy, tehnologija, pokrytija. 2-e izd. [Cast blades of gas turbine engines: alloys, technology, coverings. 2nd prod.] / pod obshh. red. E.N. Kablova. M.: Nauka, 2006. 632 s.
7. Proizvodstvo vysokotemperaturnyh lityh lopatok aviacionnyh GTD [Production of high-temperature cast blades of aviation GTЕ] / pod red. S.I. Jacyka. M.: Mashinostroenie, 1995. 256 s.
8. Kablov E.N. Materialy i tehnologii VIAM v konstrukcijah perspektivnyh dvigatelej razrabotki OAO «Aviadvigatel» [Materials and VIAM technologies in designs of perspective engines of development of JSC Aviadvigatel] // Permskie aviacionnye dvigateli. 2014. №31. S. 43–47.
9. Kablov E.N. Razrabotki VIAM dlja gazoturbinnyh dvigatelej i ustanovok [Development of VIAM for gas turbine engines and installations] // Kryl'ja Rodiny. 2010. №4. S. 31–33.
10. Ospennikova O.G., Kablov E.N., Shunkin V.N. Model'nye kompozicii na osnove sinteticheskih materialov dlja lit'ja lopatok GTD [Model compositions on the basis of synthetic materials for molding of blades of GTЕ] // Aviacionnye materialy i tehnologii. 2002. №3. S. 64–67.
11. Ospennikova O.G. Model'nye kompozicii na osnove sinteticheskih materialov dlja lit'ja po vyplavljaemym modeljam detalej GTD: avtoref. dis. … kand. tehn. Nauk [Model compositions on the basis of synthetic materials for investment casting of details of GTЕ: autoref. yew. … Cand.Tech.Sci.]. M. 2000. 32 s.
12. Ospennikova O.G. Issledovanie i razrabotka parametrov tehnologicheskogo processa izgotovlenija modelej iz model'nyh kompozicij na osnove sinteticheskih voskov [Research and development of parameters of technological process of manufacturing of models from model compositions on the basis of synthetic voskov] // Aviacionnye materialy i tehnologii. 2014. № 3. S. 18–21.
13. Ospennikova O.G., Kablov E.N., Shunkin V.N. Razrabotka i issledovanie plastifikatora dlja model'nyh kompozicij na osnove prirodnyh voskov [Development and plasticizer research for model compositions on the basis of natural voskov] / V sb.: Aviacionnye materialy i tehnologii. M.: VIAM. 2002. №3. S. 68–70.
14. Ospennikova O.G. Issledovanie vlijanija napolnitelej na svojstva i stabil'nost' model'nyh kompozicij, vybor optimal'nyh sostavov [Research of influence of fillers on properties and stability of model compositions, choice of optimum structures] // Aviacionnye materialy i tehnologii. 2014. № 3.
S. 14–17.
15. Kablov E.N., Demonis I.M., Deev V.V., Bondarenko O.A., Narskij A.R. Tehnologija udalenija model'nyh mass iz keramicheskih form dlja lit'ja po vyplavljaemym modeljam [Technology of removal of model masses from ceramic casting molds on melted models] // Litejnoe proizvodstvo. 2005. №3. S. 12–14.
2. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] // Nauka i zhizn'. 2010. №4. S. 2–7.
3. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskie napravlenija razvitija kon-strukcionnyh materialov i tehnologij ih pererabotki dlja aviacionnyh dvigatelej nastojashhego i budushhego [The strategic directions of development of constructional materials and technologies of their processing for aircraft engines of the present and the future] // Avtomaticheskaja svarka. 2013. №10. S. 23–32.
4. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
5. Kablov E.N. Aviacionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossijskoj akademii nauk. 2002. T. 72. №1. S. 3–12.
6. Litye lopatki gazoturbinnyh dvigatelej: splavy, tehnologija, pokrytija. 2-e izd. [Cast blades of gas turbine engines: alloys, technology, coverings. 2nd prod.] / pod obshh. red. E.N. Kablova. M.: Nauka, 2006. 632 s.
7. Proizvodstvo vysokotemperaturnyh lityh lopatok aviacionnyh GTD [Production of high-temperature cast blades of aviation GTЕ] / pod red. S.I. Jacyka. M.: Mashinostroenie, 1995. 256 s.
8. Kablov E.N. Materialy i tehnologii VIAM v konstrukcijah perspektivnyh dvigatelej razrabotki OAO «Aviadvigatel» [Materials and VIAM technologies in designs of perspective engines of development of JSC Aviadvigatel] // Permskie aviacionnye dvigateli. 2014. №31. S. 43–47.
9. Kablov E.N. Razrabotki VIAM dlja gazoturbinnyh dvigatelej i ustanovok [Development of VIAM for gas turbine engines and installations] // Kryl'ja Rodiny. 2010. №4. S. 31–33.
10. Ospennikova O.G., Kablov E.N., Shunkin V.N. Model'nye kompozicii na osnove sinteticheskih materialov dlja lit'ja lopatok GTD [Model compositions on the basis of synthetic materials for molding of blades of GTЕ] // Aviacionnye materialy i tehnologii. 2002. №3. S. 64–67.
11. Ospennikova O.G. Model'nye kompozicii na osnove sinteticheskih materialov dlja lit'ja po vyplavljaemym modeljam detalej GTD: avtoref. dis. … kand. tehn. Nauk [Model compositions on the basis of synthetic materials for investment casting of details of GTЕ: autoref. yew. … Cand.Tech.Sci.]. M. 2000. 32 s.
12. Ospennikova O.G. Issledovanie i razrabotka parametrov tehnologicheskogo processa izgotovlenija modelej iz model'nyh kompozicij na osnove sinteticheskih voskov [Research and development of parameters of technological process of manufacturing of models from model compositions on the basis of synthetic voskov] // Aviacionnye materialy i tehnologii. 2014. № 3. S. 18–21.
13. Ospennikova O.G., Kablov E.N., Shunkin V.N. Razrabotka i issledovanie plastifikatora dlja model'nyh kompozicij na osnove prirodnyh voskov [Development and plasticizer research for model compositions on the basis of natural voskov] / V sb.: Aviacionnye materialy i tehnologii. M.: VIAM. 2002. №3. S. 68–70.
14. Ospennikova O.G. Issledovanie vlijanija napolnitelej na svojstva i stabil'nost' model'nyh kompozicij, vybor optimal'nyh sostavov [Research of influence of fillers on properties and stability of model compositions, choice of optimum structures] // Aviacionnye materialy i tehnologii. 2014. № 3.
S. 14–17.
15. Kablov E.N., Demonis I.M., Deev V.V., Bondarenko O.A., Narskij A.R. Tehnologija udalenija model'nyh mass iz keramicheskih form dlja lit'ja po vyplavljaemym modeljam [Technology of removal of model masses from ceramic casting molds on melted models] // Litejnoe proizvodstvo. 2005. №3. S. 12–14.
3.
УДК 669.715
Naumova E.A.1
Effect of heat treatment on the structure and hardening of the eutectic alloy based system Al–Ca with the addition of scandium
It was investigated the changes in the structure and properties of the alloys Al–7,6Cа and Al–7,6Ca–0,3Sc during annealing. Separately considered the influence of changes in eutectic intermetallic compounds to changes in hardness and the impact of nanoparticles Al3Sc in the process of disintegration of the solid solution of aluminum. The disintegration of the aluminum solid solution studied directly in the heating process in the column of an electron microscope.
Keywords: Al–Ca–Sc, nanoparticles Al3Sc, heat treatment, fragmentation, spheroidization, eutectic, hardening.
Reference List
1. Belov N.A., Zolotorevskij V.S. Litejnye splavy na osnove aljuminievo-nikelevoj jevtektiki (nikaliny) kak vozmozhnaja alternativa siluminam [Cast alloys on the basis of aluminum-nickel evtektiki (nikaliny) as possible alternative to silumins] // Cvetnye metally. 2003. №2. S. 99–105.
2. Belov N.A. Fazovyj sostav promyshlennyh i perspektivnyh aljuminievyh splavov [Phase composition of industrial and perspective aluminum alloys]. M.: Izdatel'skij Dom «MISiS», 2010. 511 s.
3. Belov N.A., Shherbakov M.V., Belov V.D. O tehnologichnosti vysokoprochnogo jekonomnolegirovannogo nikalina AC6N0,5Zh pri lite, prokatke i svarke [About technological effectiveness high-strength ekonomnolegirovanny nikalina АЦ6Н0,5Ж when molding, rolling and welding] // Cvetnye metally. 2011. №12. S. 94–98.
4. Belov N.A., Naumova E.A., Eskin D.G. Casting alloys of the Al–Ce–Ni System: Microstructural Approach to Alloy Design // Mater. Sci. Eng. A. 1999. V. 271. P. 134–142.
5. Belov N.A., Hvan A.V. Struktura i mehanicheskie svojstva jevtekticheskih kompozitov na osnove sistemy Al–Ce–Cu [Structure and mechanical properties of evtektichesky composites on the basis of Al-Ce-Cu system] // Cvetnye metally. 2007. №2. S. 91–96.
6. Belov N.A., Khvan A.V. The ternary Al–Ce–Cu phase diagram in the Al-rich corner // Acta Materilia. 2007. V. 55. P. 5473–5482.
7. Belov N.A., Zolotorevskij V.S., Luzgin D.V. Vlijanie termoobrabotki na morfologiju zhelezosoderzhashhih faz v aljuminievyh splavah [Influence of heat treatment on morphology of ferriferous phases in aluminum alloys] // Perspektivnye materialy. 1997. №3. S. 76–86.
8. Jentoni U.U., Jeliot F.R., Boll M.D. Aljuminij. Svojstva i fizicheskoe metallovedenie; per. s angl. [Properties and physical metallurgical science; trans. from English] / pod red. Dzh.E. Hjetcha. M.: Metallurgija, 1989. 324 s.
9. Zolotorevskij V.S., Belov N.A. Metallovedenie litejnyh aljuminievyh splavov [Metallurgical science of cast aluminum alloys]. M.: Izd. dom. «MISiS», 2005. 376 s.
10. Belov N.A., Zolotorevskij V.S. Aljuminievye splavy: metallovedenie, primenenie, standarty: kurs lekcij [Aluminum alloys: metallurgical science, application, standards: course of lectures]. – M.: MISiS.120 s.
11. Naumova E.A., Belov N.A., Bazlova T.A. Vlijanie termicheskoj obrabotki na strukturu i uprochnenie litejnogo aljuminievogo jevtekticheskogo splava Al9Zn4Ca3Mg [Influence of thermal processing on structure and hardening of cast Al9Zn4Ca3Mg aluminum eutectic alloy] // Metallovedenie i termicheskaja obrabotka metallov. 2015. №5. S. 30–36.
12. Naumova E.A., Belov N.A., Bazlova T.A. Jevtekticheskie splavy na osnove sistemy Al–Ca s dobavkoj skandija kak vozmozhnaja alternativa termicheski uprochnjaemyh siluminam [Eutectic alloys on the basis of Al–Ca system with scandium additive as possible alternative thermally strengthened to silumins] // Metallovedenie i termicheskaja obrabotka metallov. 2015. №5.
S. 30–36.
13. Kono N., Tsuchida Y., Muromachi S., Watanabe H. Study of the Al–Ca–Zn ternary phase diagram // Light Metals. V. 35. 1985. P. 574–580.
14. Messing A.F., Adams M.D., Steunenberg R.K. Contribution to the Phase Diagram Calcium-Zinc, Transactions of the ASM. V. 56. 1963. P. 345–350.
15. Toropova L.S., Eskin D.G., Kharakterova M.L., Dobatkina T.V. Advanced aluminum alloys containing scandium: structure and properties. Amsterdam: Gordon and Breach Science Publishers. 1998. 175 p.
16. Marquis E.A., Seidman D.N. Nanoscale structural evolution of Al3Sc precipitates in Al (Sc) alloys // Acta mater. 2001. V. 49. P. 1909–1919.
17. Costa S., Puga H., Barbosa J., Pinto A.M.P. The effect of Sc additions on the microstructure and age hardening behaviour of as cast Al–Sc alloys // Materials and Design. 2012. V. 42. P. 347–352.
18. Mondolfo L.F. Struktura i svojstva splavov; per. s angl. [Structure and properties of alloys; trans. from English]. M.: Metallurgija, 1979. 640 s.
2. Belov N.A. Fazovyj sostav promyshlennyh i perspektivnyh aljuminievyh splavov [Phase composition of industrial and perspective aluminum alloys]. M.: Izdatel'skij Dom «MISiS», 2010. 511 s.
3. Belov N.A., Shherbakov M.V., Belov V.D. O tehnologichnosti vysokoprochnogo jekonomnolegirovannogo nikalina AC6N0,5Zh pri lite, prokatke i svarke [About technological effectiveness high-strength ekonomnolegirovanny nikalina АЦ6Н0,5Ж when molding, rolling and welding] // Cvetnye metally. 2011. №12. S. 94–98.
4. Belov N.A., Naumova E.A., Eskin D.G. Casting alloys of the Al–Ce–Ni System: Microstructural Approach to Alloy Design // Mater. Sci. Eng. A. 1999. V. 271. P. 134–142.
5. Belov N.A., Hvan A.V. Struktura i mehanicheskie svojstva jevtekticheskih kompozitov na osnove sistemy Al–Ce–Cu [Structure and mechanical properties of evtektichesky composites on the basis of Al-Ce-Cu system] // Cvetnye metally. 2007. №2. S. 91–96.
6. Belov N.A., Khvan A.V. The ternary Al–Ce–Cu phase diagram in the Al-rich corner // Acta Materilia. 2007. V. 55. P. 5473–5482.
7. Belov N.A., Zolotorevskij V.S., Luzgin D.V. Vlijanie termoobrabotki na morfologiju zhelezosoderzhashhih faz v aljuminievyh splavah [Influence of heat treatment on morphology of ferriferous phases in aluminum alloys] // Perspektivnye materialy. 1997. №3. S. 76–86.
8. Jentoni U.U., Jeliot F.R., Boll M.D. Aljuminij. Svojstva i fizicheskoe metallovedenie; per. s angl. [Properties and physical metallurgical science; trans. from English] / pod red. Dzh.E. Hjetcha. M.: Metallurgija, 1989. 324 s.
9. Zolotorevskij V.S., Belov N.A. Metallovedenie litejnyh aljuminievyh splavov [Metallurgical science of cast aluminum alloys]. M.: Izd. dom. «MISiS», 2005. 376 s.
10. Belov N.A., Zolotorevskij V.S. Aljuminievye splavy: metallovedenie, primenenie, standarty: kurs lekcij [Aluminum alloys: metallurgical science, application, standards: course of lectures]. – M.: MISiS.120 s.
11. Naumova E.A., Belov N.A., Bazlova T.A. Vlijanie termicheskoj obrabotki na strukturu i uprochnenie litejnogo aljuminievogo jevtekticheskogo splava Al9Zn4Ca3Mg [Influence of thermal processing on structure and hardening of cast Al9Zn4Ca3Mg aluminum eutectic alloy] // Metallovedenie i termicheskaja obrabotka metallov. 2015. №5. S. 30–36.
12. Naumova E.A., Belov N.A., Bazlova T.A. Jevtekticheskie splavy na osnove sistemy Al–Ca s dobavkoj skandija kak vozmozhnaja alternativa termicheski uprochnjaemyh siluminam [Eutectic alloys on the basis of Al–Ca system with scandium additive as possible alternative thermally strengthened to silumins] // Metallovedenie i termicheskaja obrabotka metallov. 2015. №5.
S. 30–36.
13. Kono N., Tsuchida Y., Muromachi S., Watanabe H. Study of the Al–Ca–Zn ternary phase diagram // Light Metals. V. 35. 1985. P. 574–580.
14. Messing A.F., Adams M.D., Steunenberg R.K. Contribution to the Phase Diagram Calcium-Zinc, Transactions of the ASM. V. 56. 1963. P. 345–350.
15. Toropova L.S., Eskin D.G., Kharakterova M.L., Dobatkina T.V. Advanced aluminum alloys containing scandium: structure and properties. Amsterdam: Gordon and Breach Science Publishers. 1998. 175 p.
16. Marquis E.A., Seidman D.N. Nanoscale structural evolution of Al3Sc precipitates in Al (Sc) alloys // Acta mater. 2001. V. 49. P. 1909–1919.
17. Costa S., Puga H., Barbosa J., Pinto A.M.P. The effect of Sc additions on the microstructure and age hardening behaviour of as cast Al–Sc alloys // Materials and Design. 2012. V. 42. P. 347–352.
18. Mondolfo L.F. Struktura i svojstva splavov; per. s angl. [Structure and properties of alloys; trans. from English]. M.: Metallurgija, 1979. 640 s.
4.
УДК 621.762.4.04
THE STUDY OF THE FINE STRUCTURE OF INTERPHASE BOUNDARIES IN THE hard ALLOYs OF THE SYSTEM «CARBIDE CHROMIUM–TITANIUM» BY MEANS OF ELECTRON MICROSCOPY
The paper is devoted to research the structure of interphase boundaries in solid alloys received by explosive pressing the powder mixtures of chromium carbide Cr3C2 and titanium. Using the electron microscopy established that similar boundaries have a final thickness over which there is a smooth change in the chemical composition of the material with complicated crystalline structure.
Keywords: chromium carbide, titanium, explosive compacting of powders.
Reference List
1. Pruemmer R.A., Balakrishna Bhat T., Siva Kumar K., Hokamoto K. Explosive compaction of powders and composites. Enfield, NH: Sci. Publ., 2006. 194 р.
2. LysakV.I., Kuz'minS.V. Svarka vzryvom [Explosion welding]. M.: Mashinostroenie, 2005. 544 s.
3. Krohalev A.V., Harlamov V.O., Kuz'min S.V., Lysak V.I. Zakonomernosti formirovanija tverdyh splavov iz smesej poroshkov karbida hroma s titanom s ispolzovaniem jenergii vzryva [Patterns of forming of hard alloys from mixes of powders of chromium carbide with titanium with use of energy of explosion] // Izvestija vuzov. Poroshkovaja metallurgija i funkcionalnye pokrytija. 2012. №1. C. 32–37.
4. Krohalev A.V., Harlamov V.O., Avdejuk O.A., Kuz'min S.V., Lysak V.I. Komp'juternoe ter-modinamicheskoe modelirovanie fazovogo sostava tvjordyh splavov na osnove karbida hroma [Computer thermodynamic modeling of phase composition of hard alloys on the basis of chromium carbide] // Izvestija Volgogradskogo gosudarstvennogo tehnicheskogo universiteta. Ser.: Aktual'nye problemy upravlenija, vychislitel'noj tehniki i informatiki v tehnicheskih sistemah. 2013. №8 (111). C. 24–26.
5. Poverhnosti razdela v metallicheskih kompozitah [Interfaces in metal composites] / pod red.
A. Metkalfa; per. s angl. M.: Mir, 1978. 437 s.
6. Gusev A.I. Nanomaterialy, nanostruktury, nanotehnologii [Nanomaterials, nanostructures, nanotechnologies]. M.: Fizmatlit, 2005. 416 s.
7. Shabashov V.A., Ovchinnikov V.V., Muljukov P.P., Valiev R.Z., Filippova N.P. Ob obnaruzhenii «zernogranichnoj fazy» v submikrokristallicheskom zheleze messbaujerovskim metodom [About detection of «Zernogranichny phase» in submicrocrystallic iron messbauerovsky method] // Fizika metallov i metallovedenie. 1998. T.85. №3. S. 100–112.
8. Haubold T., Birringer R., Lengeler B., Gleiter H. Exafs studies of nanocrystalline materials exhibiting a new solid state structure with randomly arranged atoms // PhysicsLettersA, 1989. Vol. 135.
P. 461–466.
9. Shtanskij D.V. Prosvechivajushhaja jelektronnaja mikroskopija vysokogo razreshenija v nanotehnologicheskih issledovanijah [Translucent electron microscopy of high resolution in nanotechnological researches] // Rossijskij himicheskij zhurnal. 2002. T. XLVI. №5. C. 81–89.
10. Murty B.S., Datta M.K., Pabi S.K. Structure and thermal stability of nanocrystalline materials// Sadhana. 2003. V. 28. P. 23–45.
11. Keblinski P., Phillpot S.R.,Wolf D., Gleiter H. On the Thermodynamic Stability of Amorphous Intergranular Films in Covalent Materials // Journal of the American Ceramic Society. 1997.
Vol. 80. P. 717–732.
12. Veprek S., Reiprich S.A. A concept for the design of novel superhard coatings. // Thin Solid Films. 1995. Vol. 268. P. 64–71.
13. Shevchenko V.Ja., Hasanov O.L., Jur'ev G.S., Poholkov Ju.P. Nabljudenie osobennostej struktury ul'tradispersnogo sostojanija dioksida cirkonija metodom difrakcii sinhrotronnogo izluchenija [Observation of features of structure of ultradisperse condition of zirconium dioxide by method of diffraction of synchrotron radiation] // Doklady akademii nauk. 2001. T. 377. №6. S. 797–799.
14. Shtansky D.V., Levashov E.A., Sheveiko A.N., Moore J.J. Synthesis and Characterization of
Ti-Si-C-N Films // Metallurgical and Materials Transaction. 1999. Vol. 30, №9, P. 2439–2447.
15. Song J., Kostka A., Veehmayer M., Raabe D. Hierarchical microstructure of explosive joints: Example of titanium to steel cladding. // Materials Science and Engineering: A. 2011. V. 528 (6).
P. 2641–2647.
16. Ushanova Je.A., Nesterova E.V., Petrov S.N., Rybin V.V., Kuz'min S.V., Grinberg B.A. Razrabotka tehnologii podgotovki obrazcov dlja jelektronno-mikroskopicheskih issledovanij nanokristallicheskih zon sceplenija v raznorodnyh soedinenijah na osnove metodov ionnoj polirovki [Development of technology of preparation of samples for electronic and microscopic researches of nanocrystal zones of coupling in diverse connections on the basis of methods of ionic polish] // Voprosy materialovedenija. 2011. №1 (65). C. 110–117.
2. LysakV.I., Kuz'minS.V. Svarka vzryvom [Explosion welding]. M.: Mashinostroenie, 2005. 544 s.
3. Krohalev A.V., Harlamov V.O., Kuz'min S.V., Lysak V.I. Zakonomernosti formirovanija tverdyh splavov iz smesej poroshkov karbida hroma s titanom s ispolzovaniem jenergii vzryva [Patterns of forming of hard alloys from mixes of powders of chromium carbide with titanium with use of energy of explosion] // Izvestija vuzov. Poroshkovaja metallurgija i funkcionalnye pokrytija. 2012. №1. C. 32–37.
4. Krohalev A.V., Harlamov V.O., Avdejuk O.A., Kuz'min S.V., Lysak V.I. Komp'juternoe ter-modinamicheskoe modelirovanie fazovogo sostava tvjordyh splavov na osnove karbida hroma [Computer thermodynamic modeling of phase composition of hard alloys on the basis of chromium carbide] // Izvestija Volgogradskogo gosudarstvennogo tehnicheskogo universiteta. Ser.: Aktual'nye problemy upravlenija, vychislitel'noj tehniki i informatiki v tehnicheskih sistemah. 2013. №8 (111). C. 24–26.
5. Poverhnosti razdela v metallicheskih kompozitah [Interfaces in metal composites] / pod red.
A. Metkalfa; per. s angl. M.: Mir, 1978. 437 s.
6. Gusev A.I. Nanomaterialy, nanostruktury, nanotehnologii [Nanomaterials, nanostructures, nanotechnologies]. M.: Fizmatlit, 2005. 416 s.
7. Shabashov V.A., Ovchinnikov V.V., Muljukov P.P., Valiev R.Z., Filippova N.P. Ob obnaruzhenii «zernogranichnoj fazy» v submikrokristallicheskom zheleze messbaujerovskim metodom [About detection of «Zernogranichny phase» in submicrocrystallic iron messbauerovsky method] // Fizika metallov i metallovedenie. 1998. T.85. №3. S. 100–112.
8. Haubold T., Birringer R., Lengeler B., Gleiter H. Exafs studies of nanocrystalline materials exhibiting a new solid state structure with randomly arranged atoms // PhysicsLettersA, 1989. Vol. 135.
P. 461–466.
9. Shtanskij D.V. Prosvechivajushhaja jelektronnaja mikroskopija vysokogo razreshenija v nanotehnologicheskih issledovanijah [Translucent electron microscopy of high resolution in nanotechnological researches] // Rossijskij himicheskij zhurnal. 2002. T. XLVI. №5. C. 81–89.
10. Murty B.S., Datta M.K., Pabi S.K. Structure and thermal stability of nanocrystalline materials// Sadhana. 2003. V. 28. P. 23–45.
11. Keblinski P., Phillpot S.R.,Wolf D., Gleiter H. On the Thermodynamic Stability of Amorphous Intergranular Films in Covalent Materials // Journal of the American Ceramic Society. 1997.
Vol. 80. P. 717–732.
12. Veprek S., Reiprich S.A. A concept for the design of novel superhard coatings. // Thin Solid Films. 1995. Vol. 268. P. 64–71.
13. Shevchenko V.Ja., Hasanov O.L., Jur'ev G.S., Poholkov Ju.P. Nabljudenie osobennostej struktury ul'tradispersnogo sostojanija dioksida cirkonija metodom difrakcii sinhrotronnogo izluchenija [Observation of features of structure of ultradisperse condition of zirconium dioxide by method of diffraction of synchrotron radiation] // Doklady akademii nauk. 2001. T. 377. №6. S. 797–799.
14. Shtansky D.V., Levashov E.A., Sheveiko A.N., Moore J.J. Synthesis and Characterization of
Ti-Si-C-N Films // Metallurgical and Materials Transaction. 1999. Vol. 30, №9, P. 2439–2447.
15. Song J., Kostka A., Veehmayer M., Raabe D. Hierarchical microstructure of explosive joints: Example of titanium to steel cladding. // Materials Science and Engineering: A. 2011. V. 528 (6).
P. 2641–2647.
16. Ushanova Je.A., Nesterova E.V., Petrov S.N., Rybin V.V., Kuz'min S.V., Grinberg B.A. Razrabotka tehnologii podgotovki obrazcov dlja jelektronno-mikroskopicheskih issledovanij nanokristallicheskih zon sceplenija v raznorodnyh soedinenijah na osnove metodov ionnoj polirovki [Development of technology of preparation of samples for electronic and microscopic researches of nanocrystal zones of coupling in diverse connections on the basis of methods of ionic polish] // Voprosy materialovedenija. 2011. №1 (65). C. 110–117.
5.
category: Testing of materials and structures
УДК 539.26:548.4
Treninkov I.A.2
High speed x-ray laboratory setup for determination of single-сrystal orientation and evaluation of structure perfection
We have demonstrated a high speed of operation and an efficiency of the experimental laboratory setup under control of the software module including a system of recognition of the single-crystal Laue diffraction pattern.
Keywords: Laue method, determination of a single-crystal orientation.
Reference List
1. Buades A., Coll B., Morel J.M. A non local algorithm for image denoising // IEEE Computer Vision and Pattern Recognition. 2005. V. 2. P. 60–65.
2. Denisov V.N., Lemesh I.G., Martjushov S.Ju., Poljakov S.N. Laboratornaja avtomatizirovannaja sistema kontrolja struktury kristallov almaza v rezhime real'nogo vremeni [The laboratory automated monitoring system of structure of crystals of diamond in real time] // Himija i himicheskaja tehnologija. 2013. T. 56. №7. S. 34–38.
3. Huang X.R. LauePt, a graphical-user-interface program for simulating and analyzing white-beam X-ray diffraction Laue patterns // Journal of Applied Crystallography. 2010. V. 43. P. 926–928.
4. Polyakov S.N., Denisov V.N. et al. Formation of Boron-Carbon Nanosheets and Bilayers in Boron-Doped Diamond: Origin of Metallicity and Superconductivity // Nanoscale Research Letters. 2016. DOI 10.1186/s11671-015-1215-6.
2. Denisov V.N., Lemesh I.G., Martjushov S.Ju., Poljakov S.N. Laboratornaja avtomatizirovannaja sistema kontrolja struktury kristallov almaza v rezhime real'nogo vremeni [The laboratory automated monitoring system of structure of crystals of diamond in real time] // Himija i himicheskaja tehnologija. 2013. T. 56. №7. S. 34–38.
3. Huang X.R. LauePt, a graphical-user-interface program for simulating and analyzing white-beam X-ray diffraction Laue patterns // Journal of Applied Crystallography. 2010. V. 43. P. 926–928.
4. Polyakov S.N., Denisov V.N. et al. Formation of Boron-Carbon Nanosheets and Bilayers in Boron-Doped Diamond: Origin of Metallicity and Superconductivity // Nanoscale Research Letters. 2016. DOI 10.1186/s11671-015-1215-6.
6.
category: Heat-resistant materials
УДК 66.017
Studying the phase formation processes and sintering of aluminum silicate glass-ceramics, synthesized by sol-gel method, and composite materials based on it, with high dilatometry, differential scanning calorimetry, electron microscopy and x-ray analysis
Using sol-gel method, spark plasma sintering and hot pressing the powders of Sr-anorthite glass-ceramics and composite materials on its basis are synthesized. The phase for-mation processes and sintering proceeding at their synthesis are studied. Work is carried out within implementation of the complex direction 14.1 «Constructional ceramic composite materials (CCM)» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
Keywords: composite materials, Sr-anorthite, glass-ceramics, sol-gel, silicon nitride, spark plasma sintering
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Beall G.H. Refractory glass-ceramics based on alkaline earth aluminosilicates // J. of the European Ceramic Society. 2009. № 29. Р. 1211–1219.
3. Refractory glass ceramics: pat. 2009/0056380Al US; publ. 05.03.09.
4. Bansal N.P. Fiber-Reinforced Strontium Aluminosilicate Glass-Ceramic Composites // J. of Materials Research. 1997. №12. V. 3. P. 745–753.
5. Ye F., Liu L., Wang Y., Zhou Y., Peng B., Meng Q. Preparation and mechanical properties of carbon nanotube reinforced barium aluminosilicate glass–ceramic composites// Scripta Materialia. 2006. №55. Р. 911–914.
6. Liu L., Ye F., Zhou Y., Zhang Z. Microstructure compatibility and its effect on the mechanical properties of the a-SiC/b-Si3N4 co-reinforced barium aluminosilicate glass ceramic matrix composites // Scripta Materialia. 2010. №63. P. 166–169.
7. Sung Y.M., Kim S. Sintering and crystallization of off-stoichiometric SrO∙Al2O3∙2SiO2 glasses //
J. of Materials Science. 2000. №35. Р. 4293–4299.
8. Roether J.A., Boccaccini A.R. Dispersion-reinforced glass and glass-ceramic matrix composites: Handbook of ceramic composites. Boston: Kluwer Academic Publishers, 2005. P. 485–511.
9. Boccaccini А.R. Continuous fibre reinforced glass and glass-ceramic matrix composites: Handbook of ceramic composites. Boston: Kluwer Academic Publishers, 2005. P. 461–485.
10. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.St. Perspective high-temperature ceramic composite materials // Russian Journal of General Chemistry. 2011. V. 81. №5.
P. 986–991.
11. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S., Sevast'janov V.G. Vysokotemperaturnye konstrukcionnye kompozicionnye materialy na osnove stekla i keramiki dlja perspektivnyh izdelij aviacionnoj tehniki [High-temperature constructional composite materials on the basis of glass and ceramics for perspective products of aviation engineering] // Steklo i keramika. 2012. №4. S. 7–11.
12. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.St. Perspektivnye vysokotemperaturnye keramicheskie kompozicionnye materialy [Perspective high-temperature ceramic composite materials] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 20–24.
13. Sorokin O.Ju., Grashhenkov D.V., Solncev S.St., Evdokimov S.A. Keramicheskie kompozicionnye materialy s vysokoj okislitel'noj stojkost'ju dlja perspektivnyh letatel'nyh apparatov (obzor) [Ceramic composite materials with high oxidizing firmness for perspective flight vehicles (rеview)] // Trudy VIAM: jelektron. nauch.-tehnich. zhurnal. 2014. №6. St. 08. Available at: http://www.viam-works.ru (accessed: March 15, 2016). DOI: 10.18577/2307-6046-2014-0-6-8-8.
14. Lebedeva Ju.E., Popovich N.V., Orlova L.A. Zashhitnye vysokotemperaturnye pokrytija dlja kompozicionnyh materialov na osnove SiC [Protective high temperature coatings for composite materials on the basis of SiC] // Trudy VIAM: jelektron. nauch.-tehnich. zhurnal. 2013. №2. St. 06. Available at: http://www.viam-works.ru (accessed: March 15, 2016).
15. Vicens J., Farizy G., Chermant J.-L. Microstructures of ceramic composites with glass–ceramic matrices reinforced by SiC-based fibres // Aerospace Science and Technology. 2003. № 7.
Р. 135–146.
16. Chajnikova A.S., Orlova L.A., Popovich N.V., Lebedeva Ju.E., Solncev S.St. Dispersno-uprochnennye kompozity na osnove steklo/steklokristallicheskih matric: svojstva i oblasti primenenija (obzor) [Dispersnouprochnennye composites on basis glass / steklokristallicheskikh matrixes: properties and scopes (rеview)] // Aviacionnye materialy i tehnologii. 2014. №3. S. 45–54.
17. Ye F., Liu L., Zhang J., Meng Q. Synthesis of 30 wt%BAS/Si3N4 composite by spark plasma sintering // Composites Science and Technology. 2008. №68. P. 1073–1079.
18. Ye F., Liu L., Zhang J., Iwasa M., Su C.-L. Synthesis of silicon nitride-barium aluminosilicate self-reinforced ceramic composite by a two-step pressureless sintering // Composites Science and Technology. 2005. №65. P. 2233–2239.
2. Beall G.H. Refractory glass-ceramics based on alkaline earth aluminosilicates // J. of the European Ceramic Society. 2009. № 29. Р. 1211–1219.
3. Refractory glass ceramics: pat. 2009/0056380Al US; publ. 05.03.09.
4. Bansal N.P. Fiber-Reinforced Strontium Aluminosilicate Glass-Ceramic Composites // J. of Materials Research. 1997. №12. V. 3. P. 745–753.
5. Ye F., Liu L., Wang Y., Zhou Y., Peng B., Meng Q. Preparation and mechanical properties of carbon nanotube reinforced barium aluminosilicate glass–ceramic composites// Scripta Materialia. 2006. №55. Р. 911–914.
6. Liu L., Ye F., Zhou Y., Zhang Z. Microstructure compatibility and its effect on the mechanical properties of the a-SiC/b-Si3N4 co-reinforced barium aluminosilicate glass ceramic matrix composites // Scripta Materialia. 2010. №63. P. 166–169.
7. Sung Y.M., Kim S. Sintering and crystallization of off-stoichiometric SrO∙Al2O3∙2SiO2 glasses //
J. of Materials Science. 2000. №35. Р. 4293–4299.
8. Roether J.A., Boccaccini A.R. Dispersion-reinforced glass and glass-ceramic matrix composites: Handbook of ceramic composites. Boston: Kluwer Academic Publishers, 2005. P. 485–511.
9. Boccaccini А.R. Continuous fibre reinforced glass and glass-ceramic matrix composites: Handbook of ceramic composites. Boston: Kluwer Academic Publishers, 2005. P. 461–485.
10. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.St. Perspective high-temperature ceramic composite materials // Russian Journal of General Chemistry. 2011. V. 81. №5.
P. 986–991.
11. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S., Sevast'janov V.G. Vysokotemperaturnye konstrukcionnye kompozicionnye materialy na osnove stekla i keramiki dlja perspektivnyh izdelij aviacionnoj tehniki [High-temperature constructional composite materials on the basis of glass and ceramics for perspective products of aviation engineering] // Steklo i keramika. 2012. №4. S. 7–11.
12. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.St. Perspektivnye vysokotemperaturnye keramicheskie kompozicionnye materialy [Perspective high-temperature ceramic composite materials] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 20–24.
13. Sorokin O.Ju., Grashhenkov D.V., Solncev S.St., Evdokimov S.A. Keramicheskie kompozicionnye materialy s vysokoj okislitel'noj stojkost'ju dlja perspektivnyh letatel'nyh apparatov (obzor) [Ceramic composite materials with high oxidizing firmness for perspective flight vehicles (rеview)] // Trudy VIAM: jelektron. nauch.-tehnich. zhurnal. 2014. №6. St. 08. Available at: http://www.viam-works.ru (accessed: March 15, 2016). DOI: 10.18577/2307-6046-2014-0-6-8-8.
14. Lebedeva Ju.E., Popovich N.V., Orlova L.A. Zashhitnye vysokotemperaturnye pokrytija dlja kompozicionnyh materialov na osnove SiC [Protective high temperature coatings for composite materials on the basis of SiC] // Trudy VIAM: jelektron. nauch.-tehnich. zhurnal. 2013. №2. St. 06. Available at: http://www.viam-works.ru (accessed: March 15, 2016).
15. Vicens J., Farizy G., Chermant J.-L. Microstructures of ceramic composites with glass–ceramic matrices reinforced by SiC-based fibres // Aerospace Science and Technology. 2003. № 7.
Р. 135–146.
16. Chajnikova A.S., Orlova L.A., Popovich N.V., Lebedeva Ju.E., Solncev S.St. Dispersno-uprochnennye kompozity na osnove steklo/steklokristallicheskih matric: svojstva i oblasti primenenija (obzor) [Dispersnouprochnennye composites on basis glass / steklokristallicheskikh matrixes: properties and scopes (rеview)] // Aviacionnye materialy i tehnologii. 2014. №3. S. 45–54.
17. Ye F., Liu L., Zhang J., Meng Q. Synthesis of 30 wt%BAS/Si3N4 composite by spark plasma sintering // Composites Science and Technology. 2008. №68. P. 1073–1079.
18. Ye F., Liu L., Zhang J., Iwasa M., Su C.-L. Synthesis of silicon nitride-barium aluminosilicate self-reinforced ceramic composite by a two-step pressureless sintering // Composites Science and Technology. 2005. №65. P. 2233–2239.
7.
category: Structural metallic materials
УДК 669.018
Doriomedov M.S.1
Advanced materials for arctic application
The article discusses the materials for use in cold climates developed in the recent time, potential consumers and producers of such materials, as well as other companies whose activity is connected with development of materials
Keywords: material, cold climate.
Reference List
1. Van Sciver S.W. Helium Cryogenics. New York: Springer-Verlag New York Inc., 2012. 470 p.
2. Duthil P. Material Properties at Low Temperature / In: CERN Yellow Report. CERN-2014-005.
P. 77–95.
3. Reed R.P., Clark A.F. Materials at low temperatures. Metals Park, Ohio: American society for metals, 1983. 589 p.
4. Wigley D.A. Mechanical Properties of Materials at Low Temperatures // The International Cryogenics Monograph Series. New York: Plenum Press, 1971. 325 p.
5. Hartwig G., Evans D. Nonmetallic Materials and Composites at Low Temperatures 3. New York: Springer Science+Business Media, 1986. 220 p.
6. Low temperature properties of nickel alloy steels / In: Nickel alloy steels data book. Section 4. Bulletin C. New York: International Nickel Company Inc., 1975. 36 p.
7. Singh R. Arctic Pipeline Planning. Design, Construction and Equipment. Elsevier Inc. 2013. 120 p.
8. Dynkin A.A., Vernikovskij V.A., Dobrecov N.L., Kablov E.N. i dr. Nauchno-tehnicheskie problemy osvoenija Arktiki [Scientific and technical problems of development of the Arctic]. M.: Nauka. 2015. 490 s.
9. Kablov E.N., Starcev O.V. Fundamental'nye i prikladnye issledovanija korrozii i starenija materialov v klimaticheskih uslovijah (obzor) [Basic and applied researches of corrosion and aging of materials in weather conditions (rеview)] // Aviacionnye materialy i tehnologii. 2015. №4 (37).
S. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
10. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
11. Naumov I.S., Petrova A.P., Eliseev O.A., Barbotko S.L. Jeksperimental'nye issledovanija v oblasti sozdanija kremnijorganicheskih rezin s ponizhennoj gorjuchest'ju [Pilot studies in the field of creation of organic silicon rubbers with the lowered combustibility] // Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2015. №10. St. 09. Available at: http://www.viam-works.ru (accessed: Deсember 05, 2015). DOI: 10.18577/2307-6046-2015-0-10-9-9.
12. Chajkun A.M., Eliseev O.A., Naumov I.S., Venediktova M.A. Osobennosti morozostojkih rezin na osnove razlichnyh kauchukov [Features of cold-resistant rubbers on the basis of different rubbers] // Trudy VIAM. 2013. №12 St. 04. Available at: http://www.viam-works.ru (accessed: Deсember 05, 2015).
13. Kablov E.N., Kirillov V.N., Zhirnov A.D., Starcev O.V., Vapirov Ju.M. Centry dlja klimaticheskih ispytanij aviacionnyh PKM [The centers for climatic tests of aviation PСM] // Aviacionnaja promyshlennost'. 2009. №4. S. 36–46.
14. Oryshhenko A.S., Osokin E.P., Barahtina N.N., Dric A.M., Sosedkov S.M. Aljuminievo-magnievyj splav 1565Ch dlja kriogennogo primenenija [Aluminum magnesium alloy 1565Ч for cryogenic application] // Cvetnye metally. 2012. №11. S. 84–90.
15. Pavlova V.I., Zykov S.A., Osokin E.P. Ocenka vlijanija konstruktivno-tehnologicheskih faktorov svarki na svojstva svarnyh soedinenij iz aljuminievo-magnievyh splavov pri kriogennoj temperature [Impact assessment of constructive technology factors of welding on properties of welded connections from aluminum magnesium alloys at cryogenic temperature] // Voprosy materialovedenija. 2014. №2 (78). S. 138–154.
16. Oryshhenko A.S., Pavlova V.I., Zykov S.A., Osokin E.P. Svojstva svarnyh soedinenij aljuminievo-magnievyh splavov kriogennogo naznachenija [Properties of welded compounds of aluminum magnesium alloys of cryogenic assignment] // Cvetnye metally. 2014. №3. S. 64–70.
17. Available at: http://www.aec.org (accessed: December 05, 2015).
18. Noji Y., Yokozeki T., Ogasawara T., Ogihara S. Mechanical properties of new β-Ti alloy/CFRP bonded structure at cryogenic temperatures / In:16th international conference on composite materials. 2007. 8 p.
19. Available at: http://www.asmeconferences.org/ (accessed: December 05, 2015).
20. Available at: http://www.totalmateria.com/page.aspx?ID=CheckArticle&LN=RU&site=kts&NM=61
(accessed: December 05, 2015).
21. Available at: http://globalsupplyline.com.au/lf2_lcb_lcc_low_temp_valves/ (accessed: December 05, 2015).
2. Duthil P. Material Properties at Low Temperature / In: CERN Yellow Report. CERN-2014-005.
P. 77–95.
3. Reed R.P., Clark A.F. Materials at low temperatures. Metals Park, Ohio: American society for metals, 1983. 589 p.
4. Wigley D.A. Mechanical Properties of Materials at Low Temperatures // The International Cryogenics Monograph Series. New York: Plenum Press, 1971. 325 p.
5. Hartwig G., Evans D. Nonmetallic Materials and Composites at Low Temperatures 3. New York: Springer Science+Business Media, 1986. 220 p.
6. Low temperature properties of nickel alloy steels / In: Nickel alloy steels data book. Section 4. Bulletin C. New York: International Nickel Company Inc., 1975. 36 p.
7. Singh R. Arctic Pipeline Planning. Design, Construction and Equipment. Elsevier Inc. 2013. 120 p.
8. Dynkin A.A., Vernikovskij V.A., Dobrecov N.L., Kablov E.N. i dr. Nauchno-tehnicheskie problemy osvoenija Arktiki [Scientific and technical problems of development of the Arctic]. M.: Nauka. 2015. 490 s.
9. Kablov E.N., Starcev O.V. Fundamental'nye i prikladnye issledovanija korrozii i starenija materialov v klimaticheskih uslovijah (obzor) [Basic and applied researches of corrosion and aging of materials in weather conditions (rеview)] // Aviacionnye materialy i tehnologii. 2015. №4 (37).
S. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
10. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
11. Naumov I.S., Petrova A.P., Eliseev O.A., Barbotko S.L. Jeksperimental'nye issledovanija v oblasti sozdanija kremnijorganicheskih rezin s ponizhennoj gorjuchest'ju [Pilot studies in the field of creation of organic silicon rubbers with the lowered combustibility] // Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2015. №10. St. 09. Available at: http://www.viam-works.ru (accessed: Deсember 05, 2015). DOI: 10.18577/2307-6046-2015-0-10-9-9.
12. Chajkun A.M., Eliseev O.A., Naumov I.S., Venediktova M.A. Osobennosti morozostojkih rezin na osnove razlichnyh kauchukov [Features of cold-resistant rubbers on the basis of different rubbers] // Trudy VIAM. 2013. №12 St. 04. Available at: http://www.viam-works.ru (accessed: Deсember 05, 2015).
13. Kablov E.N., Kirillov V.N., Zhirnov A.D., Starcev O.V., Vapirov Ju.M. Centry dlja klimaticheskih ispytanij aviacionnyh PKM [The centers for climatic tests of aviation PСM] // Aviacionnaja promyshlennost'. 2009. №4. S. 36–46.
14. Oryshhenko A.S., Osokin E.P., Barahtina N.N., Dric A.M., Sosedkov S.M. Aljuminievo-magnievyj splav 1565Ch dlja kriogennogo primenenija [Aluminum magnesium alloy 1565Ч for cryogenic application] // Cvetnye metally. 2012. №11. S. 84–90.
15. Pavlova V.I., Zykov S.A., Osokin E.P. Ocenka vlijanija konstruktivno-tehnologicheskih faktorov svarki na svojstva svarnyh soedinenij iz aljuminievo-magnievyh splavov pri kriogennoj temperature [Impact assessment of constructive technology factors of welding on properties of welded connections from aluminum magnesium alloys at cryogenic temperature] // Voprosy materialovedenija. 2014. №2 (78). S. 138–154.
16. Oryshhenko A.S., Pavlova V.I., Zykov S.A., Osokin E.P. Svojstva svarnyh soedinenij aljuminievo-magnievyh splavov kriogennogo naznachenija [Properties of welded compounds of aluminum magnesium alloys of cryogenic assignment] // Cvetnye metally. 2014. №3. S. 64–70.
17. Available at: http://www.aec.org (accessed: December 05, 2015).
18. Noji Y., Yokozeki T., Ogasawara T., Ogihara S. Mechanical properties of new β-Ti alloy/CFRP bonded structure at cryogenic temperatures / In:16th international conference on composite materials. 2007. 8 p.
19. Available at: http://www.asmeconferences.org/ (accessed: December 05, 2015).
20. Available at: http://www.totalmateria.com/page.aspx?ID=CheckArticle&LN=RU&site=kts&NM=61
(accessed: December 05, 2015).
21. Available at: http://globalsupplyline.com.au/lf2_lcb_lcc_low_temp_valves/ (accessed: December 05, 2015).
8.
category: Scientific reports
УДК 771.531.37:778.33
Review of radiographic films of Russian market and their technical specifications
Conducted a review of radiographic films of Russian market and their technical specifications. Reviewed by briefly topical questions for the consumer of radiographic films. Made comparison characteristics Russian and foreign films.
Shows that most characteristics of radiographic films of domestic producers have qualitatively and quantitatively different from those adopted in the world. Therefore compare the specified radiographic films on a uniform classification system incorrectly and cannot be reliably. The main reason is that radiographic films standardized according to different parameters and different test methods.
Keywords: radiographic films, comparison of characteristics, classification systems, difference in testmethods.
9.
category: Composite materials
УДК 620.1:678.8
Microstructure and Properties of the Structural Composite Material at Static Interlaminar Fracture Toughness Test
Experimental data on the interlaminar fracture toughness GIс and GIIс of layered polymeric composite materials based on carbon and glass fillers of various textile forms are given. The temperature effect in the range from 24 to 150°C on the interlayer fracture toughness under mode II for unidirectional CFRP T-800HB/VSE-1212 and particular fractographic destruction are described.
Keywords: : interlaminar fracture toughness, fracture mode, laminate
Reference List
1. Kablov E.N. Materialy i himicheskie tehnologii dlja aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6.
S. 520–530.
2. Erasov V.S., Jakovlev N.O., Nuzhnyj G.A. Kvalifikacionnye ispytanija i issledovanija prochnosti aviacionnyh materialov [Qualification tests and researches of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 440–447.
3. Dimitrienko Ju.I., Gubareva E.A., Sborshhikov S.V., Erasov V.S., Jakovlev N.O. Chislennoe modelirovanie i jeksperimental'noe issledovanie deformirovanija uprugoplasticheskih plastin pri smjatii [Numerical modeling and pilot study of deformation of elasto-plastic plates when crushing] // Matematicheskoe modelirovanie i chislennye metody. 2015. №1 (5). S. 67–82.
4. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
5. Dimitrienko Ju.I., Fedonjuk N.N., Gubareva E.A., Sborshhikov S.V., Prozorovskij A.A., Erasov V.S., Jakovlev N.O. Modelirovanie i razrabotka trehslojnyh kompozicionnyh materialov s sotovym zapolnitelem [Modeling and development of three-layered composite materials with cellular filler] // Vestnik Moskovskogo gosudarstvennogo tehnicheskogo universiteta im. N.Je. Baumana. Ser.: Estestvennye nauki. 2014. №5 (56). S. 66–81.
6. Kablov E.N., Kondrashov S.V., Jurkov G.Ju. Perspektivy ispol'zovanija uglerodsoderzhashhih nanochastic v svjazujushhih dlja polimernyh kompozicionnyh materialov [Perspectives of use of carbon-containing nanoparticles in binding for polymeric composite materials] // Rossijskie nanotehnologii. 2013. T. 8. №3–4. S. 24–42.
7. Erasov V.S., Jakovlev N.O., Gladkih A.V., Goncharov A.A., Skiba O.V., Bojarskih A.V., Podzhivotov N.Ju. Ispytanija krupnogabaritnyh konstrukcij [Tests of large-size designs] // Kompozitnyj mir. 2014. №1. S. 72–78.
8. Vlasenko F.S., Raskutin A.E. Primenenie polimernyh kompozicionnyh materialov v stroitel'nyh konstrukcijah [Application of polymeric composite materials in construction designs]// Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2013. №8. St. 03. Available at: http://www.viam-works.ru (accessed: Deсember 14, 2015).
9. Jakovlev N.O., Erasov V.S., Popov Ju.O., Kolokol'ceva T.V. Razdir po mode III tonkolistovyh polimernyh kompozicionnyh materialov dlja izdelij aviacionnoj tehniki [Tearing on mode of the III tonkolistovy polymeric composite materials for products of aviation engineering] // Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2014. №6. St. 12. Available at: http://www.viam-works.ru (accessed: Deсember 14, 2015). DOI: 10.18577/2307-6046-2014-6-12-12.
10. Borshhev A.V., Gusev Ju.A. Polimernye kompozicionnye materialy v avtomobil'noj promyshlennosti [Polymeric composite materials in automotive industry] // Aviacionnye materialy i tehnologii. 2014. №S2. S. 34–38.
11. Mahsidov V.V., Jakovlev N.O., Il'ichev A.V., Shienok A.M. Izmerenie deformacii ugleplastika s pomoshh'ju integrirovannyh v ego strukturu volokonnyh brjeggovskih reshetok [Deformation measurement ugleplastika by means of the fiber Bragg grids integrated into its structure] // Mehanika kompozicionnyh materialov i konstrukcij. 2015. T. 21. №3. S. 360–369.
12. Amelina E.V., Golushko S.K., Erasov V.S., Idimeshev S.V., Nemirovskij Ju.V., Semisalov B.V., Jurchenko A.V., Jakovlev N.O. O nelinejnom deformirovanii ugleplastikov: jeksperiment, model', raschet [About nonlinear deformation ugleplastikov: experiment, model, calculation] // Vychislitel'nye tehnologii. 2015. T. 20. №5. S. 27–52.
13. Dimitrienko Ju.I., Jakovlev D.O. Asimptoticheskaja teorija termouprugosti mnogoslojnyh kompozitnyh plastin [Asymptotic theory of thermoelasticity of composite composite wafers] // Mehanika kompozicionnyh materialov i konstrukcij. 2014. T. 20. №2. S. 259–282.
14. Guljaev A.I., Tenchurin T.H. Perspektivy primenenija voloknistyh struktur, poluchennyh sposobom jelektroformovanija, dlja povyshenija udaro- i treshhinostojkosti polimernyh kompozicionnyh materialov [Perspectives of application of the fibrous structures received in the way of electroformation, for increase udaro-and treshchinostoykost of polymeric composite materials] // Konstrukcii iz kompozicionnyh materialov. 2013. №3. C. 22–26.
15. Jakovlev N.O., Lucenko A.N., Artem'eva I.V. Metody opredelenija mezhsloevoj treshhinostojkosti sloistyh materialov [Methods of definition of mezhsloyevy treshchinostoykost of layered materials] // Vse materialy. Jenciklopedicheskij spravochnik. 2015. №10. S. 57–62.
16. Jakovlev N.O., Erasov V.S., Petrova A.P. Sravnenie normativnyh baz razlichnyh stran po ispytaniju kleevyh soedinenij materialov [Comparison of regulatory bases of the different countries on testing of glued joints of materials] // Vse materialy. Jenciklopedicheskij spravochnik. 2014. №7.
S. 2–8.
17. Jakovlev N.O., Guljaev A.I., Lashov O.A. Treshhinostojkost' sloistyh polimernyh kompozicionnyh materialov (obzor) [Treshchinostoykost of layered polymeric composite materials (rеview)]// Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2016. (v pechati). Available at: http://www.viam-works.ru
18. Krylov V.D., Jakovlev N.O., Kurganova Ju.A., Lashov O.A. Mezhsloevaja treshhinostojkost' konstrukcionnyh polimernyh kompozicionnyh materialov [Mezhsloyevy treshchinostoykost of constructional polymeric composite materials] // Aviacionnye materialy i tehnologii. 2016. №1.
S. 79–85.
19. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokolenija [Ugleplastiki and fibreglasses of new generation] // Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2013. №4. St. 09. Available at: http://www.viam-works.ru (accessed: Deсember 14, 2015).
20. Babin A.N. Svjazujushhie dlja polimernyh kompozicionnyh materialov novogo pokolenija [Binding for polymeric composite materials of new generation] // Trudy VIAM. 2013. №4. St. 11. Available at: http://www.viam-works.ru (accessed: Deсember 14, 2015).
21. Muhametov R.R., Shimkin A.A., Guljaev A.I., Kucherovskij A.I. Ftalonitril'noe svjazujushhee dlja termostojkih kompozitov [Ftalonitrilnoye binding for heat-resistant composites] // Materialovedenie. 2015. №11. S. 48–53.
22. Guljaev A.I., Zhuravleva P.L. Metodologicheskie voprosy analiza fazovoj morfologii materialov na osnove sinteticheskih smol, modificirovannyh termoplastami (obzor) [Methodological questions of the analysis of phase morphology of materials on the basis of the synthetic pitches modified by thermoplastics (rеview)] // Trudy VIAM. 2015. №6. St. 09. Available at: http://www.viam-works.ru (accessed: Deсember 14, 2015). DOI: 10.18577/2307-6046-2015-6-9-9.
23. Finogenov G.N., Erasov V.S. Treshhinostojkost' polimernyh kompozitov pri mezhslojnyh otryve i sdvige [Treshchinostoykost of polymeric composites at interlaminar separation and shift] // Aviacionnye materialy i tehnologii. 2003. №3. S. 62–67.
24. Brian G. Falzon, Stephen C. Hawkins, Chi P. Huynh, Racim Radjef, Callum Brown. An investigation of Mode I and Mode II fracture toughness enhancement using aligned carbon nanotubes forests at the crack interface // Composite Structures. 2013. V. 106. P. 65–73.
25. Guljaev A.I., Jakovlev N.O., Krylov V.D., Shurtakov S.V. Mikromehanika razrushenija stekloplastikov pri rassloenii po modam I i II [Microfracture mechanics of fibreglasses at stratification on modes of I and II] // Materialovedenie. 2016. (v pechati).
26. Guljaev A.I., Zhuravleva P.L., Filonova E.V., Antjufeeva N.V. Vlijanie otverditelja kataliticheskogo dejstvija na morfologiju mikrostruktury jepoksidnyh ugleplastikov [Influence of hardener of catalytic action on morphology of microstructure epoxy ugleplastikov] // Materialovedenie. 2015. №5. S. 41–46.
S. 520–530.
2. Erasov V.S., Jakovlev N.O., Nuzhnyj G.A. Kvalifikacionnye ispytanija i issledovanija prochnosti aviacionnyh materialov [Qualification tests and researches of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 440–447.
3. Dimitrienko Ju.I., Gubareva E.A., Sborshhikov S.V., Erasov V.S., Jakovlev N.O. Chislennoe modelirovanie i jeksperimental'noe issledovanie deformirovanija uprugoplasticheskih plastin pri smjatii [Numerical modeling and pilot study of deformation of elasto-plastic plates when crushing] // Matematicheskoe modelirovanie i chislennye metody. 2015. №1 (5). S. 67–82.
4. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
5. Dimitrienko Ju.I., Fedonjuk N.N., Gubareva E.A., Sborshhikov S.V., Prozorovskij A.A., Erasov V.S., Jakovlev N.O. Modelirovanie i razrabotka trehslojnyh kompozicionnyh materialov s sotovym zapolnitelem [Modeling and development of three-layered composite materials with cellular filler] // Vestnik Moskovskogo gosudarstvennogo tehnicheskogo universiteta im. N.Je. Baumana. Ser.: Estestvennye nauki. 2014. №5 (56). S. 66–81.
6. Kablov E.N., Kondrashov S.V., Jurkov G.Ju. Perspektivy ispol'zovanija uglerodsoderzhashhih nanochastic v svjazujushhih dlja polimernyh kompozicionnyh materialov [Perspectives of use of carbon-containing nanoparticles in binding for polymeric composite materials] // Rossijskie nanotehnologii. 2013. T. 8. №3–4. S. 24–42.
7. Erasov V.S., Jakovlev N.O., Gladkih A.V., Goncharov A.A., Skiba O.V., Bojarskih A.V., Podzhivotov N.Ju. Ispytanija krupnogabaritnyh konstrukcij [Tests of large-size designs] // Kompozitnyj mir. 2014. №1. S. 72–78.
8. Vlasenko F.S., Raskutin A.E. Primenenie polimernyh kompozicionnyh materialov v stroitel'nyh konstrukcijah [Application of polymeric composite materials in construction designs]// Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2013. №8. St. 03. Available at: http://www.viam-works.ru (accessed: Deсember 14, 2015).
9. Jakovlev N.O., Erasov V.S., Popov Ju.O., Kolokol'ceva T.V. Razdir po mode III tonkolistovyh polimernyh kompozicionnyh materialov dlja izdelij aviacionnoj tehniki [Tearing on mode of the III tonkolistovy polymeric composite materials for products of aviation engineering] // Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2014. №6. St. 12. Available at: http://www.viam-works.ru (accessed: Deсember 14, 2015). DOI: 10.18577/2307-6046-2014-6-12-12.
10. Borshhev A.V., Gusev Ju.A. Polimernye kompozicionnye materialy v avtomobil'noj promyshlennosti [Polymeric composite materials in automotive industry] // Aviacionnye materialy i tehnologii. 2014. №S2. S. 34–38.
11. Mahsidov V.V., Jakovlev N.O., Il'ichev A.V., Shienok A.M. Izmerenie deformacii ugleplastika s pomoshh'ju integrirovannyh v ego strukturu volokonnyh brjeggovskih reshetok [Deformation measurement ugleplastika by means of the fiber Bragg grids integrated into its structure] // Mehanika kompozicionnyh materialov i konstrukcij. 2015. T. 21. №3. S. 360–369.
12. Amelina E.V., Golushko S.K., Erasov V.S., Idimeshev S.V., Nemirovskij Ju.V., Semisalov B.V., Jurchenko A.V., Jakovlev N.O. O nelinejnom deformirovanii ugleplastikov: jeksperiment, model', raschet [About nonlinear deformation ugleplastikov: experiment, model, calculation] // Vychislitel'nye tehnologii. 2015. T. 20. №5. S. 27–52.
13. Dimitrienko Ju.I., Jakovlev D.O. Asimptoticheskaja teorija termouprugosti mnogoslojnyh kompozitnyh plastin [Asymptotic theory of thermoelasticity of composite composite wafers] // Mehanika kompozicionnyh materialov i konstrukcij. 2014. T. 20. №2. S. 259–282.
14. Guljaev A.I., Tenchurin T.H. Perspektivy primenenija voloknistyh struktur, poluchennyh sposobom jelektroformovanija, dlja povyshenija udaro- i treshhinostojkosti polimernyh kompozicionnyh materialov [Perspectives of application of the fibrous structures received in the way of electroformation, for increase udaro-and treshchinostoykost of polymeric composite materials] // Konstrukcii iz kompozicionnyh materialov. 2013. №3. C. 22–26.
15. Jakovlev N.O., Lucenko A.N., Artem'eva I.V. Metody opredelenija mezhsloevoj treshhinostojkosti sloistyh materialov [Methods of definition of mezhsloyevy treshchinostoykost of layered materials] // Vse materialy. Jenciklopedicheskij spravochnik. 2015. №10. S. 57–62.
16. Jakovlev N.O., Erasov V.S., Petrova A.P. Sravnenie normativnyh baz razlichnyh stran po ispytaniju kleevyh soedinenij materialov [Comparison of regulatory bases of the different countries on testing of glued joints of materials] // Vse materialy. Jenciklopedicheskij spravochnik. 2014. №7.
S. 2–8.
17. Jakovlev N.O., Guljaev A.I., Lashov O.A. Treshhinostojkost' sloistyh polimernyh kompozicionnyh materialov (obzor) [Treshchinostoykost of layered polymeric composite materials (rеview)]// Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2016. (v pechati). Available at: http://www.viam-works.ru
18. Krylov V.D., Jakovlev N.O., Kurganova Ju.A., Lashov O.A. Mezhsloevaja treshhinostojkost' konstrukcionnyh polimernyh kompozicionnyh materialov [Mezhsloyevy treshchinostoykost of constructional polymeric composite materials] // Aviacionnye materialy i tehnologii. 2016. №1.
S. 79–85.
19. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokolenija [Ugleplastiki and fibreglasses of new generation] // Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2013. №4. St. 09. Available at: http://www.viam-works.ru (accessed: Deсember 14, 2015).
20. Babin A.N. Svjazujushhie dlja polimernyh kompozicionnyh materialov novogo pokolenija [Binding for polymeric composite materials of new generation] // Trudy VIAM. 2013. №4. St. 11. Available at: http://www.viam-works.ru (accessed: Deсember 14, 2015).
21. Muhametov R.R., Shimkin A.A., Guljaev A.I., Kucherovskij A.I. Ftalonitril'noe svjazujushhee dlja termostojkih kompozitov [Ftalonitrilnoye binding for heat-resistant composites] // Materialovedenie. 2015. №11. S. 48–53.
22. Guljaev A.I., Zhuravleva P.L. Metodologicheskie voprosy analiza fazovoj morfologii materialov na osnove sinteticheskih smol, modificirovannyh termoplastami (obzor) [Methodological questions of the analysis of phase morphology of materials on the basis of the synthetic pitches modified by thermoplastics (rеview)] // Trudy VIAM. 2015. №6. St. 09. Available at: http://www.viam-works.ru (accessed: Deсember 14, 2015). DOI: 10.18577/2307-6046-2015-6-9-9.
23. Finogenov G.N., Erasov V.S. Treshhinostojkost' polimernyh kompozitov pri mezhslojnyh otryve i sdvige [Treshchinostoykost of polymeric composites at interlaminar separation and shift] // Aviacionnye materialy i tehnologii. 2003. №3. S. 62–67.
24. Brian G. Falzon, Stephen C. Hawkins, Chi P. Huynh, Racim Radjef, Callum Brown. An investigation of Mode I and Mode II fracture toughness enhancement using aligned carbon nanotubes forests at the crack interface // Composite Structures. 2013. V. 106. P. 65–73.
25. Guljaev A.I., Jakovlev N.O., Krylov V.D., Shurtakov S.V. Mikromehanika razrushenija stekloplastikov pri rassloenii po modam I i II [Microfracture mechanics of fibreglasses at stratification on modes of I and II] // Materialovedenie. 2016. (v pechati).
26. Guljaev A.I., Zhuravleva P.L., Filonova E.V., Antjufeeva N.V. Vlijanie otverditelja kataliticheskogo dejstvija na morfologiju mikrostruktury jepoksidnyh ugleplastikov [Influence of hardener of catalytic action on morphology of microstructure epoxy ugleplastikov] // Materialovedenie. 2015. №5. S. 41–46.