Articles

1.
category: Heat-resistant materials
УДК 621.186.4
Varrik N.M.1
Thermal insulation materials for modern planes
Data on flexible heat-insulating materials for aircraft, their main characteristics and methods of their receiving are provided in the article. Development of sound thermal insulation materials for planes with the lowered specific weight, high operational properties and meeting the requirements of fire safety is one of actual tasks for developers of materials now. Ensuring reliable work of thermal insulation in the conditions of cyclic thermal loadings and vibrations and an opportunity to resist to extreme heatings in ignition cases – an important task during creation of materials for perspective planes. This article presents the review of the types of thermal insulation and methods of increase of its operational properties existing now at the market.
Keywords: thermal insulation, fire barrier, fire blocking, acoustical insulation mat, heat-resistant fiber.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
3. Grashhenkov D.V., Shhetanov B.V., Tinjakova E.V., Shheglova T.M. O vozmozhnosti ispol'zovanija kvarcevogo volokna v kachestve svjazujushhego pri poluchenii legkovesnogo teplozashhitnogo materiala na osnove volokon Al2O3 [About possibility of use of quartz fiber as a superficial heat-shielding material binding at receiving on the basis of Al2O3 fibers] // Aviacionnye materialy i tehnologii. 2011. №4. S. 8‒14.
4. Ivahnenko Yu.A., Babashov V.G., Zimichev A.M., Tinyakova E.V. Vysokotemperaturnye teploizolyacionnye i teplozashhitnye materialy na osnove volokon tugoplavkih soedinenij [High-temperature heatinsulating and heat-protective materials on the basis of fibers of high-melting connections] // Aviacionnye materialy i tehnologii. 2012. №S. S. 380–386.
5. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: March 21, 2016).
6. Kablov E.N. Razrabotki VIAM dlja gazoturbinnyh dvigatelej i ustanovok [Development of VIAM for gas-turbine engines and installations] // Krylja Rodiny. 2010. №4. S. 31–33.
7. Normy letnoj godnosti samoletov transportnoj kategorii [Standards of the flight validity of planes of transport category]: AP-25. 3-e izd.: utv. Postanovleniem 28-j sessii Soveta po aviacii i ispol'zovaniju vozdushnogo prostranstva 11.12.2008. M.: Aviaizdat, 2009. Prilozhenie F. Ch. 4.
S. 246–253.
8. Alumina: pat. 1425934 UK; publ. 21.12.72. 11 p.
9. Process for producing alumina fiber: pat. 3950478 US; publ. 13.04.76. 6 p.
10. Fiber masses: pat. 4011651 US; publ. 15.03.77. 5 p.
11. Kompanija Unifrax [Company Unifrax]. Available at: http:// www.unifrax.com (accessed: June 01, 2016).
12. Process for producing laminated sheet comprising alumina fiber precursor: pat. 6602369 US; publ. 05.08.03. 6 p.
13. Process for producing continuous alumina fiber blanket: pat. 7033537 US; publ. 25.04.06. 9 p.
14. Alumina fiber structure and process for its production: pat. 4931239 US; publ. 14.04.92. 8 p.
15. Flexible nonwoven mat: pat. 5380580 US; publ. 10.01.95. 11 p.
16. Method of making fiber-based products and their use: pat. 6733628 US; publ. 11.05.04. 3 p.
17. Burn through resistant systems for transportation, especially aircraft: pat. 6565040 US; publ. 20.05.03. 6 p.
18. Composite laminate for a thermal and acoustic insulation blanket: pat. 8292027 US; publ. 23.10.12. 6 p.
19. Fire barrier film laminate: pat. 7767597 US; publ. 03.08.10. 14 p.
20. Modularized insulation systems, apparatus and methods: pat. 7083147 US; publ. 01.08.06. 23 p.
21. Laminate sheet material for fare barrier applications: pat. 6670291 US; publ. 30.12.03. 28 p.
22. Flexible composite multiple layer fire resistant insulation structure: pat. 8062985 US; publ. 22.11.11. 20 p.
23. Ognestojkij sloistyj zvukoteploizolirujushhij material [Fire-resistant layered sound heatisolating material]: pat. 2465145 Ros. Federacija; opubl. 27.10.12. Bjul. №30. 7 s.
24. Balinova Ju.A., Kirienko T.A. Nepreryvnye vysokotemperaturnye oksidnye volokna dlja teplozashhitnyh, teploizoljacionnyh i kompozicionnyh materialov [Continuous high-temperature oksidny fibers for heat-shielding, heatinsulating and composite materials]// Vse materialy. Jen-ciklopedicheskij spravochnik. 2012. №4. S. 24–29.
25. Sposob poluchenija vysokotemperaturnogo volokna na osnove oksida aljuminija [Way of receiving high-temperature fiber on the basis of aluminum oxide]: pat. 2212388 Ros. Federacija; opubl. 20.09.03. Bjul. №34. 6 s.
26. Aviacionnye materialy: spravochnik v 12 t [Aviation materials: the directory in 12 vol.]. M.: VIAM, 2011. T. 9. Teplozashhit-nye, teploizoljacionnye i kompozicionnye materialy, vysokotemperaturnye nemetalli-cheskie pokrytija. S. 31.
27. Babashov V.G., Varrik N.M. Vysokotemperaturnyj gibkij voloknistyj teploizolyacionnyj material [High-temperature flexible fibrous insulation material] // Trudy VIAM :electron. nauch.-tehnich. zhurn. 2015. №1. St. 03. Available at: http://viam-works.ru (accessed: March 21, 2016).
28. Ivahnenko Ju.A., Kuzmin V.V., Bespalov A.S. Sostojanie i perspektivy razvitija teplo-zvukoizoljacionnyh pozharobezopasnyh materialov [Condition and prospects of development of heatsound-proof fireproof materials] // Problemy bezopasnosti poletov. 2014. №7. S. 27–30.
29. Zimichev A.M., Varrik N.M. K voprosu primeneniya diskretnyh volokon iz tugoplavkih oksidov dlya formirovaniya serdechnika termostojkih uplotnitelnyh shnurov [On the issue of application of discrete fibers of refractory oxides to form cores of heat-resistant sealing cords] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 07. Available at: http://www.viam-works.ru (accessed: March 21, 2016).
30. Sposob poluchenija voloknistogo teploizoljacionnogo materiala [Way of receiving a fibrous heatinsulating material]: pat. 2553870 Ros. Federacija; opubl. 20.06.15. Bjul. №17. 8 s.
31. Multi-layer fire protection material: pat. 2011126957 US; publ. 02.06.11. 8 p.
32. Fire and heat resistant materials: pat. 2279084 UK; publ. 21.12.94. 42 p.
2. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
3. Grashhenkov D.V., Shhetanov B.V., Tinjakova E.V., Shheglova T.M. O vozmozhnosti ispol'zovanija kvarcevogo volokna v kachestve svjazujushhego pri poluchenii legkovesnogo teplozashhitnogo materiala na osnove volokon Al2O3 [About possibility of use of quartz fiber as a superficial heat-shielding material binding at receiving on the basis of Al2O3 fibers] // Aviacionnye materialy i tehnologii. 2011. №4. S. 8‒14.
4. Ivahnenko Yu.A., Babashov V.G., Zimichev A.M., Tinyakova E.V. Vysokotemperaturnye teploizolyacionnye i teplozashhitnye materialy na osnove volokon tugoplavkih soedinenij [High-temperature heatinsulating and heat-protective materials on the basis of fibers of high-melting connections] // Aviacionnye materialy i tehnologii. 2012. №S. S. 380–386.
5. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: March 21, 2016).
6. Kablov E.N. Razrabotki VIAM dlja gazoturbinnyh dvigatelej i ustanovok [Development of VIAM for gas-turbine engines and installations] // Krylja Rodiny. 2010. №4. S. 31–33.
7. Normy letnoj godnosti samoletov transportnoj kategorii [Standards of the flight validity of planes of transport category]: AP-25. 3-e izd.: utv. Postanovleniem 28-j sessii Soveta po aviacii i ispol'zovaniju vozdushnogo prostranstva 11.12.2008. M.: Aviaizdat, 2009. Prilozhenie F. Ch. 4.
S. 246–253.
8. Alumina: pat. 1425934 UK; publ. 21.12.72. 11 p.
9. Process for producing alumina fiber: pat. 3950478 US; publ. 13.04.76. 6 p.
10. Fiber masses: pat. 4011651 US; publ. 15.03.77. 5 p.
11. Kompanija Unifrax [Company Unifrax]. Available at: http:// www.unifrax.com (accessed: June 01, 2016).
12. Process for producing laminated sheet comprising alumina fiber precursor: pat. 6602369 US; publ. 05.08.03. 6 p.
13. Process for producing continuous alumina fiber blanket: pat. 7033537 US; publ. 25.04.06. 9 p.
14. Alumina fiber structure and process for its production: pat. 4931239 US; publ. 14.04.92. 8 p.
15. Flexible nonwoven mat: pat. 5380580 US; publ. 10.01.95. 11 p.
16. Method of making fiber-based products and their use: pat. 6733628 US; publ. 11.05.04. 3 p.
17. Burn through resistant systems for transportation, especially aircraft: pat. 6565040 US; publ. 20.05.03. 6 p.
18. Composite laminate for a thermal and acoustic insulation blanket: pat. 8292027 US; publ. 23.10.12. 6 p.
19. Fire barrier film laminate: pat. 7767597 US; publ. 03.08.10. 14 p.
20. Modularized insulation systems, apparatus and methods: pat. 7083147 US; publ. 01.08.06. 23 p.
21. Laminate sheet material for fare barrier applications: pat. 6670291 US; publ. 30.12.03. 28 p.
22. Flexible composite multiple layer fire resistant insulation structure: pat. 8062985 US; publ. 22.11.11. 20 p.
23. Ognestojkij sloistyj zvukoteploizolirujushhij material [Fire-resistant layered sound heatisolating material]: pat. 2465145 Ros. Federacija; opubl. 27.10.12. Bjul. №30. 7 s.
24. Balinova Ju.A., Kirienko T.A. Nepreryvnye vysokotemperaturnye oksidnye volokna dlja teplozashhitnyh, teploizoljacionnyh i kompozicionnyh materialov [Continuous high-temperature oksidny fibers for heat-shielding, heatinsulating and composite materials]// Vse materialy. Jen-ciklopedicheskij spravochnik. 2012. №4. S. 24–29.
25. Sposob poluchenija vysokotemperaturnogo volokna na osnove oksida aljuminija [Way of receiving high-temperature fiber on the basis of aluminum oxide]: pat. 2212388 Ros. Federacija; opubl. 20.09.03. Bjul. №34. 6 s.
26. Aviacionnye materialy: spravochnik v 12 t [Aviation materials: the directory in 12 vol.]. M.: VIAM, 2011. T. 9. Teplozashhit-nye, teploizoljacionnye i kompozicionnye materialy, vysokotemperaturnye nemetalli-cheskie pokrytija. S. 31.
27. Babashov V.G., Varrik N.M. Vysokotemperaturnyj gibkij voloknistyj teploizolyacionnyj material [High-temperature flexible fibrous insulation material] // Trudy VIAM :electron. nauch.-tehnich. zhurn. 2015. №1. St. 03. Available at: http://viam-works.ru (accessed: March 21, 2016).
28. Ivahnenko Ju.A., Kuzmin V.V., Bespalov A.S. Sostojanie i perspektivy razvitija teplo-zvukoizoljacionnyh pozharobezopasnyh materialov [Condition and prospects of development of heatsound-proof fireproof materials] // Problemy bezopasnosti poletov. 2014. №7. S. 27–30.
29. Zimichev A.M., Varrik N.M. K voprosu primeneniya diskretnyh volokon iz tugoplavkih oksidov dlya formirovaniya serdechnika termostojkih uplotnitelnyh shnurov [On the issue of application of discrete fibers of refractory oxides to form cores of heat-resistant sealing cords] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 07. Available at: http://www.viam-works.ru (accessed: March 21, 2016).
30. Sposob poluchenija voloknistogo teploizoljacionnogo materiala [Way of receiving a fibrous heatinsulating material]: pat. 2553870 Ros. Federacija; opubl. 20.06.15. Bjul. №17. 8 s.
31. Multi-layer fire protection material: pat. 2011126957 US; publ. 02.06.11. 8 p.
32. Fire and heat resistant materials: pat. 2279084 UK; publ. 21.12.94. 42 p.
2.
УДК 669.715
Naumova E.A.1, Nikitin B.K.1, Gromov A.V.1
Investigation of technological and mechanical properties of new casting eutectic aluminum alloys of type "Natural Composites"
The structure, castability and deformability of some ternary eutectic alloys (Al–Ca–Ni,
Al–Ca–Cu, Al–Ca–Fe and Al–Ca–Si) in the as-cast and heat treated states were studied. The ternary eutectics (Al)+Al4Ca+Х (where X – ternary compound) had a much finer structure as compared to the Al–Si eutectic, which suggests a possibility for the creation of the so-called natural composites produced by conventional casting.
Keywords: Al–Ca–Ni, Al–Ca–Cu, Al–Ca–Fe and Al–Ca–Si phase diagrams, heat treatment, microstructure, castability, hot tearing, deformability.
Reference List
1. Zolotorevskiy V.S., Belov N.A. Metallovedenie liteynykh alyuminievykh splavov [Metallurgical science of foundry aluminum alloys]. M.: MISiS, 2005. 376 s.
2. Dobatkin V.I., Elagin V.I., Fedorov V.M. Bystrozakristallizovannye alyuminievye splavy [Quick-crystalline aluminum alloys]. M.: VILS, 1995. 245 s.
3. Kurganova Yu.A., Kolmakov A.G. Konstruktsionnye metallomatrichnye kompozitsionnye ma-terialy [Constructional metalmatrix composite materials]: ucheb. posob. M.: Izd-vo MGTU im. N.E. Baumana, 2015. 143 s.
4. Kuzmich Yu.V., Kolesnikova I.T., Serba V.I., Freydin B.M. Mekhanicheskoe legirovanie [Mechanical alloying]. M.: Nauka, 2005. 213 s.
5. Kiparisov S.S., Libenson G.A. Poroshkovaya metallurgiya [Powder metallurgy]. M.: Metallurgiya, 1991. 432 s.
6. Belov N.A., Zolotorevskiy V.S., Luzgin D.V. Vliyanie termoobrabotki na morfologiyu zhelezosoderzhashchikh faz v alyuminievykh splavakh [Influence of heat treatment on morphology of ferriferous phases in aluminum alloys] // Perspektivnye materialy. №3. 1997. S. 76–86.
7. Belov N.A., Naumova E.A., Eskin D.G. Casting alloys of the Al–Ce–Ni system: microstructural approach to alloy design // Mater. Sci. Eng. A, 1999. V. 271. P. 134–142.
8. Belov N.A., Khvan A.V. Struktura i mekhanicheskie svoystva evtekticheskikh kompozitov na os-nove sistemy Al–Ce–Cu [Structure and mechanical properties of evtektichesky composites on the basis of Al–Ce–Cu system] // Tsvetnye metally. 2007. №2. S. 91–96.
9. Mondolfo L.F. Struktura i svoystva splavov: per. s angl. [Structure and properties of alloys: trans. from English]. M.: Metallurgiya, 1979. 640 s.
10. Belov N.A. Fazovyy sostav promyshlennykh i perspektivnykh alyuminievykh splavov [Phase structure of industrial and perspective aluminum alloys]. M.: Izd. Dom MISiS, 2010. 511 s.
11. Ternary alloys: a comprehensive compendium of evaluated constitutional data and phase diagrams /ed. by G. Petzow, G. Effenberg. Wiley-VCH. 1990. V. 3. 647 p.
12. Naumova E.A., Belov N.A., Bazlova T.A. Vliyanie termoobrabotki na strukturu i uprochne-nie liteynogo alyuminievogo evtekticheskogo splava Al9Zn4Ca3Mg [Influence of heat treatment on structure and hardening of a foundry aluminum evtektichesky alloy of Al9Zn4Ca3Mg] // Metallovedenie i ter-micheskaya obrabotka metallov, 2015. №5. S. 30–36.
13. Belov N.A., Naumova E.A., Bazlova T.A., Alekseeva E.V. Struktura, fazovyy sostav i uprochnenie alyuminievykh splavov sistemy Al–Ca–Mg–Sc [Structure, phase structure and hardening of aluminum alloys of Al–Ca–Mg–Sc system] // Fizika metallov i metallovedenie. 2016. T. 117. S. 208–215.
14. Belov N.A., Naumova E.A., Alabin A.N., Matveeva I.A. Effect of Scandium on Structure and Hardening of Al–Ca Eutectic Alloys // Journal of Alloys and Compaunds. 2015. V. 646. P. 741–747.
15. Kompaniya Thermo-Calc Software [Company Thermo-Calc Software]. Available at: http://www.thermocalc.com (accessed: May 16, 2016).
2. Dobatkin V.I., Elagin V.I., Fedorov V.M. Bystrozakristallizovannye alyuminievye splavy [Quick-crystalline aluminum alloys]. M.: VILS, 1995. 245 s.
3. Kurganova Yu.A., Kolmakov A.G. Konstruktsionnye metallomatrichnye kompozitsionnye ma-terialy [Constructional metalmatrix composite materials]: ucheb. posob. M.: Izd-vo MGTU im. N.E. Baumana, 2015. 143 s.
4. Kuzmich Yu.V., Kolesnikova I.T., Serba V.I., Freydin B.M. Mekhanicheskoe legirovanie [Mechanical alloying]. M.: Nauka, 2005. 213 s.
5. Kiparisov S.S., Libenson G.A. Poroshkovaya metallurgiya [Powder metallurgy]. M.: Metallurgiya, 1991. 432 s.
6. Belov N.A., Zolotorevskiy V.S., Luzgin D.V. Vliyanie termoobrabotki na morfologiyu zhelezosoderzhashchikh faz v alyuminievykh splavakh [Influence of heat treatment on morphology of ferriferous phases in aluminum alloys] // Perspektivnye materialy. №3. 1997. S. 76–86.
7. Belov N.A., Naumova E.A., Eskin D.G. Casting alloys of the Al–Ce–Ni system: microstructural approach to alloy design // Mater. Sci. Eng. A, 1999. V. 271. P. 134–142.
8. Belov N.A., Khvan A.V. Struktura i mekhanicheskie svoystva evtekticheskikh kompozitov na os-nove sistemy Al–Ce–Cu [Structure and mechanical properties of evtektichesky composites on the basis of Al–Ce–Cu system] // Tsvetnye metally. 2007. №2. S. 91–96.
9. Mondolfo L.F. Struktura i svoystva splavov: per. s angl. [Structure and properties of alloys: trans. from English]. M.: Metallurgiya, 1979. 640 s.
10. Belov N.A. Fazovyy sostav promyshlennykh i perspektivnykh alyuminievykh splavov [Phase structure of industrial and perspective aluminum alloys]. M.: Izd. Dom MISiS, 2010. 511 s.
11. Ternary alloys: a comprehensive compendium of evaluated constitutional data and phase diagrams /ed. by G. Petzow, G. Effenberg. Wiley-VCH. 1990. V. 3. 647 p.
12. Naumova E.A., Belov N.A., Bazlova T.A. Vliyanie termoobrabotki na strukturu i uprochne-nie liteynogo alyuminievogo evtekticheskogo splava Al9Zn4Ca3Mg [Influence of heat treatment on structure and hardening of a foundry aluminum evtektichesky alloy of Al9Zn4Ca3Mg] // Metallovedenie i ter-micheskaya obrabotka metallov, 2015. №5. S. 30–36.
13. Belov N.A., Naumova E.A., Bazlova T.A., Alekseeva E.V. Struktura, fazovyy sostav i uprochnenie alyuminievykh splavov sistemy Al–Ca–Mg–Sc [Structure, phase structure and hardening of aluminum alloys of Al–Ca–Mg–Sc system] // Fizika metallov i metallovedenie. 2016. T. 117. S. 208–215.
14. Belov N.A., Naumova E.A., Alabin A.N., Matveeva I.A. Effect of Scandium on Structure and Hardening of Al–Ca Eutectic Alloys // Journal of Alloys and Compaunds. 2015. V. 646. P. 741–747.
15. Kompaniya Thermo-Calc Software [Company Thermo-Calc Software]. Available at: http://www.thermocalc.com (accessed: May 16, 2016).
3.
category: Composite materials
УДК 66.017
Senatorova O.G.1, Lukina N.Ph.1, Shestov V.V.1
Use of glue prepregs in layered hybrid designs on basis aluminum-lithium alloys and SIAL
It is opportunity to improve weight efficiency by application of laminated skin from hybrid material which consists of high-strength Al–Li alloy sheets and aluminium-glassplastic Laminate SIAL-type. Such materials have high resistance of fatigue crack growth, lower density and high strength in comparison with monolithic materials.
The structure and properties of prototype of hybrid wing panel of Tu-204 aircraft were evaluated was produced in commercial conditions, OAO «Voronezh Aircraft JVC» (VASO). Standard samples were used for tensile, compression low fatigue tests and for determination of FGGR (dl/dN). Hybrid laminated materials are recommended to use for lower and upper wing panels, as a result of the structural components: adhesive prepregs, reinforced glassfibers and Al–Li alloy sheets.
Keywords: hybrid laminated material, wing panel, skin, stringer, Al–Li alloy, adhesive prepreg, SIAL.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic di-rections of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Fridlyander I.N., Kolobnev N.I., Sandler V.S. Alyuminiy-litievye splavy: entsiklopediya [Aluminum-lithium alloys: encyclopedia]. M.: Mashinostroenie, 2001. T. II-3: Tsvetnye metally i splavy. Kompozitsionnye metallicheskie materialy / pod red. I.N. Fridlyandera, E.N. Kablova. S. 156–185.
3. Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi [History of aviation materials science. VIAM – 80 years: years and people] / pod obshh. red. E.N. Kablova. M.: VIAM, 2012. 520 s.
4. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
5. Fridlyander I.N. Vospominaniya o sozdanii aviakosmicheskoy i atomnoy tekhniki iz alyuminievykh splavov [Memories of creation of aerospace and nuclear equipment from aluminum alloys]. M.: Nauka, 2005. 275 s.
6. Kablov E.N. VIAM: prodolzhenie puti [VIAM: way continuation] // Nauka v Rossii. 2012. №3.
S. 36–44.
7. Antipov V.V., Senatorova O.G., Lukina N.F. i dr. Sloistye metallopolimernye kompozicionnye materialy [Layered metalpolymeric composite materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 226–230.
8. Senatorova O.G., Antipov V.V., Lukina N.F. i dr. Vysokoprochnye, treshchinostoykie, legkie alyumostekloplastiki SIAL – perspektivnye materialy dlya aviatsionnykh konstruktsiy [High-strength, treshchinostoyky, easy алюмостеклопластики SIAL – perspective materials for aviation designs] // TLS. 2009. №2. S. 29–31.
9. Antipov V.V., Lavro N.A., Sukhoivanenko V.V., Senatorova O.G. Opyt primeneniya Al–Li splava 1441 i sloistogo materiala na ego osnove v gidrosamoletakh [Experience of application of Al-Li of an alloy 1441 and a layered material on its basis in seaplanes] // Tsvetnye metally. 2013. №8.
S. 46–50.
10. Laminate of metal sheets and polymer: pat. 0256370 US; publ. 20.10.11.
11. Plokker M., Daverschot D., Beumler T. Hybrid structure solution for the A400M wing attachment frames // 25th ICAF Symposium. Rotterdam. May 27–29, 2009.
12. Roebroeks G.H.J.J., Hooijmeijer P.A., Kroon E.J., Heinimann M.B. The development of central // First International Conference on Damage Tolerance of Aircraft Structures. 2009.
13. Mashinostroenie: entsiklopediya v 40 t [Mechanical engineering: the encyclopedia in 40 vol.]. M.: Mashinostroenie, 2004. T. ΙV-21: Samolety i vertolety, kn. 2: Proektirovanie, kon-struktsii i sistemy samoletov i vertoletov. C. 226–252.
14. OST1 12085–77. Bolty s umenshennoy shestigrannoy golovkoy iz titanovogo splava dlya soedineniy so spetsial'noy perekhodnoy posadkoy [Bolts with the reduced six-sided head from a titanic alloy for connections with special transitional landing].
15. Kablov E.N., Antipov V.V., Senatorova O.G., Lukina N.F. Novyy klass sloistykh alyumostekloplastikov na osnove alyuminiy-litievogo splava 1441 s ponizhennoy plotnostyu [New class layered алюмостеклопластиков on a basis aluminum-lithium alloy 1441 with a lowered density] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 174–184.
16. Shestov V.V., Antipov V.V., Senatorova O.G., Sidelnikov V.V. Konstruktsionnye sloistye alyumostekloplastiki 1441-SIAL [Constructional layered aluminum fibreglasses 1441-SIAL] //MiTOM. 2013. №9. S. 28–32.
17. Fridlyander I.N., Anikhovskaya L.I., Senatorova O.G. i dr. Kleenye metallicheskie i sloistye kompozity: entsiklopediya [Glued metal and layered composites: encyclopedia]. M.: Mash-inostroenie, 2001. T. II-3: Tsvetnye metally i splavy. Kompozitsionnye metallicheskie materialy / pod red. I.N. Fridlyandera, E.N. Kablova. S. 814–832.
18. Lukina N.F., Dementeva L.A., Serezhenkov A.A., Kotova E.V., Senatorova O.G., Sidel'nikov V.V. Kleevye prepregi i kompozitsionnye sloistye alyumopolimernye materialy na ikh osnove [Glue препреги and composite layered alyumopolimerny materials on their basis] // Rossiyskiy khimicheskiy zhurnal. 2010. №1. S. 53–56.
19. Dementeva L.A., Serezhenkov A.A., Lukina N.F., Kucevich K.E. Kleevye prepregi i sloistye materialy na ih osnove [Adhesive prepregs and layered materials on their basis] // Avi-acionnye materialy i tehnologii. 2013. №2. S. 19–21.
20. Skornyakov V.I., Antipov V.V. Innovacionnyj harakter sotrudnichestva OAO «KUMZ» i FGUP «VIAM» [Innovative nature of cooperation of JSC «KUMZ» and FSUE «VIAM»] // Aviacionnye materialy i tehnologii. 2012. №2. S. 11–14.
21. Sloistye kompozitsionnye materialy–98 [Layered composite materials-98] // Sb. tr. Mezhdunar. konf. Volgograd, 1998. 351 s.
22. Antipov V.V., Senatorova O.G., Beumber T., Lipma M. Investigation of a new fibre metal laminate (FML) family on the base of Al–Li alloy with lower density // Materials Science and Engineering Techology. 2012. №4. P. 350–355.
23. Fibre Metal Laminates / ed. by Ad. Vlot, Yan. W. Gunnik. Academic Publishers, 2001. 527 р.
24. Erasov V.S., Nuzhnyj G.A., Grinevich A.V., Terehin A.L. Treshhinostojkost aviacionnyh materialov v processe ispytaniya na ustalost [Crack growth resistance of aviation materials in fatigue testing] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №10. St. 06. Available at: http://www.viam-works.ru (accessed: March 14, 2016).
25. Oreshko E.I., Erasov V.S., Podjivotov N.Yu. Vybor shemy raspolozheniya vysokomodulnyh sloev v mnogoslojnoj gibridnoj plastine dlya ee naibolshego soprotivleniya potere ustojchivosti [Arrangement of high-modular layers in a multilayer hybrid plate for its greatest resistance to stability loss] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 109–117.
26. Serebrennikova N.Yu., Antipov V.V., Senatorova O.G., Erasov V.S., Kashirin V.V. Gibridnye sloistye materialy na baze alyuminiy-litievykh splavov primenitelno k panelyam kryla samoleta [Hybrid layered materials on base aluminum-lithium alloys with reference to airplane wing panels] // Aviatsionnye materialy i tekhnologii. 2016 (v pechati).
2. Fridlyander I.N., Kolobnev N.I., Sandler V.S. Alyuminiy-litievye splavy: entsiklopediya [Aluminum-lithium alloys: encyclopedia]. M.: Mashinostroenie, 2001. T. II-3: Tsvetnye metally i splavy. Kompozitsionnye metallicheskie materialy / pod red. I.N. Fridlyandera, E.N. Kablova. S. 156–185.
3. Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi [History of aviation materials science. VIAM – 80 years: years and people] / pod obshh. red. E.N. Kablova. M.: VIAM, 2012. 520 s.
4. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
5. Fridlyander I.N. Vospominaniya o sozdanii aviakosmicheskoy i atomnoy tekhniki iz alyuminievykh splavov [Memories of creation of aerospace and nuclear equipment from aluminum alloys]. M.: Nauka, 2005. 275 s.
6. Kablov E.N. VIAM: prodolzhenie puti [VIAM: way continuation] // Nauka v Rossii. 2012. №3.
S. 36–44.
7. Antipov V.V., Senatorova O.G., Lukina N.F. i dr. Sloistye metallopolimernye kompozicionnye materialy [Layered metalpolymeric composite materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 226–230.
8. Senatorova O.G., Antipov V.V., Lukina N.F. i dr. Vysokoprochnye, treshchinostoykie, legkie alyumostekloplastiki SIAL – perspektivnye materialy dlya aviatsionnykh konstruktsiy [High-strength, treshchinostoyky, easy алюмостеклопластики SIAL – perspective materials for aviation designs] // TLS. 2009. №2. S. 29–31.
9. Antipov V.V., Lavro N.A., Sukhoivanenko V.V., Senatorova O.G. Opyt primeneniya Al–Li splava 1441 i sloistogo materiala na ego osnove v gidrosamoletakh [Experience of application of Al-Li of an alloy 1441 and a layered material on its basis in seaplanes] // Tsvetnye metally. 2013. №8.
S. 46–50.
10. Laminate of metal sheets and polymer: pat. 0256370 US; publ. 20.10.11.
11. Plokker M., Daverschot D., Beumler T. Hybrid structure solution for the A400M wing attachment frames // 25th ICAF Symposium. Rotterdam. May 27–29, 2009.
12. Roebroeks G.H.J.J., Hooijmeijer P.A., Kroon E.J., Heinimann M.B. The development of central // First International Conference on Damage Tolerance of Aircraft Structures. 2009.
13. Mashinostroenie: entsiklopediya v 40 t [Mechanical engineering: the encyclopedia in 40 vol.]. M.: Mashinostroenie, 2004. T. ΙV-21: Samolety i vertolety, kn. 2: Proektirovanie, kon-struktsii i sistemy samoletov i vertoletov. C. 226–252.
14. OST1 12085–77. Bolty s umenshennoy shestigrannoy golovkoy iz titanovogo splava dlya soedineniy so spetsial'noy perekhodnoy posadkoy [Bolts with the reduced six-sided head from a titanic alloy for connections with special transitional landing].
15. Kablov E.N., Antipov V.V., Senatorova O.G., Lukina N.F. Novyy klass sloistykh alyumostekloplastikov na osnove alyuminiy-litievogo splava 1441 s ponizhennoy plotnostyu [New class layered алюмостеклопластиков on a basis aluminum-lithium alloy 1441 with a lowered density] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 174–184.
16. Shestov V.V., Antipov V.V., Senatorova O.G., Sidelnikov V.V. Konstruktsionnye sloistye alyumostekloplastiki 1441-SIAL [Constructional layered aluminum fibreglasses 1441-SIAL] //MiTOM. 2013. №9. S. 28–32.
17. Fridlyander I.N., Anikhovskaya L.I., Senatorova O.G. i dr. Kleenye metallicheskie i sloistye kompozity: entsiklopediya [Glued metal and layered composites: encyclopedia]. M.: Mash-inostroenie, 2001. T. II-3: Tsvetnye metally i splavy. Kompozitsionnye metallicheskie materialy / pod red. I.N. Fridlyandera, E.N. Kablova. S. 814–832.
18. Lukina N.F., Dementeva L.A., Serezhenkov A.A., Kotova E.V., Senatorova O.G., Sidel'nikov V.V. Kleevye prepregi i kompozitsionnye sloistye alyumopolimernye materialy na ikh osnove [Glue препреги and composite layered alyumopolimerny materials on their basis] // Rossiyskiy khimicheskiy zhurnal. 2010. №1. S. 53–56.
19. Dementeva L.A., Serezhenkov A.A., Lukina N.F., Kucevich K.E. Kleevye prepregi i sloistye materialy na ih osnove [Adhesive prepregs and layered materials on their basis] // Avi-acionnye materialy i tehnologii. 2013. №2. S. 19–21.
20. Skornyakov V.I., Antipov V.V. Innovacionnyj harakter sotrudnichestva OAO «KUMZ» i FGUP «VIAM» [Innovative nature of cooperation of JSC «KUMZ» and FSUE «VIAM»] // Aviacionnye materialy i tehnologii. 2012. №2. S. 11–14.
21. Sloistye kompozitsionnye materialy–98 [Layered composite materials-98] // Sb. tr. Mezhdunar. konf. Volgograd, 1998. 351 s.
22. Antipov V.V., Senatorova O.G., Beumber T., Lipma M. Investigation of a new fibre metal laminate (FML) family on the base of Al–Li alloy with lower density // Materials Science and Engineering Techology. 2012. №4. P. 350–355.
23. Fibre Metal Laminates / ed. by Ad. Vlot, Yan. W. Gunnik. Academic Publishers, 2001. 527 р.
24. Erasov V.S., Nuzhnyj G.A., Grinevich A.V., Terehin A.L. Treshhinostojkost aviacionnyh materialov v processe ispytaniya na ustalost [Crack growth resistance of aviation materials in fatigue testing] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №10. St. 06. Available at: http://www.viam-works.ru (accessed: March 14, 2016).
25. Oreshko E.I., Erasov V.S., Podjivotov N.Yu. Vybor shemy raspolozheniya vysokomodulnyh sloev v mnogoslojnoj gibridnoj plastine dlya ee naibolshego soprotivleniya potere ustojchivosti [Arrangement of high-modular layers in a multilayer hybrid plate for its greatest resistance to stability loss] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 109–117.
26. Serebrennikova N.Yu., Antipov V.V., Senatorova O.G., Erasov V.S., Kashirin V.V. Gibridnye sloistye materialy na baze alyuminiy-litievykh splavov primenitelno k panelyam kryla samoleta [Hybrid layered materials on base aluminum-lithium alloys with reference to airplane wing panels] // Aviatsionnye materialy i tekhnologii. 2016 (v pechati).
4.
category: Structural metallic materials
УДК 669.02/.09
Galkin V.I.1, Evseev P.S.1, Galkin E.V.1
New method for obtaining sheet metallic materials, reinforced by particles
The new method of producing a sheet metal – reinforced multicyclic particles via rolling. For example alumomednogo developed composite rolling process based on the use of criteria-based approach and the numerical methods of calculation
Keywords: сomposite sheet, reinforced with particles, multicyclic rolling, criterial approach, the degree of deformation, alyumomedny composite, mathematical modeling.
Reference List
1. Sposob polucheniya kompozitsionnykh materialov [Way of receiving composite materials]: pat. 2213158 Ros. Federatsiya; opubl. 10.11.2003.
2. Sposob polucheniya supermnogosloynykh raznorodnykh materialov s nanorazmernoy strukturoy sloev [Way of receiving supermultilayered diverse materials with nanodimensional structure of layers]: pat. 2548343 Ros. Federatsiya; opubl. 19.03.2014.
3. Kolpashnikov A.I., Aref'ev B.A., Manuylov V.F. Deformirovanie kompozitsionnykh materialov [Deformation of composite materials]. M.: Metallurgiya, 1982. 248 s.
2. Sposob polucheniya supermnogosloynykh raznorodnykh materialov s nanorazmernoy strukturoy sloev [Way of receiving supermultilayered diverse materials with nanodimensional structure of layers]: pat. 2548343 Ros. Federatsiya; opubl. 19.03.2014.
3. Kolpashnikov A.I., Aref'ev B.A., Manuylov V.F. Deformirovanie kompozitsionnykh materialov [Deformation of composite materials]. M.: Metallurgiya, 1982. 248 s.
5.
category: Testing of materials and structures
УДК 620.178
Semenychev V.V.1, Panarin A.V.1
Application of sclerometry for more informativeness measured characteristics of chromium and nickel coatings
On 12H18N9T steel samples was deposited chromium and nickel coatings thickness 20–25 μm, wherein the used standard electrolytes & electrolytes containing nanoscale particles. The measured values of coatings microhardness showed, that this value considerably depends on in which electrolyte was formed this or another coating. With loads 50 and 70 N were applied scratches by diamond indenter from developed sclerometer on samples with different types of galvanic coatings. These grooves investigated by microscopic methods, evaluated the width, depth and morphology of the bottom & banks of scratches. It’s found, that the geometric parameters of the grooves depend on composition of used electrolytes. So, standard chromium coating characterized by maximum width & depth of the grooves in contrast to chromium coatings formed in cluster electrolytes, where this parameters have the smaller values. At the bottom of the grooves on standard nickel coating found a cracks perpendicular to the grooves
Keywords: sclerometry, galvanic functional coatings, metallography, groove geometry analysis, microhardness.
Reference List
1. Kablov E.N. Tendencii i orientiry innovacionnogo razvitija Rossii [Tendencies and reference points of innovative development of Russia]: sb. inf. mater. 3-e izd., pererab. i dop. M.: VIAM, 2015.
720 s.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
4. Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi [History of aviation materials science. VIAM – 80 years: years and people] / pod obshh. red. E.N. Kablova. M.: VIAM, 2012.
520 s.
5. Kablov E.N. Korrozija ili zhizn [Corrosion or life] // Nauka i zhizn'. 2012. №3. S. 16–21.
6. Dolmatov V.Ju. Ultradispersnye almazy detonacionnogo sinteza. Poluchenie, svojstva, primenenie [Ultradisperse diamonds of detonation synthesis. Receiving, properties, application]. SPb.: SPbGPU, 2003. 344 c.
7. Nagaeva L.V. Primenenie nanoporoshkov v jelektrolitah nikelirovanija kak sposob poluchenija nikelevyh pokrytij, po svojstvam ne ustupajushhim hromovym pokrytijam [Application of nanopowders in nickel plating electrolits as a way of receiving nickel coverings, on properties to not conceding chromic coverings] // Korrozija: materialy, zashhita. 2007. №9. S. 32–36.
8. Semenychev V.V., Salahova R.K., Tyurikov E.V., Ilin V.A. Zashhitnye i funkcionalnye galvanicheskie pokrytiya, poluchaemye s primeneniem nanorazmernyh chastic [The protective and functional galvanic coverings received using nanodimensional particles] // Aviacionnye materialy i tehnologii. 2012. №S. S. 335–342.
9. Salahova R.K., Semenychev V.V. Jeffektivnost' primenenija nanopo-roshkov v proizvodstve galvanicheskih pokrytij [Efficiency of application of nanopowders in production of galvanic coverings] // Korrozija: materialy, zashhita. 2015. №11. S. 36–44.
10. Panarin A.V. Piroliticheskie karbidohromovye pokrytiya. Tehnologiya polucheniya i svojstva [Pyrolitic carbide chrome platings. Technology of receiving and property] // Aviacionnye materialy i tehnologii. 2011. №4. S. 14–18.
11. Semenychev V.V., Koshelev V.N., Panarin A.V. Jekologicheski bezopas-nyj tehnologicheskij process nanesenija zashhitnyh piroliticheskih aljuminievyh pokrytij bez navodorozhivanija stal'noj podlozhki [Ecologically safe technological process of drawing protective pyrolitic aluminum coverings without a navodorozhivaniye of a steel substrate] // Izvestija Samarskogo nauchnogo centra RAN. 2008. T. 1. Spec. vypusk. S. 18–23.
12. Panarin A.V. Piroliticheskie karbidohromovye pokrytija: poluchenie, svojstva i apparaturnoe obespechenie processa [Pyrolitic karbidokhromovy coverings: receiving, properties and hardware ensuring process] // Aviacionnye materialy i tehnologii. 2009. №2. S. 14–19.
13. Kurs M.G., Karimova S.A. Naturno-uskorennye ispytaniya: osobennosti metodiki i sposoby ocenki korrozionnyh harakteristik alyuminievyh splavov [Salt-accelerated outdoor corrosion testing: methodology and evaluation of corrosion susceptibility of aluminum alloy] // Aviacionnye materialy i tehnologii. 2014. №1. S. 51–57.
14. Zhirnov A.D., Semenychev V.V., Holshev S.I. Ispytanie aviacionnyh materialov v uslovijah morskogo subtropicheskogo klimata. Metodicheskoe rukovodstvo [Test of aviation materials in the conditions of sea subtropical climate. Methodical management]. M.: VIAM, 1987. 48 c.
15. Salahova R.K., Semenychev V.V. Puti povyshenija korrozionnoj stojkosti stal'nyh detalej s hromovymi pokrytijami [Ways of increase of corrosion firmness of steel details with chromic coverings] // Korrozija: materialy, zashhita. 2009. №10. S. 43–48.
16. Semenychev V.V., Salahova R.K. Sklerometrija kak metod ocenki intensivnosti mezhkristallitnoj korrozii [Sklerometriya as method of an assessment of intensity of mezhkristallitny corrosion] // Korrozija: materialy, zashhita. 2015. №12. S. 37–41.
17. Startsev O.V., Medvedev I.M., Kurs M.G. Tverdost kak indikator korrozii alyuminievyh splavov v morskih usloviyah [Hardness as the indicator of corrosion of aluminum alloys in sea conditions] // Aviacionnye materialy i tehnologii. 2012. №3. S. 16–19.
18. Salahova R.K., Semenychev V.V., Tihoobrazov A.B. Issledovanie galvanicheskih kompozicionnyh pokrytij metallofizicheskimi metodami [Research of galvanic composite coverings by metalphysical methods] // Galvanotehnika i obrabotka poverhnosti. 2013. T. XXI. №3. S. 45–49.
19. P. Benjamin, C. Weaver. Measurement of Adhesion of Thin Films // Proc. Royal. Society. London. 1960. P. 163–176.
20. C. Weaver. Adhesion of Thin Films //Vac. Sci. Technol. 1975. P. 18–25.
21. Jelektrolit hromirovanija i sposob poluchenija hromovogo pokrytija na stalnyh detaljah [Electrolit of chromium plating and a way of receiving a chromic covering on steel details]: pat. 2231581 Ros. Federacija; zajavl. 25.12.02, opubl. 27.06.04. 5 s.
22. Jelektrolit nikelirovanija [Nickel plating electrolit]: pat. 2293803 Ros. Federacija; zajavl. 01.08.05, opubl. 20.02.07. Bjul. №5. 6 s.
23. Salahova R.K., Semenychev V.V., Tjurikov E.V. Izbiratelnoe nanesenie zashhitnyh jelektro-himicheskih pokrytij [Selective drawing protective electrochemical coverings] // Galvanotehnika i obrabotka poverhnosti. 2008. T. XVI. №4. S. 36–40.
720 s.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
4. Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi [History of aviation materials science. VIAM – 80 years: years and people] / pod obshh. red. E.N. Kablova. M.: VIAM, 2012.
520 s.
5. Kablov E.N. Korrozija ili zhizn [Corrosion or life] // Nauka i zhizn'. 2012. №3. S. 16–21.
6. Dolmatov V.Ju. Ultradispersnye almazy detonacionnogo sinteza. Poluchenie, svojstva, primenenie [Ultradisperse diamonds of detonation synthesis. Receiving, properties, application]. SPb.: SPbGPU, 2003. 344 c.
7. Nagaeva L.V. Primenenie nanoporoshkov v jelektrolitah nikelirovanija kak sposob poluchenija nikelevyh pokrytij, po svojstvam ne ustupajushhim hromovym pokrytijam [Application of nanopowders in nickel plating electrolits as a way of receiving nickel coverings, on properties to not conceding chromic coverings] // Korrozija: materialy, zashhita. 2007. №9. S. 32–36.
8. Semenychev V.V., Salahova R.K., Tyurikov E.V., Ilin V.A. Zashhitnye i funkcionalnye galvanicheskie pokrytiya, poluchaemye s primeneniem nanorazmernyh chastic [The protective and functional galvanic coverings received using nanodimensional particles] // Aviacionnye materialy i tehnologii. 2012. №S. S. 335–342.
9. Salahova R.K., Semenychev V.V. Jeffektivnost' primenenija nanopo-roshkov v proizvodstve galvanicheskih pokrytij [Efficiency of application of nanopowders in production of galvanic coverings] // Korrozija: materialy, zashhita. 2015. №11. S. 36–44.
10. Panarin A.V. Piroliticheskie karbidohromovye pokrytiya. Tehnologiya polucheniya i svojstva [Pyrolitic carbide chrome platings. Technology of receiving and property] // Aviacionnye materialy i tehnologii. 2011. №4. S. 14–18.
11. Semenychev V.V., Koshelev V.N., Panarin A.V. Jekologicheski bezopas-nyj tehnologicheskij process nanesenija zashhitnyh piroliticheskih aljuminievyh pokrytij bez navodorozhivanija stal'noj podlozhki [Ecologically safe technological process of drawing protective pyrolitic aluminum coverings without a navodorozhivaniye of a steel substrate] // Izvestija Samarskogo nauchnogo centra RAN. 2008. T. 1. Spec. vypusk. S. 18–23.
12. Panarin A.V. Piroliticheskie karbidohromovye pokrytija: poluchenie, svojstva i apparaturnoe obespechenie processa [Pyrolitic karbidokhromovy coverings: receiving, properties and hardware ensuring process] // Aviacionnye materialy i tehnologii. 2009. №2. S. 14–19.
13. Kurs M.G., Karimova S.A. Naturno-uskorennye ispytaniya: osobennosti metodiki i sposoby ocenki korrozionnyh harakteristik alyuminievyh splavov [Salt-accelerated outdoor corrosion testing: methodology and evaluation of corrosion susceptibility of aluminum alloy] // Aviacionnye materialy i tehnologii. 2014. №1. S. 51–57.
14. Zhirnov A.D., Semenychev V.V., Holshev S.I. Ispytanie aviacionnyh materialov v uslovijah morskogo subtropicheskogo klimata. Metodicheskoe rukovodstvo [Test of aviation materials in the conditions of sea subtropical climate. Methodical management]. M.: VIAM, 1987. 48 c.
15. Salahova R.K., Semenychev V.V. Puti povyshenija korrozionnoj stojkosti stal'nyh detalej s hromovymi pokrytijami [Ways of increase of corrosion firmness of steel details with chromic coverings] // Korrozija: materialy, zashhita. 2009. №10. S. 43–48.
16. Semenychev V.V., Salahova R.K. Sklerometrija kak metod ocenki intensivnosti mezhkristallitnoj korrozii [Sklerometriya as method of an assessment of intensity of mezhkristallitny corrosion] // Korrozija: materialy, zashhita. 2015. №12. S. 37–41.
17. Startsev O.V., Medvedev I.M., Kurs M.G. Tverdost kak indikator korrozii alyuminievyh splavov v morskih usloviyah [Hardness as the indicator of corrosion of aluminum alloys in sea conditions] // Aviacionnye materialy i tehnologii. 2012. №3. S. 16–19.
18. Salahova R.K., Semenychev V.V., Tihoobrazov A.B. Issledovanie galvanicheskih kompozicionnyh pokrytij metallofizicheskimi metodami [Research of galvanic composite coverings by metalphysical methods] // Galvanotehnika i obrabotka poverhnosti. 2013. T. XXI. №3. S. 45–49.
19. P. Benjamin, C. Weaver. Measurement of Adhesion of Thin Films // Proc. Royal. Society. London. 1960. P. 163–176.
20. C. Weaver. Adhesion of Thin Films //Vac. Sci. Technol. 1975. P. 18–25.
21. Jelektrolit hromirovanija i sposob poluchenija hromovogo pokrytija na stalnyh detaljah [Electrolit of chromium plating and a way of receiving a chromic covering on steel details]: pat. 2231581 Ros. Federacija; zajavl. 25.12.02, opubl. 27.06.04. 5 s.
22. Jelektrolit nikelirovanija [Nickel plating electrolit]: pat. 2293803 Ros. Federacija; zajavl. 01.08.05, opubl. 20.02.07. Bjul. №5. 6 s.
23. Salahova R.K., Semenychev V.V., Tjurikov E.V. Izbiratelnoe nanesenie zashhitnyh jelektro-himicheskih pokrytij [Selective drawing protective electrochemical coverings] // Galvanotehnika i obrabotka poverhnosti. 2008. T. XVI. №4. S. 36–40.
6.
УДК 669.715:621.785
Ber L.B.1
TTT (temperature–time–transformation) and TTP (temperature–time–property)
diagrams for aging of heat treatment strengthenable aluminum alloys. Their use for the development of step aging regimes
There were considered the isothermal TTT (temperature–time–transformation) and TTP (temperature–time–property) aging diagrams for Al–Cu, Al–Cu–Mg, Al–Zn–Mg–(Cu), Al–Mg–Si–(Cu) system heat treatment strengthenable aluminum alloys. The use of optimal step aging regime instead of single-step regime is effective for improving the complex of properties or to accelerate the aging. The optimum phase composition of hardening precipitates was determined with using the TTT and TTP aging diagrams. The regimes for first low temperature aging step (LA), at which for second high temperature aging step (HA) the disperse hardening precipitates that have arisen in the volume of grain at the first aging step will inherit the disperse hardening precipitates, forming at the second aging step. The recovery at the HA step is not necessary, which facilitates the commercial application of these aging regimes. Examples of the effective step aging regimes for the aluminum alloys of different alloying systems we
Keywords: heat treatment strengthenable aluminum alloys, TTT (temperature–time–transformation) aging diagrams, TTP (temperature–time–property) aging diagrams, step aging regimes.
Reference List
1. Davydov V.G., Zakharov V.V., Zakharov E.D., Novikov I.I. Diagrammy izotermicheskogo raspada rastvora v alyuminievykh splavakh: Spravochnik [Charts of isothermal disintegration of solution in aluminum alloys: Directory]. M.: Metallurgiya, 1973. 152 s.
2. Atlas of Time-Temperature Diagrams for Nonferrous Alloys / ed. G.F. van der Voort. S.1.: ASM Intern., 1991. Al Alloys. P. 3–42.
3. Alekseev A.A., Ber L.B. Diagrammy fazovykh prevrashcheniy pri starenii splavov sistemy
Al–Cu–Mg [Charts of phase transformations when aging alloys of Al–Cu–Mg system] // Tekhnologiya legkikh splavov. 1991. №1. S. 9–13.
4. Alekseev A.A., Ber L.B. Diagrammy fazovykh prevrashcheniy pri starenii splavov sistem Al–Cu i Al–Mg–Si–(Cu) [Charts of phase transformations when aging alloys of systems Al–Cu and
Al–Mg–Si–(Cu)] // Tekhnologiya legkikh splavov. 1991. №3. S. 18–20.
5. Alekseev A.A., Ber L.B. Diagrammy fazovykh prevrashcheniy pri starenii splavov sistem
Al–Zn–Mg–(Cu), Al–Li–Cu i Al–Li–Cu–Mg [Charts of phase transformations when aging alloys of systems Al–Zn–Mg–(Cu), Al–Li–Cu and Al–Li–Cu–Mg] // Tekhnologiya legkikh splavov. 1991. №5. S. 15–19.
6. Ber L.B., Kaputkin E.Ya. Diagrammy fazovykh prevrashcheniy alyuminievykh splavov sistem
Al–Cu–Mg, Al–Mg–Si–Cu i Al–Mg–Li [Charts of phase transformations of aluminum alloys of systems Al–Cu–Mg, Al–Mg–Si–Cu and Al–Mg–Li] // FMM. 2001. T. 92. №2. S. 101–111.
7. Alekseev A.A., Fridlyander I.N., Ber L.B. Mechanisms of phase transformations under ageing in the alloys of Al–Zn–Mg–(Cu) system. Aluminium Alloys, Their Physical and Mechanical Properties / ed. P.J. Gregson, S.J. Harris. // Proc. of 8th Int. Conf. on Aluminum Alloys. UK, Cambridge. July 02–05, 2002. P. 2; P. 821–826.
8. Kelli A., Nikolson R. Dispersionnoe tverdenie [Dispersive tverdeniye]. M.: Metallurgiya, 1965.
298 s.
9. Novikov I.I. Teoriya termicheskoy obrabotki metallov [Theory of thermal processing of metals]. 4-e izd., M.: Metallurgiya, 1986. 480 s.
10. Chuistov K.V. Starenie metallicheskikh splavov [Aging of metal alloys]. Vtoroe izdanie, dopolnennoe i pererabotannoe. Kiev: Akademperiodika NAN Ukrainy, 2003. 567 s.
11. Pashley D., Jacobs M., Vietz J. The basic process affecting two-step ageing in Al–Mg–Si alloy // Phil. Mag., 1967. V. 16. №139. Р. 51–76.
12. Lorimer G., Nicholson R. Further results on nucleation of precipitates in the Al–Zn–Mg system // Acta met., 1966. V. 14. №8. Р. 1009–1013.
13. Embury J.D., Nicholson R.B. The nucleation of precipitates: the system Al–Zn–Mg // Acta met., 1965. V. 13. №4. Р. 403–417.
14. Fridlyander I.N., Kozlovskaya V.P. Stupenchatoe starenie splava V95 [Step aging of alloy В95] // Sb. VIAM. M., 1948. Ch. 2.
15. Fridlyander I.N., Kutaytseva E.I., Liberman E.D. Yavlenie vozvrata pri starenii splava V95 [The return phenomenon when aging alloy В95] / VIAM; MAP. M., 1948. Ch. 1. S. 3–26.
16. Fridlyander I.N. Vysokoprochnye deformiruemye alyuminievye splavy [High-strength deformable aluminum alloys]. M.: Oborongiz, 1960. 291 s.
17. Ber L.B. Praktika ispol'zovaniya rentgenovskikh metodov issledovaniya alyuminievykh splavov (obzor) [Practice of use of x-ray methods of research of aluminum alloys (review)] // Zavodskaya laboratoriya. Diagnostika materialov. 2007. №7. T. 73. S. 29–40.
18. Ber L.B. Accelerated artificial ageing regimes of commercial aluminium alloys. I. Al–Cu–Mg alloys // Material Science & Engineering. A. Structural Materials: Properties, Microstructure and Processing. A280. 2000. Р. 83–90.
19. Ber L.B. Accelerated artificial ageing regimes of commercial aluminium alloys. II. Al–Cu,
Al–Zn–Mg–(Cu), Al–Mg–Si–(Cu) alloys // Materials Science & Engineering. A. Structural Materials: Properties, Microstructure and Processing. A280. 2000. Р. 91–96.
20. Elagin V.I., Ber L.B., Rostova T.D., Ukolova O.G. Sovershenstvovanie trekhstupenchatykh rezhimov stareniya splavov sistemy Al–Zn–Mg–Cu [Improvement of three-stage modes of aging of alloys of Al–Zn–Mg–Cu system] // Tekhnologiya legkikh splavov. 2009. №2. S. 12–19.
21. Sinyavskiy V.S., Valkov V.D., Kalinin V.D. Korroziya i zashchita alyuminievykh splavov [Corrosion and protection of aluminum alloys]. 2-e izd. M.: Metallurgiya, 1986. 368 s.
22. Elagin V.I. Sostoyanie i puti povysheniya treshchinostoykosti vysokoprochnykh alyuminievykh splavov [Condition and ways of increase of a treshchinostoykost of high-strength aluminum alloys] // MiTOM. 2002. №9. S. 10–19.
23. Cina B. Reducing the susceptibility of alloys, particularly aluminium alloys, to stress corrosion cracking: pat. 3856584 US; publ. 24.12.74.
24. Ber L.B., Sinyavskiy V.S., Zakharov V.V. i dr. Vliyanie rezhimov zakalki i stareniya na fazovyy sostav, mekhanicheskie svoystva i soprotivlenie MKK listov iz splava tipa 1370 [Influence of modes of training and aging on phase structure, mechanical properties and resistance of MKK of sheets from type 1370 alloy] // Tekhnologiya legkikh splavov. 2008. №4. S. 15‒23.
25. Makhsidov V.V., Kolobnev N.I., Karimova S.A., Sbitneva S.V. Vzaimosvyaz struktury i korrozionnoy stoykosti v splave 1370 sistemy Al–Mg–Si–Cu–Zn [Interrelation of structure and corrosion firmness in an alloy of the 1370th Al-Mg-Si-Cu-Zn system] // Aviatsionnye materialy i tekhnologii. 2012. №1. S. 8–13.
2. Atlas of Time-Temperature Diagrams for Nonferrous Alloys / ed. G.F. van der Voort. S.1.: ASM Intern., 1991. Al Alloys. P. 3–42.
3. Alekseev A.A., Ber L.B. Diagrammy fazovykh prevrashcheniy pri starenii splavov sistemy
Al–Cu–Mg [Charts of phase transformations when aging alloys of Al–Cu–Mg system] // Tekhnologiya legkikh splavov. 1991. №1. S. 9–13.
4. Alekseev A.A., Ber L.B. Diagrammy fazovykh prevrashcheniy pri starenii splavov sistem Al–Cu i Al–Mg–Si–(Cu) [Charts of phase transformations when aging alloys of systems Al–Cu and
Al–Mg–Si–(Cu)] // Tekhnologiya legkikh splavov. 1991. №3. S. 18–20.
5. Alekseev A.A., Ber L.B. Diagrammy fazovykh prevrashcheniy pri starenii splavov sistem
Al–Zn–Mg–(Cu), Al–Li–Cu i Al–Li–Cu–Mg [Charts of phase transformations when aging alloys of systems Al–Zn–Mg–(Cu), Al–Li–Cu and Al–Li–Cu–Mg] // Tekhnologiya legkikh splavov. 1991. №5. S. 15–19.
6. Ber L.B., Kaputkin E.Ya. Diagrammy fazovykh prevrashcheniy alyuminievykh splavov sistem
Al–Cu–Mg, Al–Mg–Si–Cu i Al–Mg–Li [Charts of phase transformations of aluminum alloys of systems Al–Cu–Mg, Al–Mg–Si–Cu and Al–Mg–Li] // FMM. 2001. T. 92. №2. S. 101–111.
7. Alekseev A.A., Fridlyander I.N., Ber L.B. Mechanisms of phase transformations under ageing in the alloys of Al–Zn–Mg–(Cu) system. Aluminium Alloys, Their Physical and Mechanical Properties / ed. P.J. Gregson, S.J. Harris. // Proc. of 8th Int. Conf. on Aluminum Alloys. UK, Cambridge. July 02–05, 2002. P. 2; P. 821–826.
8. Kelli A., Nikolson R. Dispersionnoe tverdenie [Dispersive tverdeniye]. M.: Metallurgiya, 1965.
298 s.
9. Novikov I.I. Teoriya termicheskoy obrabotki metallov [Theory of thermal processing of metals]. 4-e izd., M.: Metallurgiya, 1986. 480 s.
10. Chuistov K.V. Starenie metallicheskikh splavov [Aging of metal alloys]. Vtoroe izdanie, dopolnennoe i pererabotannoe. Kiev: Akademperiodika NAN Ukrainy, 2003. 567 s.
11. Pashley D., Jacobs M., Vietz J. The basic process affecting two-step ageing in Al–Mg–Si alloy // Phil. Mag., 1967. V. 16. №139. Р. 51–76.
12. Lorimer G., Nicholson R. Further results on nucleation of precipitates in the Al–Zn–Mg system // Acta met., 1966. V. 14. №8. Р. 1009–1013.
13. Embury J.D., Nicholson R.B. The nucleation of precipitates: the system Al–Zn–Mg // Acta met., 1965. V. 13. №4. Р. 403–417.
14. Fridlyander I.N., Kozlovskaya V.P. Stupenchatoe starenie splava V95 [Step aging of alloy В95] // Sb. VIAM. M., 1948. Ch. 2.
15. Fridlyander I.N., Kutaytseva E.I., Liberman E.D. Yavlenie vozvrata pri starenii splava V95 [The return phenomenon when aging alloy В95] / VIAM; MAP. M., 1948. Ch. 1. S. 3–26.
16. Fridlyander I.N. Vysokoprochnye deformiruemye alyuminievye splavy [High-strength deformable aluminum alloys]. M.: Oborongiz, 1960. 291 s.
17. Ber L.B. Praktika ispol'zovaniya rentgenovskikh metodov issledovaniya alyuminievykh splavov (obzor) [Practice of use of x-ray methods of research of aluminum alloys (review)] // Zavodskaya laboratoriya. Diagnostika materialov. 2007. №7. T. 73. S. 29–40.
18. Ber L.B. Accelerated artificial ageing regimes of commercial aluminium alloys. I. Al–Cu–Mg alloys // Material Science & Engineering. A. Structural Materials: Properties, Microstructure and Processing. A280. 2000. Р. 83–90.
19. Ber L.B. Accelerated artificial ageing regimes of commercial aluminium alloys. II. Al–Cu,
Al–Zn–Mg–(Cu), Al–Mg–Si–(Cu) alloys // Materials Science & Engineering. A. Structural Materials: Properties, Microstructure and Processing. A280. 2000. Р. 91–96.
20. Elagin V.I., Ber L.B., Rostova T.D., Ukolova O.G. Sovershenstvovanie trekhstupenchatykh rezhimov stareniya splavov sistemy Al–Zn–Mg–Cu [Improvement of three-stage modes of aging of alloys of Al–Zn–Mg–Cu system] // Tekhnologiya legkikh splavov. 2009. №2. S. 12–19.
21. Sinyavskiy V.S., Valkov V.D., Kalinin V.D. Korroziya i zashchita alyuminievykh splavov [Corrosion and protection of aluminum alloys]. 2-e izd. M.: Metallurgiya, 1986. 368 s.
22. Elagin V.I. Sostoyanie i puti povysheniya treshchinostoykosti vysokoprochnykh alyuminievykh splavov [Condition and ways of increase of a treshchinostoykost of high-strength aluminum alloys] // MiTOM. 2002. №9. S. 10–19.
23. Cina B. Reducing the susceptibility of alloys, particularly aluminium alloys, to stress corrosion cracking: pat. 3856584 US; publ. 24.12.74.
24. Ber L.B., Sinyavskiy V.S., Zakharov V.V. i dr. Vliyanie rezhimov zakalki i stareniya na fazovyy sostav, mekhanicheskie svoystva i soprotivlenie MKK listov iz splava tipa 1370 [Influence of modes of training and aging on phase structure, mechanical properties and resistance of MKK of sheets from type 1370 alloy] // Tekhnologiya legkikh splavov. 2008. №4. S. 15‒23.
25. Makhsidov V.V., Kolobnev N.I., Karimova S.A., Sbitneva S.V. Vzaimosvyaz struktury i korrozionnoy stoykosti v splave 1370 sistemy Al–Mg–Si–Cu–Zn [Interrelation of structure and corrosion firmness in an alloy of the 1370th Al-Mg-Si-Cu-Zn system] // Aviatsionnye materialy i tekhnologii. 2012. №1. S. 8–13.
7.
category: Testing of materials and structures
УДК 621.983.7
Shishkin A.A.1
Researching of the extreme performance of the reduction of thin-walled tubular billets in the production of pressure vessels
The extreme performance of the reduction of tubular billets by axial force in a rigid die is theoretically and experimentally researched. It is established that the cause of circumferential loss of stability is the heterogeneity of the properties of materials. The mathematical models, giving the possibility to calculate stress-strain state and maximal reduction ratios, are presented. The calculations were experimentally verified. Abnormal limiting factors of reduction with local heating, such as softening of the force transmission zone and jamming of the edge, were defined.
Keywords: reduction of tubes, thin-walled billet, loss of stability, forming with heating, isothermal stamping.
Reference List
1. Shishkin A.A. Metody predotvrashcheniya poteri ustoychivosti pri obzhime tonkostennykh trub [Methods of prevention of loss of stability at compression of thin-walled pipes] // Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem: sb. tr. k 70-letiyu kafedry «TPLA». M., 2010. S. 43–44.
2. Gorbunov M.N. Shtampovka detaley iz trubchatykh zagotovok [Punching of details from tubular preparations]. M.: Mashgiz, 1960. S. 131–133.
3. Obraztsov I.F., Vasilev V.V., Bunakov V.A. Optimalnoe armirovanie obolochek vrashcheniya iz kompozitsionnykh materialov [Optimum reinforcing of covers of rotation from composite materials]. M.: Mashinostroenie, 1977. 144 s.
4. Chumadin A.S., Shishkin A.A. Issledovanie protsessa obzhima tonkostennykh trub [Research of process of compression of thin-walled pipes] // Kuznechno-shtampovochnoe pro-izvodstvo. Obrabotka materialov davleniem. 2012. №11. S. 14–19.
5. Marciniak Z., Kuczynski K. Limit strains in the processes of stretch-forming sheet metal // International Journal of Mechanical Science. 1967. V. 9. P. 609–620.
6. Miklyaev P.G., Dudenkov V.M. Soprotivlenie deformatsii i plastichnost' alyuminievykh splavov: spravochnik [Resistance of deformation and plasticity of aluminum alloys: directory]. M.: Metallurgiya, 1979. 183 s
2. Gorbunov M.N. Shtampovka detaley iz trubchatykh zagotovok [Punching of details from tubular preparations]. M.: Mashgiz, 1960. S. 131–133.
3. Obraztsov I.F., Vasilev V.V., Bunakov V.A. Optimalnoe armirovanie obolochek vrashcheniya iz kompozitsionnykh materialov [Optimum reinforcing of covers of rotation from composite materials]. M.: Mashinostroenie, 1977. 144 s.
4. Chumadin A.S., Shishkin A.A. Issledovanie protsessa obzhima tonkostennykh trub [Research of process of compression of thin-walled pipes] // Kuznechno-shtampovochnoe pro-izvodstvo. Obrabotka materialov davleniem. 2012. №11. S. 14–19.
5. Marciniak Z., Kuczynski K. Limit strains in the processes of stretch-forming sheet metal // International Journal of Mechanical Science. 1967. V. 9. P. 609–620.
6. Miklyaev P.G., Dudenkov V.M. Soprotivlenie deformatsii i plastichnost' alyuminievykh splavov: spravochnik [Resistance of deformation and plasticity of aluminum alloys: directory]. M.: Metallurgiya, 1979. 183 s
8.
category: Structural metallic materials
УДК 621.7
Galkin V.I.1, Golovkina M.G.1
Forecasting of mechanical properties distribution by volume of articles, obtained by the method of hot deformation with the use of CAE-systems
Prediction of distribution of mechanical properties on the volume of the products received by methods of hot deformation with use of CAE-systems.
In this work the technique of research of influence of parameters of deformation process on distribution of mechanical properties of products of aluminum alloys is presented. Functional dependences of mechanical characteristics on intensity of deformation, temperature and speed of cooling are received. The software application for SAE-systems which allows to predict mechanical properties of products from aluminum alloys is created.
Keywords: aluminum alloys, mechanical properties, prediction, СAE-system.
Reference List
1. Galkin V.I., Petrov A.P., Paltievich A.R. Osobennosti primeneniya konechno-elementnogo analiza protsessov obrabotki metallov davleniem i perspektivy prognozirovaniya struktury i svoystv izdeliy [Features of application of the final and element analysis of processes of processing of metals pressure and prospects of forecasting of structure and properties of products] // Tekhnologiya mashinostroeniya. 2007. №9. S. 12–14.
2. Berezhnoy V.L. Analiz i formalizatsiya predstavleniya o neravnomernosti deformatsiy dlya tekhnologicheskogo razvitiya pressovaniya [The analysis and formalization of idea of unevenness of deformations for technological development of pressing] // Tekhnologiya legkikh splavov. 2013. №1. S. 40–57.
3. Schikorra M., Donati L., Tomesani L., Tekkaya A.E. Microstructure analysis of aluminum extrusion: grain size distribution in AA6060, AA6082 and AA7075 alloys // Journal of Mechanical Science and Technology. 2007. October. 21:1445-1451.
2. Berezhnoy V.L. Analiz i formalizatsiya predstavleniya o neravnomernosti deformatsiy dlya tekhnologicheskogo razvitiya pressovaniya [The analysis and formalization of idea of unevenness of deformations for technological development of pressing] // Tekhnologiya legkikh splavov. 2013. №1. S. 40–57.
3. Schikorra M., Donati L., Tomesani L., Tekkaya A.E. Microstructure analysis of aluminum extrusion: grain size distribution in AA6060, AA6082 and AA7075 alloys // Journal of Mechanical Science and Technology. 2007. October. 21:1445-1451.
9.
category: Composite materials
УДК 666-426:669.018.45
Zimichev A.M.1, Varrik N.M.1, Sumin V.A.1
To the question of receiving ceramic threads on the basis of high-melting oxides
Ceramic fibers are currently a priority object for development as the main component for the heatproof and heat-insulating materials with high temperature applications. Continuous oxide fibers are using for producing textiles: yarns, ribbons, fabrics for thermal protection and insulation of cables, braid thermocouples, fire-resistant screens. In this paper it was investigated the features of the process of obtaining twisted yarns of high-temperature fibers based on aluminum oxide. The influence of such parameters as the viscosity of the fibre-forming solution, the speed of fiber drawing, thermal treatment mode, the performance properties of ceramic filaments has been studied.
Keywords: refractory oxide, high temperature insulation, ceramic threads.
Reference List
1. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
2. Tinjakova E.V., Grashhenkov D.V. Teploizoljacionnyj material na osnove mullito-korundovyh i kvarcevyh volokon [Heatinsulating material on the basis of mullito-korundovy and quartz fibers] // Aviacionnye materialy i tehnologii. 2012. №3. S. 43–46.
3. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: May 16, 2015).
5. Dospehi dlja «Burana». Materialy i tehnologii VIAM dlja MKS «Jenergija–Buran» [Armor for «Buran». Materials and VIAM technologies for ISS of «Energiya-Buran»] / pod obshh. red. E.N. Kablova. M.: Nauka i zhizn, 2013. 128 s.
6. Kablov E.N., Shhetanov B.V. Voloknistye teploizoljacionnye i teplozashhitnye materialy: svojstva, oblasti primenenija [Fibrous heatinsulating and heat-shielding materials: properties, scopes] // Tez. dokl. Mezhdunar. nauch.-tehnich. konf. «Fundamental'nye problemy vysokoskorostnyh techenij». Zhukovskij, 2004. S. 95–96.
7. Process for producing alumina fiber or alumina-silica fiber: pat. 4101615 US; publ. 18.07.78. 9 p.
8. Process for producing alumina-based fiber: pat. 5002750 US; publ. 26.03.91. 6 p.
9. Non-frangible alumina-silica fibers: pat. 4047965US; publ. 13.09.77. 17 p.
10. Bunsell A.R. Oxide Fibers for High-Temperature Reinforcement and Insulation // JOM. 2005.
V. 57. №2. P. 48–51.
11. Alumina fiber coated with sizing agent: pat. app. JPH 07150476; publ. 13.06.95. 4 p.
12. Sizing composition especially for sizing glass fibers comprises a monomer mixture comprising an isocyanate, an alcohol and optionally an amine: pat. 2839968 FR; publ. 28.11.03. 28 p.
13. Method of firing dry spun refractory oxide fibers: pat. 3760049 US; publ. 18.09.73. 6 p.
14. Composite sewing thread of ceramic fibers: pat. 4375779 US; publ. 08.03.83. 7 p.
15. Twisted ceramic fiber sewing thread: pat. 4430851 US; publ. 14.02.84. 9 p.
16. Sposob poluchenija vysokotemperaturnogo volokna na osnove oksida aljuminija [Way of receiving high-temperature fiber on the basis of aluminum oxide]: pat. 2212388 Ros. Federacija; opubl. 20.09.03. 9 s.
17. Zimichev A.M., Varrik N.M., Dalin M.A. Izmerenie modulja uprugosti volokon iz tugoplavkih oksidov [Measurement of the module of elasticity of fibers from refractory oxides] // Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2014. №6. St. 05. Available at: http://www.viam-works.ru (accessed: May 16, 2016). DOI: 10.18577/2307-6046-2014-0-6-5-5.
18. Zimichev A.M., Varrik N.M. Termogravimetricheskie issledovanija nitej na osnove oksida alju-minija [Thermogravimetric researches of threads on the basis of aluminum oxide] // Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2014. №6. St. 06. Available at: http://www.viam-works.ru (accessed: May 16, 2016). DOI: 10.18577/2307-6046-2014-0-6-6-6.
19. Zimichev A.M., Balinova Ju.A., Varrik N.M. K voprosu o module uprugosti volokon iz tugoplav-kih oksidov [To a question of the module of elasticity of fibers from refractory oxides] // Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2014. №10. St. 06. Available at: http://www.viam-works.ru (accessed: May 16, 2016). DOI: 10.18577/2307-6046-2014-0-10-6-6.
20. Kablov E.N. Konstrukcionnye i funkcionalnye materialy – osnova jekonomicheskogo i nauchno-tehnicheskogo razvitija Rossii [Constructional and functional materials – a basis of economic and scientific and technical development of Russia] // Voprosy materialovedenija. 2006. №1. S. 64–67.
21. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
2. Tinjakova E.V., Grashhenkov D.V. Teploizoljacionnyj material na osnove mullito-korundovyh i kvarcevyh volokon [Heatinsulating material on the basis of mullito-korundovy and quartz fibers] // Aviacionnye materialy i tehnologii. 2012. №3. S. 43–46.
3. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: May 16, 2015).
5. Dospehi dlja «Burana». Materialy i tehnologii VIAM dlja MKS «Jenergija–Buran» [Armor for «Buran». Materials and VIAM technologies for ISS of «Energiya-Buran»] / pod obshh. red. E.N. Kablova. M.: Nauka i zhizn, 2013. 128 s.
6. Kablov E.N., Shhetanov B.V. Voloknistye teploizoljacionnye i teplozashhitnye materialy: svojstva, oblasti primenenija [Fibrous heatinsulating and heat-shielding materials: properties, scopes] // Tez. dokl. Mezhdunar. nauch.-tehnich. konf. «Fundamental'nye problemy vysokoskorostnyh techenij». Zhukovskij, 2004. S. 95–96.
7. Process for producing alumina fiber or alumina-silica fiber: pat. 4101615 US; publ. 18.07.78. 9 p.
8. Process for producing alumina-based fiber: pat. 5002750 US; publ. 26.03.91. 6 p.
9. Non-frangible alumina-silica fibers: pat. 4047965US; publ. 13.09.77. 17 p.
10. Bunsell A.R. Oxide Fibers for High-Temperature Reinforcement and Insulation // JOM. 2005.
V. 57. №2. P. 48–51.
11. Alumina fiber coated with sizing agent: pat. app. JPH 07150476; publ. 13.06.95. 4 p.
12. Sizing composition especially for sizing glass fibers comprises a monomer mixture comprising an isocyanate, an alcohol and optionally an amine: pat. 2839968 FR; publ. 28.11.03. 28 p.
13. Method of firing dry spun refractory oxide fibers: pat. 3760049 US; publ. 18.09.73. 6 p.
14. Composite sewing thread of ceramic fibers: pat. 4375779 US; publ. 08.03.83. 7 p.
15. Twisted ceramic fiber sewing thread: pat. 4430851 US; publ. 14.02.84. 9 p.
16. Sposob poluchenija vysokotemperaturnogo volokna na osnove oksida aljuminija [Way of receiving high-temperature fiber on the basis of aluminum oxide]: pat. 2212388 Ros. Federacija; opubl. 20.09.03. 9 s.
17. Zimichev A.M., Varrik N.M., Dalin M.A. Izmerenie modulja uprugosti volokon iz tugoplavkih oksidov [Measurement of the module of elasticity of fibers from refractory oxides] // Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2014. №6. St. 05. Available at: http://www.viam-works.ru (accessed: May 16, 2016). DOI: 10.18577/2307-6046-2014-0-6-5-5.
18. Zimichev A.M., Varrik N.M. Termogravimetricheskie issledovanija nitej na osnove oksida alju-minija [Thermogravimetric researches of threads on the basis of aluminum oxide] // Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2014. №6. St. 06. Available at: http://www.viam-works.ru (accessed: May 16, 2016). DOI: 10.18577/2307-6046-2014-0-6-6-6.
19. Zimichev A.M., Balinova Ju.A., Varrik N.M. K voprosu o module uprugosti volokon iz tugoplav-kih oksidov [To a question of the module of elasticity of fibers from refractory oxides] // Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2014. №10. St. 06. Available at: http://www.viam-works.ru (accessed: May 16, 2016). DOI: 10.18577/2307-6046-2014-0-10-6-6.
20. Kablov E.N. Konstrukcionnye i funkcionalnye materialy – osnova jekonomicheskogo i nauchno-tehnicheskogo razvitija Rossii [Constructional and functional materials – a basis of economic and scientific and technical development of Russia] // Voprosy materialovedenija. 2006. №1. S. 64–67.
21. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.