Articles

1.
УДК 669.715
Features of forming of structure of round ingots from aluminum alloys on the basis of Al–Cu–Mg system
Traditionally, in the open air of modern aviation technology products are used alloys based on the Al–Cu–Mg system. However, due to the ever increasing demand for the resource and reliability of the critical elements of the airframe requires improving service performance. One area of development to improve the lifetime characteristics of a multicomponent microalloying additives (Sc, Zr – up to 0,15%; Ag – 0,50%) to obtain a semifinished unrecrystallized structure. In this paper we present the main findings of phase dissolution features in the homogenization of ingots with a diameter of 100 mm from alloy series 1163 and future vysokoresursnyh alloy B-1167. Abstract macro and microstructure, phase composition of the ingots as cast and homogenised state. An assessment of their technological properties. The studies show a positive effect of an integrated micro-alloying with transition metals (Sc, Zr) and Ag.
The work within the framework of an integrated research area 8.1. «High-welded al
Keywords: structure, phase composition, properties, MRSA analysis
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Entsiklopedicheskiy spravochnik. 2008. №3. S. 2–14.
4. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: August 8, 2016).
5. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
6. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Alyuminievye deformiruemye splavy [Aluminum deformable alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
7. Novikov I.I., Zolotorevskiy V.S., Portnoy V.K. i dr. Metallovedenie [Metallurgical science]. M.: MISiS, 2009. T. 2. S. 262–312.
8. Chirkov E.F. Temp razuprochneniya pri nagrevakh – kriteriy otsenki zharoprochnosti kon-struktsionnykh splavov sistem Al–Cu–Mg i Al–Cu [Rate of loss of strength when heatings – criterion of assessment of thermal stability of structural alloys of Al–Cu–Mg and Al–Cu systems ] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2013. №2. St. 02. Available at: http://www.viam-works.ru (accessed: August 8, 2016).
9. Grigorev M.V., Antipov V.V., Vakhromov R.O. i dr. Struktura i svoystva slitkov iz splava sistemy Al–Cu–Mg s mikrodobavkami serebra [Structure and properties of ingots from Al-Cu-Mg system alloy with silver microadditives] // Aviatsionnye materialy i tekhnologii. 2013. №3. S. 3–6.
10. Loshchinin Yu.V., Pakhomkin S.I., Fokin A.S. Vliyanie skorosti nagreva pri issledovanii fazovykh prevrashcheniy v alyuminievykh splavakh metodom DSK [Influence of speed of heating at research of phase transformations in aluminum alloys DSC method] // Aviatsionnye materialy i tekhnologii. 2011. №2. S. 3–6.
11. Geuser F. De, Bley F., Deschamps A. Early stage of Ω phase precipitation in Al–Cu–Mg–Ag observed in situ with and without applied stress by small angle x-ray scattering // Proc. of the 12th ICAA. Japan, 2010. P. 475–480.
12. Cho A., Bes B. Damage tolerance capability of an Al–Cu–Mg–Ag Al2139 aluminum alloys // Materuals Science Forum. 2006. Vol. 519–521. P. 603–608.
13. Ringer S.P., Polmearb I.J., Sakurai T. Effect of additions of Si and Ag to ternary Al–Cu–Mg alloys in the α+S phase field // Materials Science and Engineering: A. 1996. Vol. 217–218. P. 273–276.
14. Polmer I.J. Aluminium alloys – a century of age hardening // ICAA-9. Australia. 2004. P. 1–14.
15. Teleshov V.V., Golovleva A.P. Alyuminievye splavy sistemy Al–Mg–(Cu), legirovannye serebrom [The aluminum alloys of Al–Mg–(Cu) system alloyed by silver] // Tekhnologiya legkikh splavov. 2004. №6. S. 49–60.
16. Teleshov V.V., Gogoleva A.P. Vliyanie malykh dobavok serebra i parametrov tekhnologii izgotovleniya na strukturu i svoystva polufabrikatov iz splavov sistemy Al–Cu–Mg–Xi [Influence of small additives of silver and manufacturing techniques parameters on structure and properties of semi-finished products from Al-Cu-Mg-Xi system alloys] // Tekhnologiya legkikh splavov. 2006. №1–2. S. 99–119.
17. Mondolfo L.F. Struktura i svoystva alyuminievykh splavov [Structure and properties of aluminum alloys]. M.: Metallurgiya, 1979. S. 251.
18. Zakharov V.V., Elagin V.I., Rostova T.D., Filatov Yu.A. Metallovedcheskie printsipy legirovaniya alyuminievykh splavov skandiem [Metallovedchesky principles of alloying of aluminum alloys scandium] // Tekhnologiya legkikh splavov. 2010. №1. S. 67–73.
19. Elagin V.I. Legirovanie deformiruemykh alyuminievykh splavov perekhodnymi metallami [Alloying of deformable aluminum alloys transition metals]. M.: Metallurgiya, 1975. 248 s.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Entsiklopedicheskiy spravochnik. 2008. №3. S. 2–14.
4. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: August 8, 2016).
5. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
6. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Alyuminievye deformiruemye splavy [Aluminum deformable alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
7. Novikov I.I., Zolotorevskiy V.S., Portnoy V.K. i dr. Metallovedenie [Metallurgical science]. M.: MISiS, 2009. T. 2. S. 262–312.
8. Chirkov E.F. Temp razuprochneniya pri nagrevakh – kriteriy otsenki zharoprochnosti kon-struktsionnykh splavov sistem Al–Cu–Mg i Al–Cu [Rate of loss of strength when heatings – criterion of assessment of thermal stability of structural alloys of Al–Cu–Mg and Al–Cu systems ] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2013. №2. St. 02. Available at: http://www.viam-works.ru (accessed: August 8, 2016).
9. Grigorev M.V., Antipov V.V., Vakhromov R.O. i dr. Struktura i svoystva slitkov iz splava sistemy Al–Cu–Mg s mikrodobavkami serebra [Structure and properties of ingots from Al-Cu-Mg system alloy with silver microadditives] // Aviatsionnye materialy i tekhnologii. 2013. №3. S. 3–6.
10. Loshchinin Yu.V., Pakhomkin S.I., Fokin A.S. Vliyanie skorosti nagreva pri issledovanii fazovykh prevrashcheniy v alyuminievykh splavakh metodom DSK [Influence of speed of heating at research of phase transformations in aluminum alloys DSC method] // Aviatsionnye materialy i tekhnologii. 2011. №2. S. 3–6.
11. Geuser F. De, Bley F., Deschamps A. Early stage of Ω phase precipitation in Al–Cu–Mg–Ag observed in situ with and without applied stress by small angle x-ray scattering // Proc. of the 12th ICAA. Japan, 2010. P. 475–480.
12. Cho A., Bes B. Damage tolerance capability of an Al–Cu–Mg–Ag Al2139 aluminum alloys // Materuals Science Forum. 2006. Vol. 519–521. P. 603–608.
13. Ringer S.P., Polmearb I.J., Sakurai T. Effect of additions of Si and Ag to ternary Al–Cu–Mg alloys in the α+S phase field // Materials Science and Engineering: A. 1996. Vol. 217–218. P. 273–276.
14. Polmer I.J. Aluminium alloys – a century of age hardening // ICAA-9. Australia. 2004. P. 1–14.
15. Teleshov V.V., Golovleva A.P. Alyuminievye splavy sistemy Al–Mg–(Cu), legirovannye serebrom [The aluminum alloys of Al–Mg–(Cu) system alloyed by silver] // Tekhnologiya legkikh splavov. 2004. №6. S. 49–60.
16. Teleshov V.V., Gogoleva A.P. Vliyanie malykh dobavok serebra i parametrov tekhnologii izgotovleniya na strukturu i svoystva polufabrikatov iz splavov sistemy Al–Cu–Mg–Xi [Influence of small additives of silver and manufacturing techniques parameters on structure and properties of semi-finished products from Al-Cu-Mg-Xi system alloys] // Tekhnologiya legkikh splavov. 2006. №1–2. S. 99–119.
17. Mondolfo L.F. Struktura i svoystva alyuminievykh splavov [Structure and properties of aluminum alloys]. M.: Metallurgiya, 1979. S. 251.
18. Zakharov V.V., Elagin V.I., Rostova T.D., Filatov Yu.A. Metallovedcheskie printsipy legirovaniya alyuminievykh splavov skandiem [Metallovedchesky principles of alloying of aluminum alloys scandium] // Tekhnologiya legkikh splavov. 2010. №1. S. 67–73.
19. Elagin V.I. Legirovanie deformiruemykh alyuminievykh splavov perekhodnymi metallami [Alloying of deformable aluminum alloys transition metals]. M.: Metallurgiya, 1975. 248 s.
2.
УДК 669.715:669.884
Structure aspects of 1441 Al–Cu–Mg–Li alloy ingots according to solution heat treatment methods
The investigation of phase merging within 1441 Al–Cu–Mg–Li alloy ingots solution heat treatment was carried out. Raising temperature of solution heat treatment from 500 to 530°С causes almost complete nonequilibrium eutectic merge. 540°С, 24 h regime can cause partial melting of nonequilibrium eutectic on grain boundaries and ingot microporosity. Double-stage solution heat treatment of 1441 alloy with first stage at the 70–100°С lower point than the temperature of nonequilibrium solidus and high temperature second stage that is a little more than nonequilibrium solidus temperature allows reaching the most complete precipitation merge and raises material`s technical plasticity at the hot deformation temperature.
The work within the framework of an integrated research area 8.1. «High-welded aluminum and aluminum-lithium alloys low density with high fracture toughness» («The strategic directions of development of materials and technologies of their processing them for the period till 203
Keywords: Al–Cu–Mg–Li alloy, ingot, microstructure, solution heat treatment, differential thermal analisys
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strate-gicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Entsiklopedicheskiy spravochnik. 2008. №3. S. 2–14.
3. Kablov E.N., Shchetanov B.V., Grashhenkov D.V., Shavnev A.A., Nyafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al–SiC [Metalmatrix composite materials on the basis of Al–SiC] // Aviacionnye materialy i tehnologii. 2012. №S. S. 373–380.
4. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
5. Fridlyander I.N., Chuistov K.V., Berezina A.L., Kolobnev N.I. Alyuminiy-litievye splavy. Struktura i svoystva [Aluminum-lithium alloys. Structure and properties]. Kiev: Naukova dumka, 1992. 192 s.
6. Fridlyander I.N., Kolobnev N.I., Sandler V.S. Alyuminiy-litievye splavy [Aluminum-lithium alloys] // Mashinostroenie: entsiklopediya. M.: Mashinostroenie, 2001. T. II-3: Tsvetnye metally i splavy. Kompozitsionnye metallicheskie materialy. S. 156–184.
7. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Alyuminievye deformiruemye splavy [Aluminum deformable alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
8. Sposob polucheniya slitkov iz alyuminievykh splavov, soderzhashchikh litiy [Way of receiving ingots from the aluminum alloys containing lithium]: pat. 2463364 Ros. Federatsiya; opubl. 03.05.11.
9. Ovsyannikov B.V., Komarov S.B. Razvitie proizvodstva deformirovannykh polufabrikatov iz alyuminievo-litievykh splavov v OAO «KUMZ» [Development of production of the deformed semi-finished products from aluminum-lithium alloys in JSC KUMZ] // Tekhnologiya legkikh splavov. 2014. №1. S. 97–103.
10. Ovsyannikov B.V., Zamyatin V.M., Mushnikov V.S., Oglodkov M.S. Termicheskiy i mikrorentgenospektral'nyy analiz slitkov splava V-1461 na osnove sistemy Al–Cu–Li [Thermal and microx ray spectral analysis of ingots of alloy V-1461 on the basis of Al–Cu–Li system] // Metallovedenie i termicheskaya obrabotka metallov. 2014. №6 (708). S. 12–17.
11. Kolobnev N.I., Khokhlatova L.B., Antipov V.V. Perspektivnye alyuminiy-litievye splavy dlya samoletnykh konstruktsiy [Perspective aluminum-lithium alloys for aircraft designs] // Tekhnologiya legkikh splavov. 2007. №2. S. 35–38.
12. Ryabova E.N., Kolobnev N.I., Khokhlatova L.B., Oglodkov M.S. Osobennosti struktury i svoystv listov iz splavov sistemy Al–Cu–Li–Mg [Features of structure and properties of sheets from
Al–Cu–Li–Mg system alloys] // Metallurgiya mashinostroeniya. 2015. №1. S. 17–19.
13. Oglodkov M.S., Hohlatova L.B., Kolobnev N.I., Alekseev A.A., Lukina E.A. Vlijanie termomehanicheskoj obrabotki na svojstva i strukturu splava sistemy Al–Cu–Mg–Li–Zn [Influence of thermomechanical processing on properties and Al–Cu–Mg–Li–Zn system alloy structure] //Aviacionnye materialy i tehnologii. 2010. №4. S. 7–11.
14. Antipov V.V., Kolobnev N.I., Hohlatova L.B. Razvitie alyuminijlitievyh splavov i mnogostupenchatyh rezhimov termicheskoj obrabotki [Development aluminum lithium alloys and multistage modes of thermal processing] // Aviacionnye materialy i tehnologii. 2012. №S. S. 183–195.
15. Khokhlatova L.B., Kolobnev N.I., Oglodkov M.S. i dr. Izmenenie fazovogo sostava v zavisimosti ot rezhimov stareniya i struktury polufabrikatov splava V-1461 [Change of phase structure depending on modes of aging and structure of semi-finished products of alloy V-1461] // MiTOM. 2012. №6. S. 20–24.
16. Khokhlatova L.B., Kolobnev N.I., Oglodkov M.S., Mikhaylov E.D. Alyuminiylitievye splavy dlya samoletostroeniya [Alyuminiylitiyevye alloys for aircraft construction] // Metallurg. 2012. №5.
S. 31–35.
17. Khokhlatova L.B., Oglodkov M.S., Ponomarev E.L. Vliyanie rezhimov stareniya na korrozionnuyu stoykost' listov iz splava V-1461 sistemy Al–Li–Cu–Zn–Mg [Influence of modes of aging on corrosion resistance of sheets from alloy V-1461 of Al–Li–Cu–Zn–Mg system ] // Metallurgiya mashinostroeniya. 2012. №3. S. 22–26.
18. Loshchinin Yu.V., Pakhomkin S.I., Fokin A.S. Vliyanie skorosti nagrevaniya pri issledovanii fazovykh prevrashcheniy v alyuminievykh splavakh metodom DSK [Influence of speed of heating at research of phase transformations in aluminum alloys DSC method] // Aviatsionnye materialy i tekhnologii. 2011. №2. S. 3–6.
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Entsiklopedicheskiy spravochnik. 2008. №3. S. 2–14.
3. Kablov E.N., Shchetanov B.V., Grashhenkov D.V., Shavnev A.A., Nyafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al–SiC [Metalmatrix composite materials on the basis of Al–SiC] // Aviacionnye materialy i tehnologii. 2012. №S. S. 373–380.
4. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
5. Fridlyander I.N., Chuistov K.V., Berezina A.L., Kolobnev N.I. Alyuminiy-litievye splavy. Struktura i svoystva [Aluminum-lithium alloys. Structure and properties]. Kiev: Naukova dumka, 1992. 192 s.
6. Fridlyander I.N., Kolobnev N.I., Sandler V.S. Alyuminiy-litievye splavy [Aluminum-lithium alloys] // Mashinostroenie: entsiklopediya. M.: Mashinostroenie, 2001. T. II-3: Tsvetnye metally i splavy. Kompozitsionnye metallicheskie materialy. S. 156–184.
7. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Alyuminievye deformiruemye splavy [Aluminum deformable alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
8. Sposob polucheniya slitkov iz alyuminievykh splavov, soderzhashchikh litiy [Way of receiving ingots from the aluminum alloys containing lithium]: pat. 2463364 Ros. Federatsiya; opubl. 03.05.11.
9. Ovsyannikov B.V., Komarov S.B. Razvitie proizvodstva deformirovannykh polufabrikatov iz alyuminievo-litievykh splavov v OAO «KUMZ» [Development of production of the deformed semi-finished products from aluminum-lithium alloys in JSC KUMZ] // Tekhnologiya legkikh splavov. 2014. №1. S. 97–103.
10. Ovsyannikov B.V., Zamyatin V.M., Mushnikov V.S., Oglodkov M.S. Termicheskiy i mikrorentgenospektral'nyy analiz slitkov splava V-1461 na osnove sistemy Al–Cu–Li [Thermal and microx ray spectral analysis of ingots of alloy V-1461 on the basis of Al–Cu–Li system] // Metallovedenie i termicheskaya obrabotka metallov. 2014. №6 (708). S. 12–17.
11. Kolobnev N.I., Khokhlatova L.B., Antipov V.V. Perspektivnye alyuminiy-litievye splavy dlya samoletnykh konstruktsiy [Perspective aluminum-lithium alloys for aircraft designs] // Tekhnologiya legkikh splavov. 2007. №2. S. 35–38.
12. Ryabova E.N., Kolobnev N.I., Khokhlatova L.B., Oglodkov M.S. Osobennosti struktury i svoystv listov iz splavov sistemy Al–Cu–Li–Mg [Features of structure and properties of sheets from
Al–Cu–Li–Mg system alloys] // Metallurgiya mashinostroeniya. 2015. №1. S. 17–19.
13. Oglodkov M.S., Hohlatova L.B., Kolobnev N.I., Alekseev A.A., Lukina E.A. Vlijanie termomehanicheskoj obrabotki na svojstva i strukturu splava sistemy Al–Cu–Mg–Li–Zn [Influence of thermomechanical processing on properties and Al–Cu–Mg–Li–Zn system alloy structure] //Aviacionnye materialy i tehnologii. 2010. №4. S. 7–11.
14. Antipov V.V., Kolobnev N.I., Hohlatova L.B. Razvitie alyuminijlitievyh splavov i mnogostupenchatyh rezhimov termicheskoj obrabotki [Development aluminum lithium alloys and multistage modes of thermal processing] // Aviacionnye materialy i tehnologii. 2012. №S. S. 183–195.
15. Khokhlatova L.B., Kolobnev N.I., Oglodkov M.S. i dr. Izmenenie fazovogo sostava v zavisimosti ot rezhimov stareniya i struktury polufabrikatov splava V-1461 [Change of phase structure depending on modes of aging and structure of semi-finished products of alloy V-1461] // MiTOM. 2012. №6. S. 20–24.
16. Khokhlatova L.B., Kolobnev N.I., Oglodkov M.S., Mikhaylov E.D. Alyuminiylitievye splavy dlya samoletostroeniya [Alyuminiylitiyevye alloys for aircraft construction] // Metallurg. 2012. №5.
S. 31–35.
17. Khokhlatova L.B., Oglodkov M.S., Ponomarev E.L. Vliyanie rezhimov stareniya na korrozionnuyu stoykost' listov iz splava V-1461 sistemy Al–Li–Cu–Zn–Mg [Influence of modes of aging on corrosion resistance of sheets from alloy V-1461 of Al–Li–Cu–Zn–Mg system ] // Metallurgiya mashinostroeniya. 2012. №3. S. 22–26.
18. Loshchinin Yu.V., Pakhomkin S.I., Fokin A.S. Vliyanie skorosti nagrevaniya pri issledovanii fazovykh prevrashcheniy v alyuminievykh splavakh metodom DSK [Influence of speed of heating at research of phase transformations in aluminum alloys DSC method] // Aviatsionnye materialy i tekhnologii. 2011. №2. S. 3–6.
3.
УДК 669.715
Structure of aluminium powders for additive manufacturing, obtained by gas atomization
Additive technologies allow receiving details from widely range of materials, including aluminum alloys. Thus high cooling rates during gas atomization of powders can lead to formation of nonequilibrium structures which can change during heat treatment. This paper deals with the results of investigation of microstructure of aluminium powder after different types of heat treatment.
The work is carried out under the realization of integrated research area 10.3. «Technologies of atomization for producing high quality metallic powders for additive manufacturing and powder for brazing» («Strategic directions of development of materials and technologies for processing them for the period up to 2030»)
Keywords: atomization, aluminium, powders, heat treatment
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Grashchenkov D.V., Shchetanov B.V., Efimochkin I.Yu. Razvitie poroshkovoy metallurgii zharoprochnykh materialov [Development of powder metallurgy of heat resisting materials] // Vse materialy. Entsiklopedicheskiy spravochnik. 2011. №5. S. 13–26.
3. Beresnev A.G., Razumovskiy I.M. Novye resheniya v metallurgicheskom proizvodstve [New decisions in metallurgical production] // Tekhnologiya mashinostroeniya. 2016. №1. S. 29–34.
4. Kablov E.N., Shchetanov B.V., Grashhenkov D.V., Shavnev A.A., Nyafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al–SiC [Metalmatrix composite materials on the basis of Al–SiC] // Aviacionnye materialy i tehnologii. 2012. №S. S. 373–380.
5. Kablov E.N., Shchetanov B.V., Shavnev A.A., Nyafkin A.N. i dr. Svoystva i primenenie vysokonapolnennogo metallomatrichnogo kompozitsionnogo materiala Al‒SiC [Properties and application of the high-filled metalmatrix Al‒SiC composite material] // Tekhnologiya mashinostroeniya. 2011. №3. S. 5–7.
6. Sercombe T., Schaffer G. Rapid manufacturing of aluminum components // Science. 2003.
Vol. 301 (5637). P. 1225–1227.
7. Bremen S., Meiners W., Diatlov A. Selective Laser Melting // Laser Technic Journal. 2012.
No. 9 (2). P. 33–38.
8. Petrovic V., Gonzalez J.V.H., Ferrando O.J., Gordillo J.D., Puchades J.R.B., Grinan L.P. Additive layered manufacturing: sectors of industrial application shown through case studies // Int. J. Prod. Res. 2011. Vol. 49 (4). P. 1061–1079.
9. Aboulkhair N.T., Everitt N.M., Ashcroft I., Tuck C. Reducing porosity in AlSi10Mg parts processed by selective laser melting // Additive Manufacturing. 2014. Vol. 1–4. P. 77–86.
10. Olakanmi E.O. Selective laser sintering/melting (SLS/SLM) of pure Al, Al–Mg, and Al–Si powders: effect of processing conditions and powder properties // J. Mater Process Technol. 2013.
Vol. 213. P. 1387–1405.
11. Antipas G. Gas Atomization of Aluminium Melts: Comparison of Analytical Models // Metals. 2012. No. 2. P. 202–210.
12. Wang E.R., Hui X.D., Wang S.S., Zhao Y.F., Chen G.L. Microstructure and mechanical properties of Al–Si–Ni–Ce alloys prepared by gas-atomization spark plasma sintering and hot-extrusion // Materials Science and Engineering: A. 2011. Vol. 528. Issue 18. P. 5764–5771.
13. Goncharenko E.S., Trapeznikov A.V., Ogorodov D.V. Litejnye alyuminievye splavy (k 100-letiyu so dnya rozhdeniya M.B. Altmana) [Aluminium casting alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №4. St. 02. Available at: http://www.viam-works.ru (accessed: July 19, 2016). DOI: 10.18577/2307-6046-2014-0-4-2-2.
14. Brandl E., Heckenberger U., Holzinger V. et al. Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior // Materials & Design. 2012. Vol. 34. P. 159–169.
15. Prashanth K.G., Scudino S., Klauss H.J. Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment // Materials Science and Engineering: A. 2014. Vol. 590. P. 153–160.
16. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
17. Ryabov D.K., Kolobnev N.I., Samohvalov S.V. Effect of scandium addition on mechanical properties and corrosion resistance of medium strength Al–Zn–Mg(–Cu) alloy // Materials Science Forum. 2014. Vol. 794–796. P. 241–246.
18. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
19. Dobatkin V.I., Belov A.F., Eskin G.I., Borovikova S.I., Golder Yu.G. Zakonomernost kristallizatsii metallicheskikh materialov. Nauchnoe otkrytie. Diplom №271 [Pattern of crystallization of metal materials. Discovery. Diploma No. 271] // Otkrytiya. Izobreteniya. 1983. №37. S. 1.
2. Grashchenkov D.V., Shchetanov B.V., Efimochkin I.Yu. Razvitie poroshkovoy metallurgii zharoprochnykh materialov [Development of powder metallurgy of heat resisting materials] // Vse materialy. Entsiklopedicheskiy spravochnik. 2011. №5. S. 13–26.
3. Beresnev A.G., Razumovskiy I.M. Novye resheniya v metallurgicheskom proizvodstve [New decisions in metallurgical production] // Tekhnologiya mashinostroeniya. 2016. №1. S. 29–34.
4. Kablov E.N., Shchetanov B.V., Grashhenkov D.V., Shavnev A.A., Nyafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al–SiC [Metalmatrix composite materials on the basis of Al–SiC] // Aviacionnye materialy i tehnologii. 2012. №S. S. 373–380.
5. Kablov E.N., Shchetanov B.V., Shavnev A.A., Nyafkin A.N. i dr. Svoystva i primenenie vysokonapolnennogo metallomatrichnogo kompozitsionnogo materiala Al‒SiC [Properties and application of the high-filled metalmatrix Al‒SiC composite material] // Tekhnologiya mashinostroeniya. 2011. №3. S. 5–7.
6. Sercombe T., Schaffer G. Rapid manufacturing of aluminum components // Science. 2003.
Vol. 301 (5637). P. 1225–1227.
7. Bremen S., Meiners W., Diatlov A. Selective Laser Melting // Laser Technic Journal. 2012.
No. 9 (2). P. 33–38.
8. Petrovic V., Gonzalez J.V.H., Ferrando O.J., Gordillo J.D., Puchades J.R.B., Grinan L.P. Additive layered manufacturing: sectors of industrial application shown through case studies // Int. J. Prod. Res. 2011. Vol. 49 (4). P. 1061–1079.
9. Aboulkhair N.T., Everitt N.M., Ashcroft I., Tuck C. Reducing porosity in AlSi10Mg parts processed by selective laser melting // Additive Manufacturing. 2014. Vol. 1–4. P. 77–86.
10. Olakanmi E.O. Selective laser sintering/melting (SLS/SLM) of pure Al, Al–Mg, and Al–Si powders: effect of processing conditions and powder properties // J. Mater Process Technol. 2013.
Vol. 213. P. 1387–1405.
11. Antipas G. Gas Atomization of Aluminium Melts: Comparison of Analytical Models // Metals. 2012. No. 2. P. 202–210.
12. Wang E.R., Hui X.D., Wang S.S., Zhao Y.F., Chen G.L. Microstructure and mechanical properties of Al–Si–Ni–Ce alloys prepared by gas-atomization spark plasma sintering and hot-extrusion // Materials Science and Engineering: A. 2011. Vol. 528. Issue 18. P. 5764–5771.
13. Goncharenko E.S., Trapeznikov A.V., Ogorodov D.V. Litejnye alyuminievye splavy (k 100-letiyu so dnya rozhdeniya M.B. Altmana) [Aluminium casting alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №4. St. 02. Available at: http://www.viam-works.ru (accessed: July 19, 2016). DOI: 10.18577/2307-6046-2014-0-4-2-2.
14. Brandl E., Heckenberger U., Holzinger V. et al. Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior // Materials & Design. 2012. Vol. 34. P. 159–169.
15. Prashanth K.G., Scudino S., Klauss H.J. Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment // Materials Science and Engineering: A. 2014. Vol. 590. P. 153–160.
16. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
17. Ryabov D.K., Kolobnev N.I., Samohvalov S.V. Effect of scandium addition on mechanical properties and corrosion resistance of medium strength Al–Zn–Mg(–Cu) alloy // Materials Science Forum. 2014. Vol. 794–796. P. 241–246.
18. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
19. Dobatkin V.I., Belov A.F., Eskin G.I., Borovikova S.I., Golder Yu.G. Zakonomernost kristallizatsii metallicheskikh materialov. Nauchnoe otkrytie. Diplom №271 [Pattern of crystallization of metal materials. Discovery. Diploma No. 271] // Otkrytiya. Izobreteniya. 1983. №37. S. 1.
4.
УДК 621.762
The use of welded and powder casting superalloys produced by FGUP «VIAM» for the repair of gas turbine engine components laser gas powder braze
In article aspects of use of domestic metal powders of the welded EP718 and foundry alloys of VZhL12U and VKNA-1VR to restore the geometry of laser gas turbine engine parts by braze. The morphology of the particles and the fractional composition of the applied powder materials. Are investigated influence of key parameters of a braze on geometry of the built-up material. The features of formation of structure of the deposited material, change the height of microhardness and base material. It is shown that the optimum exhaust braze modes provides a dense structure of dendritic structure without cracks, pores, neproplavov.
Keywords: laser gas powder braze, metal-powder composition, protective environment, dendritic structure, cellular structure, micro-hardness, the braze material
Reference List
1. Turichin G.A. Klimova O.V., Zemlyakov E.N. Tekhnologicheskie osnovy vysokoskorostnogo pryamogo lazernogo vyrashchivaniya izdeliy metodom geterofaznoy poroshkovoy metallurgii [Technological bases of high-speed direct laser cultivation of products method of heterophase powder metallurgy] // Fotonika. 2015. №4 (52). S. 68–83.
2. Fan Z., Wong B.S. Potentials and Challenges of NDE Methods in Additive Manufacturing // Proc. Pro-AM 2014. 2014. Paper 070. Р. 12.
3. Li L. Heat Transfer and Residual Stress Characteristics in Laser Additive Manufacturing by Powder Injection // Ibid. 2014. Р. 25.
4. Schmidt M. The Additive manufacturing in production: Challenges and opportunities // Proc. SPIE. 2-nd Int. Symp. on Laser 3D Manufacturing. 2015. No. 9353. P. 9353–2.
5. Hascoet J.Y. «Materials Science» Challenges in the Additive Manufacturing of Industrial Parts /
J.Y. Hascoet, S. Marya, M. Marya, V. Singh // Proc. Pro-AM 2014. 2014. Paper 037. P. 18.
6. Kablov E.N. Chto takoe innovatsii [What is the innovations] // Nauka i zhizn. 2011. №11. S. 16–21.
7. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravleniya razvitiya tekhnologiy proizvodstva zharoprochnykh materialov dlya aviatsionnogo dvigatelestroeniya [The priority directions of development of production technologies of heat resisting materials for aviation engine-building] // Problemy chernoy metallurgii i materialovedeniya. 2013. №3. S. 47–54.
8. Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii [Tendencies and reference points of innovative development of Russia]: sb. nauch.-inform. mater. 3-e izd. M.: VIAM, 2015. 720 s.
9. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33
10. Evgenov A.G., Rogalev A.M., Nerush S.V., Mazalov I.S. Issledovanie svojstv splava EP648, poluchennogo metodom selektivnogo lazernogo splavleniya metallicheskih poroshkov [A study of properties of EP648 alloy manufactured by the selective laser sintering of metal powders] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 02. Available at: http://www.viam-works.ru (accessed: March 23, 2016). DOI: 10.18577/2307-6046-2015-0-2-2-2.
11. Evgenov A.G., Rogalev A.M., Karachevtsev F.N., Mazalov I.S. Vliyanie goryachego izostaticheskogo pressovaniya i termicheskoy obrabotki na svoystva splava EP648, sintezirovannogo metodom selektivnogo lazernogo splavleniya [Influence of hot isostatic pressing and thermal processing on properties of alloy EP648 synthesized by a method of a selective laser splavleniye] // Tekhnologiya mashinostroeniya. 2015. №9. S. 11–16.
12. Nerush S.V., Evgenov A.G., Ermolaev A.S., Rogalev A.M. Issledovanie melkodispersnogo metallicheskogo poroshka zharoprochnogo splava na nikelevoy osnove dlya lazernoy LMD-naplavki [Research of a fine-dispersed metal powder of a heat resisting alloy on a nickel basis for the laser LMD-welding] // Voprosy materialovedeniya. 2013. №4 (76). S. 98–107.
13. Evgenov A.G., Nerush S.V., Vasilenko S.A. Poluchenie i oprobovanie melkodispersnogo metallicheskogo poroshka vysokohromistogo splava na nikelevoj osnove primenitelno k lazernoj
LMD-naplavke [The obtaining and testing of the fine-dispersed metal powder of the high-chromium alloy on nickel-base for laser LMD-welding] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №5. St. 04. Available at: http://www.viam-works.ru (accessed: March 23, 2016). DOI: 10.18577/2307-6046-2014-0-5-4-4.
14. Evgenov A.G., Sukhov D.I., Nerush S.V., Rogalev A.M. Mekhanicheskie svoystva i struktura splava sistemy Ni–Cr–W–Mo–Al–Ti–Nb, poluchaemogo metodom selektivnogo lazernogo splavleniya [Mechanical properties and structure of an alloy of the Ni-Cr-W-Mo-Al-Ti-Nb system received by a method of a selective laser splavleniye] // Tekhnologiya mashinostroeniya. 2016. №3. S. 5–9.
15. Nerush S.V., Evgenov A.G. Issledovanie melkodispersnogo metallicheskogo poroshka zharo-prochnogo splava marki EP648-VI primenitelno k lazernoj LMD-naplavke, a takzhe ocenka kachestva naplavki poroshkovogo materiala na nikelevoj osnove na rabochie lopatki TVD [Research of fine-dispersed metal powder of the heat resisting alloy of the EP648-VI brand for laser metal deposition (LMD) and also the assessment quality of welding of powder material on the nickel basis on working blades THP] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №3. St. 01. Available at: http://www.viam-works.ru (accessed: March 23, 2016). DOI: 10.18577/2307-6046-2014-0-3-1-1.
16. Ermolaev A.S., Ivanov A.M., Vasilev S.A. Klassifikatsiya defektov metallicheskikh materialov, sintezirovannykh metodom selektivnogo lazernogo splavleniya, i vozmozhnosti nerazrushayushchego kontrolya dlya ikh obnaruzheniya [Classification of defects of the metal materials synthesized by a method of a selective laser fusing, and possibility of nondestructive control for their detection] // Defektoskopiya. 2016. №1. S. 48–55.
2. Fan Z., Wong B.S. Potentials and Challenges of NDE Methods in Additive Manufacturing // Proc. Pro-AM 2014. 2014. Paper 070. Р. 12.
3. Li L. Heat Transfer and Residual Stress Characteristics in Laser Additive Manufacturing by Powder Injection // Ibid. 2014. Р. 25.
4. Schmidt M. The Additive manufacturing in production: Challenges and opportunities // Proc. SPIE. 2-nd Int. Symp. on Laser 3D Manufacturing. 2015. No. 9353. P. 9353–2.
5. Hascoet J.Y. «Materials Science» Challenges in the Additive Manufacturing of Industrial Parts /
J.Y. Hascoet, S. Marya, M. Marya, V. Singh // Proc. Pro-AM 2014. 2014. Paper 037. P. 18.
6. Kablov E.N. Chto takoe innovatsii [What is the innovations] // Nauka i zhizn. 2011. №11. S. 16–21.
7. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravleniya razvitiya tekhnologiy proizvodstva zharoprochnykh materialov dlya aviatsionnogo dvigatelestroeniya [The priority directions of development of production technologies of heat resisting materials for aviation engine-building] // Problemy chernoy metallurgii i materialovedeniya. 2013. №3. S. 47–54.
8. Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii [Tendencies and reference points of innovative development of Russia]: sb. nauch.-inform. mater. 3-e izd. M.: VIAM, 2015. 720 s.
9. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33
10. Evgenov A.G., Rogalev A.M., Nerush S.V., Mazalov I.S. Issledovanie svojstv splava EP648, poluchennogo metodom selektivnogo lazernogo splavleniya metallicheskih poroshkov [A study of properties of EP648 alloy manufactured by the selective laser sintering of metal powders] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 02. Available at: http://www.viam-works.ru (accessed: March 23, 2016). DOI: 10.18577/2307-6046-2015-0-2-2-2.
11. Evgenov A.G., Rogalev A.M., Karachevtsev F.N., Mazalov I.S. Vliyanie goryachego izostaticheskogo pressovaniya i termicheskoy obrabotki na svoystva splava EP648, sintezirovannogo metodom selektivnogo lazernogo splavleniya [Influence of hot isostatic pressing and thermal processing on properties of alloy EP648 synthesized by a method of a selective laser splavleniye] // Tekhnologiya mashinostroeniya. 2015. №9. S. 11–16.
12. Nerush S.V., Evgenov A.G., Ermolaev A.S., Rogalev A.M. Issledovanie melkodispersnogo metallicheskogo poroshka zharoprochnogo splava na nikelevoy osnove dlya lazernoy LMD-naplavki [Research of a fine-dispersed metal powder of a heat resisting alloy on a nickel basis for the laser LMD-welding] // Voprosy materialovedeniya. 2013. №4 (76). S. 98–107.
13. Evgenov A.G., Nerush S.V., Vasilenko S.A. Poluchenie i oprobovanie melkodispersnogo metallicheskogo poroshka vysokohromistogo splava na nikelevoj osnove primenitelno k lazernoj
LMD-naplavke [The obtaining and testing of the fine-dispersed metal powder of the high-chromium alloy on nickel-base for laser LMD-welding] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №5. St. 04. Available at: http://www.viam-works.ru (accessed: March 23, 2016). DOI: 10.18577/2307-6046-2014-0-5-4-4.
14. Evgenov A.G., Sukhov D.I., Nerush S.V., Rogalev A.M. Mekhanicheskie svoystva i struktura splava sistemy Ni–Cr–W–Mo–Al–Ti–Nb, poluchaemogo metodom selektivnogo lazernogo splavleniya [Mechanical properties and structure of an alloy of the Ni-Cr-W-Mo-Al-Ti-Nb system received by a method of a selective laser splavleniye] // Tekhnologiya mashinostroeniya. 2016. №3. S. 5–9.
15. Nerush S.V., Evgenov A.G. Issledovanie melkodispersnogo metallicheskogo poroshka zharo-prochnogo splava marki EP648-VI primenitelno k lazernoj LMD-naplavke, a takzhe ocenka kachestva naplavki poroshkovogo materiala na nikelevoj osnove na rabochie lopatki TVD [Research of fine-dispersed metal powder of the heat resisting alloy of the EP648-VI brand for laser metal deposition (LMD) and also the assessment quality of welding of powder material on the nickel basis on working blades THP] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №3. St. 01. Available at: http://www.viam-works.ru (accessed: March 23, 2016). DOI: 10.18577/2307-6046-2014-0-3-1-1.
16. Ermolaev A.S., Ivanov A.M., Vasilev S.A. Klassifikatsiya defektov metallicheskikh materialov, sintezirovannykh metodom selektivnogo lazernogo splavleniya, i vozmozhnosti nerazrushayushchego kontrolya dlya ikh obnaruzheniya [Classification of defects of the metal materials synthesized by a method of a selective laser fusing, and possibility of nondestructive control for their detection] // Defektoskopiya. 2016. №1. S. 48–55.
5.
category: Functional and smart materials
УДК 546.65
Ospennikova O.G.1, Piskorskiy V.P.1
Materials for permanent magnets (review)
The modern basics problems of extraction and production of materials for high-energy permanent magnets are considered. Features of extraction of rare-earth metals in Russia and in the world are considered. The analysis of the world and Russian market of REM is carried out. The analysis of solutions of the developed problems is provided. The analysis of ways of development REM production in Russia is carried out.
This work is performed within complex scientific direction 11.1. «Thermostability hard magnetic materials and mathematical models of calculation their temperature characteristics for new generation navigations devices» («The strategical directions of materials development and their processing technologies till 2030»)
Keywords: rare earth metals, permanent magnets, deposits of rare earth metals
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
3. Kablov E.N., Bondarenko Yu.A., Kablov D.E. Osobennosti struktury i zharoprochnyh svojstv monokristallov <001> vysokorenievogo nikelevogo zharoprochnogo splava, poluchennogo v usloviyah vysokogradientnoj napravlennoj kristallizacii [Features of structure and heat resisting properties of monocrystals of <001> high-rhenium nickel hot strength alloys received in the conditions of high-gradient directed crystallization] //Aviacionnye materialy i tehnologii. 2011. №4. S. 25–31.
4. Kablov E.N., Tolorajya V.N. VIAM – osnovopolozhnik otechestvennoj tehnologii litya monokristallicheskih turbinnyh lopatok GTD i GTU [VIAM – the founder of domestic casting technology of single-crystal turbine blades of GTE and GTU] // Aviacionnye materialy i tehnologii. 2012. №S. S. 105–117.
5. Kablov E.N., Gerasimov V.V., Visik E.M., Demonis I.M. Rol napravlennoj kristallizatsii v resursosberegayushchej tehnologii proizvodstva detalej GTD [Role of the directed crystallization in the resource-saving production technology of details of GTE] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №3. St. 01. Available at: http://www.viam-works.ru (accessed: May 18, 2016).
6. Kablov E.N., Tolorayya V.N., Demonis I.M., Orekhov N.G. Napravlennaya kristallizatsiya zharoprochnykh nikelevykh splavov [The directed crystallization of heat resisting nickel alloys] // Tekhnologiya legkikh splavov. 2007. №2. S. 60–70.
7. Kablov E.N., Bondarenko Yu.A., Echin A.B., Surova V.A. Kablov D.E. Razvitie protsessa napravlennoy kristallizatsii lopatok GTD iz zharoprochnykh i intermetallidnykh splavov s monokristallicheskoy strukturoy [Development of process of the directed crystallization of blades of GTE from heat resisting and intermetallidny alloys with single-crystal structure] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. № SP2. S. 20–25.
8. Kablov E.N., Petrushin N.V., Elyutin E.S. Monokristallicheskie zharoprochnye splavy dlya gazoturbinnykh dvigateley [Single-crystal hot strength alloys for gas turbine engines] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 38–52.
9. Mikhaylov Yu.M. Redkozemelnye metally – osnova polucheniya perspektivnykh materialov, neobkhodimykh dlya razvitiya vooruzheniy i voennoy tekhniki [Rare earth metals – basis of receiving the perspective materials necessary for development of arms and military technology] // Redkie zemli. 2014. №3. S. 56–61.
10. Melentev G. Redkozemelnye prioritety Rossii [Rare-earth priorities of Russia] // Redkie zemli. 2015. №1. S. 56–60.
11. Melentev G. Redkozemelnye prioritety Rossii [Rare-earth priorities of Russia] // Redkie zemli. 2014. №3. S. 18–32.
12. Pozdnyakov S. Kazhdoe porazhenie – nachalo novoy pobedy [Each defeat – the beginning of new victory] // Redkie zemli. 2014. №1. S. 136–141.
13. Melentev G.B. Redkozemelnye novosti Rossii [Rare-earth news of Russia] // Redkie zemli. 2016. №1 (6). S. 128–138.
14. Andreas E. Redkie zemli – biznes dlya umnykh [Rare lands – business for smart] // Redkie zemli. 2014. №2. S. 131–133.
15. Mashkovtsev G.A., Bykhovskiy L.Z., Rogozhin A.A., Temnov A.V. Velikolepnaya vosmerka [Magnificent eight] // Redkie zemli. 2014. №1. S. 18–21.
16. Melentev G.B., Samsonov A.E. Prodvizhenie Tomtora [Tomtor's advance] // Redkie zemli. 2014. №3. S. 34–39.
2. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
3. Kablov E.N., Bondarenko Yu.A., Kablov D.E. Osobennosti struktury i zharoprochnyh svojstv monokristallov <001> vysokorenievogo nikelevogo zharoprochnogo splava, poluchennogo v usloviyah vysokogradientnoj napravlennoj kristallizacii [Features of structure and heat resisting properties of monocrystals of <001> high-rhenium nickel hot strength alloys received in the conditions of high-gradient directed crystallization] //Aviacionnye materialy i tehnologii. 2011. №4. S. 25–31.
4. Kablov E.N., Tolorajya V.N. VIAM – osnovopolozhnik otechestvennoj tehnologii litya monokristallicheskih turbinnyh lopatok GTD i GTU [VIAM – the founder of domestic casting technology of single-crystal turbine blades of GTE and GTU] // Aviacionnye materialy i tehnologii. 2012. №S. S. 105–117.
5. Kablov E.N., Gerasimov V.V., Visik E.M., Demonis I.M. Rol napravlennoj kristallizatsii v resursosberegayushchej tehnologii proizvodstva detalej GTD [Role of the directed crystallization in the resource-saving production technology of details of GTE] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №3. St. 01. Available at: http://www.viam-works.ru (accessed: May 18, 2016).
6. Kablov E.N., Tolorayya V.N., Demonis I.M., Orekhov N.G. Napravlennaya kristallizatsiya zharoprochnykh nikelevykh splavov [The directed crystallization of heat resisting nickel alloys] // Tekhnologiya legkikh splavov. 2007. №2. S. 60–70.
7. Kablov E.N., Bondarenko Yu.A., Echin A.B., Surova V.A. Kablov D.E. Razvitie protsessa napravlennoy kristallizatsii lopatok GTD iz zharoprochnykh i intermetallidnykh splavov s monokristallicheskoy strukturoy [Development of process of the directed crystallization of blades of GTE from heat resisting and intermetallidny alloys with single-crystal structure] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. № SP2. S. 20–25.
8. Kablov E.N., Petrushin N.V., Elyutin E.S. Monokristallicheskie zharoprochnye splavy dlya gazoturbinnykh dvigateley [Single-crystal hot strength alloys for gas turbine engines] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 38–52.
9. Mikhaylov Yu.M. Redkozemelnye metally – osnova polucheniya perspektivnykh materialov, neobkhodimykh dlya razvitiya vooruzheniy i voennoy tekhniki [Rare earth metals – basis of receiving the perspective materials necessary for development of arms and military technology] // Redkie zemli. 2014. №3. S. 56–61.
10. Melentev G. Redkozemelnye prioritety Rossii [Rare-earth priorities of Russia] // Redkie zemli. 2015. №1. S. 56–60.
11. Melentev G. Redkozemelnye prioritety Rossii [Rare-earth priorities of Russia] // Redkie zemli. 2014. №3. S. 18–32.
12. Pozdnyakov S. Kazhdoe porazhenie – nachalo novoy pobedy [Each defeat – the beginning of new victory] // Redkie zemli. 2014. №1. S. 136–141.
13. Melentev G.B. Redkozemelnye novosti Rossii [Rare-earth news of Russia] // Redkie zemli. 2016. №1 (6). S. 128–138.
14. Andreas E. Redkie zemli – biznes dlya umnykh [Rare lands – business for smart] // Redkie zemli. 2014. №2. S. 131–133.
15. Mashkovtsev G.A., Bykhovskiy L.Z., Rogozhin A.A., Temnov A.V. Velikolepnaya vosmerka [Magnificent eight] // Redkie zemli. 2014. №1. S. 18–21.
16. Melentev G.B., Samsonov A.E. Prodvizhenie Tomtora [Tomtor's advance] // Redkie zemli. 2014. №3. S. 34–39.
6.
category: Functional and smart materials
УДК 339.13:621.318.2
Ospennikova O.G.1, Piskorskiy V.P.1
The economics aspects of manufacturing permanents magnets (review)
In article the main economics questions of production of high-energy permanent magnets are considered. Features of production of permanent magnets in America, Europe, China of willows of Russia are considered. The forecast of development production of permanent magnets in the world and in Russia is given.
Work is executed within implementation of the complex scientific direction 11.1. «Thermostable magneto hard materials and mathematical models of calculation of their temperature characteristics for navigation instruments of new generation» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
Keywords: high-energy permanent magnets, market of permanent magnets
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Coey J.M.D. Permanent magnets applications // Journal of Magnetism and Magnetic Materials. 2002. Vol. 248. Issue 3. P. 441–456.
3. Brown D., Ma B.-M., Chen Z. Developments in the processing and properties of NdFeB-type permanent magnets // Journal of Magnetism and Magnetic Materials. 2002. Vol. 248. P. 432–440.
4. Savchenko A.G. Magnity Nd–Fe–B i perspektivnye tekhnologii ikh proizvodstva [Magnets of Nd–Fe–B and perspective technologies of their production] // Nauchno-tekhnologicheskoe obespechenie deyatelnosti predpriyatiy, institutov i firm: sb. mater. seminara. M.: MGIU, 2003. S. 510–546.
5. Burkhanov G.S., Milyaev I.M., Yusupov V.S. Sovremennoe sostoyanie i tendentsii razvitiya magnitotverdykh materialov [Current state and tendencies of development of magnitotverdy materials] // Perspektivnye materialy. 2011. №11. S. 208–215.
6. Luo Y. Current Status of Global Nd–Fe–B Magnets Industry // Proc. of the 18th Int. Workshop on High Performance Magnets and their Applications (HPMA’04). Annecy, France, 2004. Vol. 1.
P. 28–39.
7. Sagawa M. 20 Years of Nd–Fe–B // Ibid. P. 7–11.
8. McCallum R.W. et al. Practical Aspects of Modern and Future Permanent Magnets // Annu. Rev. Mater. Res. 2014. Vol. 44. P. 451–477.
9. Tattam C., Higgins I., Kennedy D. Rare Earth Magnets: Raw Material issues // Proc. of the 18th Int. Workshop on High Performance Magnets and their Applications (HPMA’04). Annecy, France, 2004. Vol. 1. P. 15–21.
10. Kaneko Y. Technological Evolution and Application Trends of Nd–Fe–B Sintered Magnets in Japan // Ibid. P. 40–51.
11. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: May 06, 2016).
12. Kablov E.N., Morozov G.A., Krutikov V.N., Muravskaya N.P. Attestaciya standartnyh obrazcov sostava slozhnolegirovannyh splavov s primeneniem etalona [Certification of standard samples of structure of complex-alloyed alloys using standard] // Aviacionnye materialy i tehnologii. 2012. №2. S. 9–11.
13. Dvoretskov R.M., Karachevtsev F.N., Isachenko Ya.A., Zagvozdkina T.N. Opredelenie osnovnyh i legiruyushhih elementov v termostabilnyh magnitnyh materialah sistemy RZM–Fe–Co–B metodom AES-ISP [ICP-AES determination of basic and alloying elements in thermostable magnetic materials of REM–Fe–Co–B system] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №11. St. 10. Available at: http://viam-works.ru (accessed: May 10, 2016). DOI: 10.18577/2307-6046-2014-0-11-10-10.
14. Kablov E.N., Piskorskiy V.P., Valeev R.A., Ospennikova O.G. i dr. Rol mezhfaznoy diffuzii bora v formirovanii magnitnykh svoystv spechennykh materialov (Pr, Dy)–(Fe, Co)–B [Role of interphase diffusion of boron in forming of magnetic properties of the sintered materials
(Pr, Dy)–(Fe, Co)–B] // Metally. 2014. №4. S. 53.
15. Kablov E.N., Petrakov A.F., Piskorskiy V.P., Valeev R.A., Chabina E.B. Vliyanie prazeodima na magnitnye svoystva i fazovyy sostav materiala sistemy Nd–Pr–Dy–Fe–Co–B [Influence prazeodima on magnetic properties and phase structure of material of Nd–Pr–Dy–Fe–Co–B system] // MiTOM. 2005. №6 (600). S. 12–16.
16. Kablov E.N., Ospennikova O.G., Bayukov O.A., Pletnev O.N., Rezchikova I.I., Valeev R.A., Korolev D.V., Kunitsyna E.I., Piskorskiy V.P., Morgunov R.B. Vliyanie stekhiometrii Fe i So na temperaturnuyu stabil'nost' magnitnoy anizotropii v splavakh Pr−Dy−Fe−Co−B [Influence of stoichiometry of Fe and With on temperature stability of magnetic anisotropy in Pr−Dy−Fe−Co−B alloys] // FTT. 2015. T. 57. Vyp. 5. S. 1339–1342.
17. Menushenkov V.P., Savchenko A.G. Rynok magnitno-tverdykh materialov. Perspektivy proizvodstva i razvitiya redkozemel'nykh postoyannykh magnitov v XXI veke [Market of magnetic hard materials. Perspectives of production and development of rare-earth constant magnets in the XXI century] // Tr. 3-go rossiysko-yaponskogo seminara. M.: MISiS, 2005. S. 368.
18. Savchenko A.G., Menushenkov V.P. Covremennoe sostoyanie i problemy razvitiya postoyannykh magnitov iz splavov sistemy Nd–Fe–B [Modern condition and problems of development of constant magnets from Nd–Fe–B system alloys] // Tam zhe. S. 387.
19. Savchenko A.G., Menushenkov V.P. Redkozemelnye postoyannye magnity: printsipial'nye osnovy razrabotki i tekhnologiya proizvodstva [Rare-earth constant magnets: basic bases of development and production technology] // Materialovedenie i metallurgiya. Perspektivnye tekhnologii i oborudovanie: sb. mater. rossiysko-yaponskogo seminara. M.: MGIU, 2003. S. 125–157.
2. Coey J.M.D. Permanent magnets applications // Journal of Magnetism and Magnetic Materials. 2002. Vol. 248. Issue 3. P. 441–456.
3. Brown D., Ma B.-M., Chen Z. Developments in the processing and properties of NdFeB-type permanent magnets // Journal of Magnetism and Magnetic Materials. 2002. Vol. 248. P. 432–440.
4. Savchenko A.G. Magnity Nd–Fe–B i perspektivnye tekhnologii ikh proizvodstva [Magnets of Nd–Fe–B and perspective technologies of their production] // Nauchno-tekhnologicheskoe obespechenie deyatelnosti predpriyatiy, institutov i firm: sb. mater. seminara. M.: MGIU, 2003. S. 510–546.
5. Burkhanov G.S., Milyaev I.M., Yusupov V.S. Sovremennoe sostoyanie i tendentsii razvitiya magnitotverdykh materialov [Current state and tendencies of development of magnitotverdy materials] // Perspektivnye materialy. 2011. №11. S. 208–215.
6. Luo Y. Current Status of Global Nd–Fe–B Magnets Industry // Proc. of the 18th Int. Workshop on High Performance Magnets and their Applications (HPMA’04). Annecy, France, 2004. Vol. 1.
P. 28–39.
7. Sagawa M. 20 Years of Nd–Fe–B // Ibid. P. 7–11.
8. McCallum R.W. et al. Practical Aspects of Modern and Future Permanent Magnets // Annu. Rev. Mater. Res. 2014. Vol. 44. P. 451–477.
9. Tattam C., Higgins I., Kennedy D. Rare Earth Magnets: Raw Material issues // Proc. of the 18th Int. Workshop on High Performance Magnets and their Applications (HPMA’04). Annecy, France, 2004. Vol. 1. P. 15–21.
10. Kaneko Y. Technological Evolution and Application Trends of Nd–Fe–B Sintered Magnets in Japan // Ibid. P. 40–51.
11. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: May 06, 2016).
12. Kablov E.N., Morozov G.A., Krutikov V.N., Muravskaya N.P. Attestaciya standartnyh obrazcov sostava slozhnolegirovannyh splavov s primeneniem etalona [Certification of standard samples of structure of complex-alloyed alloys using standard] // Aviacionnye materialy i tehnologii. 2012. №2. S. 9–11.
13. Dvoretskov R.M., Karachevtsev F.N., Isachenko Ya.A., Zagvozdkina T.N. Opredelenie osnovnyh i legiruyushhih elementov v termostabilnyh magnitnyh materialah sistemy RZM–Fe–Co–B metodom AES-ISP [ICP-AES determination of basic and alloying elements in thermostable magnetic materials of REM–Fe–Co–B system] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №11. St. 10. Available at: http://viam-works.ru (accessed: May 10, 2016). DOI: 10.18577/2307-6046-2014-0-11-10-10.
14. Kablov E.N., Piskorskiy V.P., Valeev R.A., Ospennikova O.G. i dr. Rol mezhfaznoy diffuzii bora v formirovanii magnitnykh svoystv spechennykh materialov (Pr, Dy)–(Fe, Co)–B [Role of interphase diffusion of boron in forming of magnetic properties of the sintered materials
(Pr, Dy)–(Fe, Co)–B] // Metally. 2014. №4. S. 53.
15. Kablov E.N., Petrakov A.F., Piskorskiy V.P., Valeev R.A., Chabina E.B. Vliyanie prazeodima na magnitnye svoystva i fazovyy sostav materiala sistemy Nd–Pr–Dy–Fe–Co–B [Influence prazeodima on magnetic properties and phase structure of material of Nd–Pr–Dy–Fe–Co–B system] // MiTOM. 2005. №6 (600). S. 12–16.
16. Kablov E.N., Ospennikova O.G., Bayukov O.A., Pletnev O.N., Rezchikova I.I., Valeev R.A., Korolev D.V., Kunitsyna E.I., Piskorskiy V.P., Morgunov R.B. Vliyanie stekhiometrii Fe i So na temperaturnuyu stabil'nost' magnitnoy anizotropii v splavakh Pr−Dy−Fe−Co−B [Influence of stoichiometry of Fe and With on temperature stability of magnetic anisotropy in Pr−Dy−Fe−Co−B alloys] // FTT. 2015. T. 57. Vyp. 5. S. 1339–1342.
17. Menushenkov V.P., Savchenko A.G. Rynok magnitno-tverdykh materialov. Perspektivy proizvodstva i razvitiya redkozemel'nykh postoyannykh magnitov v XXI veke [Market of magnetic hard materials. Perspectives of production and development of rare-earth constant magnets in the XXI century] // Tr. 3-go rossiysko-yaponskogo seminara. M.: MISiS, 2005. S. 368.
18. Savchenko A.G., Menushenkov V.P. Covremennoe sostoyanie i problemy razvitiya postoyannykh magnitov iz splavov sistemy Nd–Fe–B [Modern condition and problems of development of constant magnets from Nd–Fe–B system alloys] // Tam zhe. S. 387.
19. Savchenko A.G., Menushenkov V.P. Redkozemelnye postoyannye magnity: printsipial'nye osnovy razrabotki i tekhnologiya proizvodstva [Rare-earth constant magnets: basic bases of development and production technology] // Materialovedenie i metallurgiya. Perspektivnye tekhnologii i oborudovanie: sb. mater. rossiysko-yaponskogo seminara. M.: MGIU, 2003. S. 125–157.
7.
category: Composite materials
УДК 678
Russian production of carbon fillers today (review)
The article discusses the range and properties of carbon fibers (CF) of Russian production and the prospects for their use as reinforcing fillers in polymer composites compared with foreign counterparts as part of the import substitution policy. The work within the framework of an integrated research area 13. «Polymer composite materials (PCM)» on the problem of 13.2. «Structural PСМ» («Strategic directions of development of materials and technologies for processing them for the period up to 2030»)
Keywords: carbon fibers, polymer composite materials, reinforcing fillers, carbon composites
Reference List
1. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] // Aviatsionnye materialy i tekhnologii. 2012. №S. S. 7–17.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33
3. Kablov E.N. «Dorozhnaya karta» dlya nauki i proizvodstva novykh materialov [«Road map» for a science and production of new materials] // Inzhenernaya gazeta. 2012. №15–16. S. 1, 3–5.
4. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
5. Mirovye novosti [World news] // Vestnik Soyuzkompozit. Kompozitnyy mir. 2016. №1. S. 9–17.
6. Post-reliz po itogam konferentsii «Kompozity i kompaundy 2015» [Post-release following the results of conference «Composites and compounds 2015»] // Klei. Germetiki. Tekhnologii. 2016. №2. S. 41–45.
7. Ashpina O. Konyunktura mirovogo rynka uglerodnykh volokon [Environment of the world market of carbon fibers] // The Chemical Journal. 2005. Oktyabr–noyabr. S. 33–37.
8. Lebedeva A.I., Khlebnikov V.V. Rynok uglerodnykh volokon: sostoyanie i perspektivy [Market of carbon fibers: condition and prospects] // Polimernye materialy. 2011. №4. S. 20–24.
9. Kim S. Syre – kompozity – uglevolokno [Raw materials – composites – uglevolokno] // The Chemical Journal. 2014. Oktyabr. S. 64–73.
10. Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii [Tendencies and reference points of innovative development of Russia]: sb. nauch.-inform. mater. 3-e izd. M.: VIAM, 2015. 720 s.
11. Kompozity: uspekhi rossiyskikh kompaniy [Composites: successes of the Russian companies]. Available at: http://www.pressmk.ru/news/detail. php?ID=1723 (accessed: April 25, 2016).
12. Lukina N.F., Dementeva L.A., Kutsevich K.E. Kleevye prepregi na osnove tkanej Porcher – perspektivnye materialy dlya detalej i agregatov iz PKM [Adhesive prepregs based on tissue Porsher – perspective materials for parts and units out of polymeric composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 10. Available at: http://www.viam-works.ru (accessed: April 11, 2016). DOI: 10.18577/2307-6046-2014-0-6-10-10.
13. Kholdingovaya kompaniya «Kompozit» prezentovala novyy proekt – zavod po proizvodstvu uglerodnogo volokna «ALABUGA-VOLOKNO» [The Kompozit holding company presented the new project – plant on production of carbon ALABUGA-VOLOKNO fiber.]. Available at: http://www.rosatom.ru/journalist/news/ 90311f00477efa84b4cdf66578d50f5d (accessed: April 11, 2016).
14. Konkin A.A. Uglerodnye i drugie zharostoykie voloknistye materialy [Carbon and other heat resisting fibrous materials]. M.: Khimiya, 1974. 376 s.
15. Soo-Jin Park. Carbon Fibers. Korea. Springer. 2015. 330 р.
16. Mikhaylin Yu.A. Voloknistye polimernye kompozitsionnye materialy v tekhnike [Fibrous polymeric composite materials in equipment]. SPb.: Izdatel'stvo Nauchnye Osnovy i Tekhnologii. 2013. 719 s.
17. O proizvodstve uglerodnykh i poliakrilonitrilnykh volokon [About production of carbon and poliakrilonitrilny fibers]. Available at: http://www.vniisv.com/proizvodstvo_uglerodnyh_poliakrilonitrilnyh_volokon.aspx (accessed: April 25, 2016).
18. Novosti otrasli [Branch news] // Kompozitnyy mir. 2015. №4. S. 9–17.
19. Kompozitnye materialy [Composite materials]. Available at: http://www.rosatom.ru/aboutcorporation/activity/compozit/ (accessed: May 11, 2016).
20. KhK-Kompozit [HK-Kompozit]: ofits. sayt. Available at: http://www.hccomposite.com/ (accessed: May 11, 2016).
21. RT-Khimkompozit [RT-Himkompozit]: ofits. sayt. Available at: http://www.rt-chemcomposite.ru/ (accessed: April 25, 2016).
22. Available at: http://vpk.name/news/92066_rthim-kompozit_razrabatyivaet_novuyu_tehnologiyu_
polucheniya_uglerodnogo_ volokna.html (accessed: April 25, 2016).
23. Available at: http://www.niigrafit.ru/ (accessed: April 25, 2016).
24. Available at: http://www.uvicom.com/ (accessed: April 25, 2016).
25. Available at: http://www.inumit.ru/ (accessed: April 25, 2016).
26. Available at: http://oxipan.ru/ (accessed: April 25, 2016).
27. Available at: http://www.porcher-ind.com/uploads/files/PorcherRussia.pdf (accessed: April 25, 2016).
28. Available at: http://zukm.ru/ (accessed: April 25, 2016).
29. Available at: http://rus-carbon.ru/ (accessed: April 25, 2016).
30. Raskutin A.E. Uglerodnye tkani dlya proizvodstva konstruktsiy iz polimernykh kompozitsionnykh materialov [Carbon fabrics for production of designs from polymeric composite materials] // Materialovedenie. 2014. №8. S. 46–49.
31. Petrovа A.P., Dementyevа L.A., Lukina N.F., Chursova L.V. [Adhesive binders for polymer composite materials based on carbon- and glass fillers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 11. Available at: http://www.viam-works.ru (accessed: April 11, 2016). DOI: 10.18577/2307-6046-2015-0-9-11-11
32. Gunyaeva A.G., Chursova L.V. Molniestoykie ugleplastiki, modifitsirovannye uglerodnymi nanochastitsami, izgotovlennye sposobom infuzionnogo formovaniya [Lightning resistant carbon fibers, modified by the carbon nanoparticles, made in the way of infusional formation] // Vse materialy. Entsiklopedicheskiy spravochnik. 2015. №10. S. 25–32.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33
3. Kablov E.N. «Dorozhnaya karta» dlya nauki i proizvodstva novykh materialov [«Road map» for a science and production of new materials] // Inzhenernaya gazeta. 2012. №15–16. S. 1, 3–5.
4. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
5. Mirovye novosti [World news] // Vestnik Soyuzkompozit. Kompozitnyy mir. 2016. №1. S. 9–17.
6. Post-reliz po itogam konferentsii «Kompozity i kompaundy 2015» [Post-release following the results of conference «Composites and compounds 2015»] // Klei. Germetiki. Tekhnologii. 2016. №2. S. 41–45.
7. Ashpina O. Konyunktura mirovogo rynka uglerodnykh volokon [Environment of the world market of carbon fibers] // The Chemical Journal. 2005. Oktyabr–noyabr. S. 33–37.
8. Lebedeva A.I., Khlebnikov V.V. Rynok uglerodnykh volokon: sostoyanie i perspektivy [Market of carbon fibers: condition and prospects] // Polimernye materialy. 2011. №4. S. 20–24.
9. Kim S. Syre – kompozity – uglevolokno [Raw materials – composites – uglevolokno] // The Chemical Journal. 2014. Oktyabr. S. 64–73.
10. Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii [Tendencies and reference points of innovative development of Russia]: sb. nauch.-inform. mater. 3-e izd. M.: VIAM, 2015. 720 s.
11. Kompozity: uspekhi rossiyskikh kompaniy [Composites: successes of the Russian companies]. Available at: http://www.pressmk.ru/news/detail. php?ID=1723 (accessed: April 25, 2016).
12. Lukina N.F., Dementeva L.A., Kutsevich K.E. Kleevye prepregi na osnove tkanej Porcher – perspektivnye materialy dlya detalej i agregatov iz PKM [Adhesive prepregs based on tissue Porsher – perspective materials for parts and units out of polymeric composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 10. Available at: http://www.viam-works.ru (accessed: April 11, 2016). DOI: 10.18577/2307-6046-2014-0-6-10-10.
13. Kholdingovaya kompaniya «Kompozit» prezentovala novyy proekt – zavod po proizvodstvu uglerodnogo volokna «ALABUGA-VOLOKNO» [The Kompozit holding company presented the new project – plant on production of carbon ALABUGA-VOLOKNO fiber.]. Available at: http://www.rosatom.ru/journalist/news/ 90311f00477efa84b4cdf66578d50f5d (accessed: April 11, 2016).
14. Konkin A.A. Uglerodnye i drugie zharostoykie voloknistye materialy [Carbon and other heat resisting fibrous materials]. M.: Khimiya, 1974. 376 s.
15. Soo-Jin Park. Carbon Fibers. Korea. Springer. 2015. 330 р.
16. Mikhaylin Yu.A. Voloknistye polimernye kompozitsionnye materialy v tekhnike [Fibrous polymeric composite materials in equipment]. SPb.: Izdatel'stvo Nauchnye Osnovy i Tekhnologii. 2013. 719 s.
17. O proizvodstve uglerodnykh i poliakrilonitrilnykh volokon [About production of carbon and poliakrilonitrilny fibers]. Available at: http://www.vniisv.com/proizvodstvo_uglerodnyh_poliakrilonitrilnyh_volokon.aspx (accessed: April 25, 2016).
18. Novosti otrasli [Branch news] // Kompozitnyy mir. 2015. №4. S. 9–17.
19. Kompozitnye materialy [Composite materials]. Available at: http://www.rosatom.ru/aboutcorporation/activity/compozit/ (accessed: May 11, 2016).
20. KhK-Kompozit [HK-Kompozit]: ofits. sayt. Available at: http://www.hccomposite.com/ (accessed: May 11, 2016).
21. RT-Khimkompozit [RT-Himkompozit]: ofits. sayt. Available at: http://www.rt-chemcomposite.ru/ (accessed: April 25, 2016).
22. Available at: http://vpk.name/news/92066_rthim-kompozit_razrabatyivaet_novuyu_tehnologiyu_
polucheniya_uglerodnogo_ volokna.html (accessed: April 25, 2016).
23. Available at: http://www.niigrafit.ru/ (accessed: April 25, 2016).
24. Available at: http://www.uvicom.com/ (accessed: April 25, 2016).
25. Available at: http://www.inumit.ru/ (accessed: April 25, 2016).
26. Available at: http://oxipan.ru/ (accessed: April 25, 2016).
27. Available at: http://www.porcher-ind.com/uploads/files/PorcherRussia.pdf (accessed: April 25, 2016).
28. Available at: http://zukm.ru/ (accessed: April 25, 2016).
29. Available at: http://rus-carbon.ru/ (accessed: April 25, 2016).
30. Raskutin A.E. Uglerodnye tkani dlya proizvodstva konstruktsiy iz polimernykh kompozitsionnykh materialov [Carbon fabrics for production of designs from polymeric composite materials] // Materialovedenie. 2014. №8. S. 46–49.
31. Petrovа A.P., Dementyevа L.A., Lukina N.F., Chursova L.V. [Adhesive binders for polymer composite materials based on carbon- and glass fillers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 11. Available at: http://www.viam-works.ru (accessed: April 11, 2016). DOI: 10.18577/2307-6046-2015-0-9-11-11
32. Gunyaeva A.G., Chursova L.V. Molniestoykie ugleplastiki, modifitsirovannye uglerodnymi nanochastitsami, izgotovlennye sposobom infuzionnogo formovaniya [Lightning resistant carbon fibers, modified by the carbon nanoparticles, made in the way of infusional formation] // Vse materialy. Entsiklopedicheskiy spravochnik. 2015. №10. S. 25–32.
8.
category: Functional and smart materials
УДК 621.792.053
Lukina N.Ph.1, I.A. Sharova1
Properties and assignment of being self-glued materials aviation assignment
Properties of being self-glued materials on the different bearing substrates developed by VIAM Federal State Unitary Enterprise are presented. It is shown that these materials are intended for operational repair of the revealed defects of exterior surface of glider and elements of wing of aviation engineering, including in field conditions.
Work is executed within implementation of the complex scientific direction 15.1. Multifunction adhesive systems. («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
Keywords: the sticky tape, being self-glued material, adhesive with constant stickiness, aluminum foil, fabric basis, durability when flaking
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Petrova A.P., Donskoy A.A. Kleyashchie materialy. Germetiki [Gluing materials. Hermetics]: spravochnik SPb.: Professional, 2008. 559 s.
3. Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi [History of aviation materials science. VIAM – 80 years: years and people] / pod obshh. red. E.N. Kablova. M.: VIAM, 2012.
520 s.
4. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
5. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
6. Petrova A.P., Lukina N.F., Dementeva L.A. i dr. Klei dlya aviatsionnoy tekhniki [Glues for aviation engineering] // RZhKh. 2010. T. LIV. №1. S. 46–52.
7. Kablov E.N., Minakov V.T., Anikhovskaya L.I. Klei i materialy na ikh osnove dlya remonta konstruktsiy aviatsionnoy tekhniki [Glues and materials on their basis for repair of designs of aviation engineering] // Aviatsionnye materialy i tekhnologii. 2002. №1.
S. 61–65.
8. Anikhovskaya L.I., Minakov V.T. Klei i kleevye prepregi dlya perspektivnykh izdeliy aviakosmicheskoy tekhniki [Glues and glue prepregs for perspective products of aerospace equipment] // Aviatsionnye materialy. Izbrannye trudy «VIAM» 1932–2002: yubileynyy nauch.-tekhnich. sb. M.: MISiS–VIAM, 2002. S. 315–326.
9. Lukina N.F., Dementeva L.A., Petrova A.P., Tyumeneva T.Yu. Svoystva kleev i kleyashchikh materialov dlya izdeliy aviatsionnoy tekhniki [Properties of glues and gluing materials for products of aviation engineering] // Klei. Germetiki. Tekhnologii. 2009. №1. S. 14–24.
10. Tyumeneva T.Yu., Zhadova N.S., Lukina N.F. Razrabotki FGUP «VIAM» v oblasti kleev rezinotekhnicheskogo naznacheniya i samokleyashchikhsya materialov [Development of VIAM Federal State Unitary Enterprise in the field of glues of industrial rubber assign-ment and being self-glued materials] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2014. №7. St. 04. URL: http://www.viam-works.ru (data obrashcheniya: 25.05.2016). DOI: 10.18577/2307-6046-2014-0-7-4-4.
11. Lukina N.F., Chursova L.V. Laboratoriya «Klei i kleevye prepregi» – dostizheniya i perspektivy [Laboratory «Glues and glue prepregs» – achievements and perspectives] // Kleyashchie materialy aviatsionnogo naznacheniya: sb. dokl. konf. M.: VIAM, 2013. S. 1–5.
12. Zhadova N.S., Tyumeneva T.Yu. Samokleyashchiesya materialy dlya operativnogo remonta tekhniki [Being self-glued materials for operational repair of equipment] // Klei. Germetiki. Tekhnologii. 2008. №12. S. 6–8.
13. Zhadova N.S., Lukina N.F., Tyumeneva T.Yu. Samokleyashchiesya materialy dlya vremennogo operativnogo remonta vneshney poverkhnosti izdeliy aviatsionnoy tekhniki [Being self-glued materials for temporary operational repair of exterior surface of products of aviation engineering] // Klei. Germetiki. Tekhnologii. 2012. №6. S. 2–4.
14. Sharova I.A., Zhadova N.S., Lukina N.F. Kleyashchie materialy i tekhnologii dlya vremennogo operativnogo remonta sotovykh agregatov iz polimernykh kompozitsionnykh materialov [Gluing materials and technologies for temporary operational repair of cellular units from polymeric composite materials] // Klei. Germetiki. Tekhnologii. 2012. №5.
S. 36–39.
15. Avdonina I.A., Lukina N.F. Bystrootverzhdayushchiysya epoksidnyy kley VK-93 kho-lodnogo otverzhdeniya [Fast-curing epoxy VK-93 glue of cold curing] // Klei. Germetiki. Tekhnologii. 2009. №3. S. 14–17.
16. Sharova I.A., Lukina N.F. Zazorozapolnyayushchiy epoksidnyy kley kholodnogo otverzhdeniya [Gap filling epoxy glue of cold curing] // Klei. Germetiki. Tekhnologii. 2012. №3. S. 10–12.
17. Zhadova N.S., Tyumeneva T.Yu., Sharova I.A., Lukina N.F. Perspektivnye tekhnologii dlya vremennogo operativnogo remonta aviatsionnoy tekhniki [Perspective technologies for temporary operational repair of aviation engineering] // Aviatsionnye materialy i tekhnologii. 2013. №2. S. 67–70. DOI: 10.18577/2071-9140-2013-0-2-67-70.
18. Sharova I.A., Lukina N.F., Aleksashin V.M., Antyufeeva N.V. Vliyanie sostava na kineticheskie i prochnostnye svoystva bystrootverzhdayushchikhsya epoksidnykh kleevykh kompozitsiy [Influence of structure on kinetic and strength properties fast-curing epoxy glue compositions] // Klei. Germetiki. Tekhnologii. 2015. №2. S. 1–5.
2. Petrova A.P., Donskoy A.A. Kleyashchie materialy. Germetiki [Gluing materials. Hermetics]: spravochnik SPb.: Professional, 2008. 559 s.
3. Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi [History of aviation materials science. VIAM – 80 years: years and people] / pod obshh. red. E.N. Kablova. M.: VIAM, 2012.
520 s.
4. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
5. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
6. Petrova A.P., Lukina N.F., Dementeva L.A. i dr. Klei dlya aviatsionnoy tekhniki [Glues for aviation engineering] // RZhKh. 2010. T. LIV. №1. S. 46–52.
7. Kablov E.N., Minakov V.T., Anikhovskaya L.I. Klei i materialy na ikh osnove dlya remonta konstruktsiy aviatsionnoy tekhniki [Glues and materials on their basis for repair of designs of aviation engineering] // Aviatsionnye materialy i tekhnologii. 2002. №1.
S. 61–65.
8. Anikhovskaya L.I., Minakov V.T. Klei i kleevye prepregi dlya perspektivnykh izdeliy aviakosmicheskoy tekhniki [Glues and glue prepregs for perspective products of aerospace equipment] // Aviatsionnye materialy. Izbrannye trudy «VIAM» 1932–2002: yubileynyy nauch.-tekhnich. sb. M.: MISiS–VIAM, 2002. S. 315–326.
9. Lukina N.F., Dementeva L.A., Petrova A.P., Tyumeneva T.Yu. Svoystva kleev i kleyashchikh materialov dlya izdeliy aviatsionnoy tekhniki [Properties of glues and gluing materials for products of aviation engineering] // Klei. Germetiki. Tekhnologii. 2009. №1. S. 14–24.
10. Tyumeneva T.Yu., Zhadova N.S., Lukina N.F. Razrabotki FGUP «VIAM» v oblasti kleev rezinotekhnicheskogo naznacheniya i samokleyashchikhsya materialov [Development of VIAM Federal State Unitary Enterprise in the field of glues of industrial rubber assign-ment and being self-glued materials] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2014. №7. St. 04. URL: http://www.viam-works.ru (data obrashcheniya: 25.05.2016). DOI: 10.18577/2307-6046-2014-0-7-4-4.
11. Lukina N.F., Chursova L.V. Laboratoriya «Klei i kleevye prepregi» – dostizheniya i perspektivy [Laboratory «Glues and glue prepregs» – achievements and perspectives] // Kleyashchie materialy aviatsionnogo naznacheniya: sb. dokl. konf. M.: VIAM, 2013. S. 1–5.
12. Zhadova N.S., Tyumeneva T.Yu. Samokleyashchiesya materialy dlya operativnogo remonta tekhniki [Being self-glued materials for operational repair of equipment] // Klei. Germetiki. Tekhnologii. 2008. №12. S. 6–8.
13. Zhadova N.S., Lukina N.F., Tyumeneva T.Yu. Samokleyashchiesya materialy dlya vremennogo operativnogo remonta vneshney poverkhnosti izdeliy aviatsionnoy tekhniki [Being self-glued materials for temporary operational repair of exterior surface of products of aviation engineering] // Klei. Germetiki. Tekhnologii. 2012. №6. S. 2–4.
14. Sharova I.A., Zhadova N.S., Lukina N.F. Kleyashchie materialy i tekhnologii dlya vremennogo operativnogo remonta sotovykh agregatov iz polimernykh kompozitsionnykh materialov [Gluing materials and technologies for temporary operational repair of cellular units from polymeric composite materials] // Klei. Germetiki. Tekhnologii. 2012. №5.
S. 36–39.
15. Avdonina I.A., Lukina N.F. Bystrootverzhdayushchiysya epoksidnyy kley VK-93 kho-lodnogo otverzhdeniya [Fast-curing epoxy VK-93 glue of cold curing] // Klei. Germetiki. Tekhnologii. 2009. №3. S. 14–17.
16. Sharova I.A., Lukina N.F. Zazorozapolnyayushchiy epoksidnyy kley kholodnogo otverzhdeniya [Gap filling epoxy glue of cold curing] // Klei. Germetiki. Tekhnologii. 2012. №3. S. 10–12.
17. Zhadova N.S., Tyumeneva T.Yu., Sharova I.A., Lukina N.F. Perspektivnye tekhnologii dlya vremennogo operativnogo remonta aviatsionnoy tekhniki [Perspective technologies for temporary operational repair of aviation engineering] // Aviatsionnye materialy i tekhnologii. 2013. №2. S. 67–70. DOI: 10.18577/2071-9140-2013-0-2-67-70.
18. Sharova I.A., Lukina N.F., Aleksashin V.M., Antyufeeva N.V. Vliyanie sostava na kineticheskie i prochnostnye svoystva bystrootverzhdayushchikhsya epoksidnykh kleevykh kompozitsiy [Influence of structure on kinetic and strength properties fast-curing epoxy glue compositions] // Klei. Germetiki. Tekhnologii. 2015. №2. S. 1–5.
9.
category: Testing of materials and structures
УДК 620.1:669.055
Development of elementary constructive and similar samples and their compression tests
In article one of approaches of development of elementary constructive and similar samples and carrying compression tests for is considered at static and repeated loadings when using the patented adaptation. Research were executed within realization of the complex scientific direction 6.2. «Layered metalpolymer, bimetallic and hybrid materials» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
Keywords: compression, structural test samples, aluminum-lithium alloys, wing panel fragments, a hybrid material
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N. Materialy dlya aviakosmicheskoy tekhniki [Materials for aerospace equipment] // Vse materialy. Entsiklopedicheskiy spravochnik. 2007. №5. S. 7–27.
4. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Kvalifikatsionnye ispytaniya i issledovaniya prochnosti aviatsionnyh materialov [Qualification tests and researches of durability of aviation materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
5. Erasov V.S., Nuzhnyj G.A. Zhestkij cikl nagruzheniya pri ustalostnyh ispytaniyah [Rigid cycle of loading at fatigue tests] //Aviacionnye materialy i tehnologii. 2011. №4. S. 35–40.
6. GOST 25.503–97. Mezhgosudarstvennyy standart. Raschety i ispytaniya na prochnost. Metod ispytaniya na szhatie [Interstate standard. Calculations and strength tests. Test method on compression]. M.: IPK. Izdatelstvo standartov. 2005. 28 s.
7. Prisposoblenie dlya ispytaniy na szhatie konstruktivno-podobnykh obraztsov [The adaptation for compression tests of constructive and similar samples]: pat. 157415 Ros. Federatsiya; opubl. 10.11.15.
8. Podzhivotov N.Yu., Kablov E.N., Antipov V.V., Erasov V.S., Serebrennikova N.Yu., Abdullin M.R., Limonin M.V. Sloistye metallopolimernye materialy v elementakh konstruktsii vozdushnykh sudov [Layered metalpolymeric materials in elements of design of air vehicles] // Perspektivnye materialy. 2016 (v pechati).
9. Serebrennikova N.Yu., Antipov V.V., Senatorova O.G., Erasov V.S., Kashirin V.V. Gibridnye sloistye materialy na baze alyuminiy-litievykh splavov primenitel'no k panelyam kryla samoleta [Hybrid layered materials on base aluminum-lithium alloys with reference to airplane wing panels] // Aviatsionnye materialy i tekhnologii. 2016. №3 (42). S. 3–8. DOI 10.18577/2071-9140-2016-0-3-3-8.
10. Antipov V.V., Senatorova O.G., Sidelnikov V.V., Shestov V.V. Konstruktsionnye sloistye materialy SIAL [SIAL constructional layered materials] // Klei, germetiki, tekhnologii. 2012. №6. S. 13–17.
11. Kablov E.N., Antipov V.V., Senatorova O.G. Sloistye alyumostekloplastiki SIAL-1441 i sotrudnichestvo s Airbus i TU Delft [Layered alyumostekloplastiki SIAL-1441 and cooperation with Airbus and TU Delft] // Tsvetnye metally. 2013. №9 (849). S. 50–53.
12. Kablov E.N., Antipov V.V., Senatorova O.G., Lukina N.F. Novyy klass sloistykh al-yumostekloplastikov na osnove alyuminiy-litievogo splava 1441 s ponizhennoy plotnostyu [New class layered alyumostekloplastikov on basis aluminum-lithium alloy 1441 with low-ered density] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 174–183.
13. Antipov V.V., Kolobnev N.I., Hohlatova L.B. Razvitie alyuminijlitievyh splavov i mnogostupenchatyh rezhimov termicheskoj obrabotki [Development aluminum lithium alloys and multistage modes of thermal processing] // Aviacionnye materialy i tehnologii. 2012. №S.
S. 183–195.
14. Startsev O.V., Krotov A.S., Senatorova O.G., Anikhovskaya L.I., Antipov V.V., Grash-chenkov D.V. Sorbatsiya i diffuziya vlagi v sloistykh metallopolimernykh kompozitsionnykh materialakh tipa «SIAL» [Sorbatsiya and moisture diffusion in layered metalpolymeric composite materials of the SIAL type] // Materialovedenie. 2011. №12. S. 38–44
15. Klochkova Yu.Yu., Klochkov G.G., Romanenko V.A., Popov V.I. Struktura i svojstva listov iz vysokoprochnogo alyuminij-litievogo splava V-1469 [Structure and properties of sheets from high-strength aluminum-lithium alloy V-1469] // Aviacionnye materialy i tehnologii. 2015. №4 (37).
S. 3–8. DOI: 10.18577/2071-9140-2015-0-4-3-8.
16. Oreshko E.I., Erasov V.S., Podzhivotov N.Yu., Lucenko A.N. Raschet na prochnost gibridnoj paneli kryla na baze listov i profilej iz vysokoprochnogo alyuminijlitievogo splava i sloistogo alyumostekloplastika [Strength calculation of hybrid wing panel on the basis of sheets and profiles from high-strength aluminum lithium alloy and laminated aluminum fiberglass] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 53–61. DOI: 10.18577/2071-9140-2016-0-1-53-61.
17. Oreshko E.I., Erasov V.S., Podjivotov N.Yu. Vybor shemy raspolozheniya vysokomodulnyh sloev v mnogoslojnoj gibridnoj plastine dlya ee naibolshego soprotivleniya potere ustojchivosti [Arrangement of high-modular layers in a multilayer hybrid plate for its greatest resistance to stability loss] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 109–117. DOI: 10.18577/2071-9140-2014-0-S4-109-117.
18. Erasov V.S., Grinevich A.V., Senik V.Ya. i dr. Raschetnye znacheniya harakteristik prochnosti aviacionnyh materialov [Calculated values of characteristics of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №2. S. 14–16.
19. Khertel G. Tonkostennye konstruktsii [Thin-walled designs]. M.: Mashinostroenie, 1965. 528 s.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N. Materialy dlya aviakosmicheskoy tekhniki [Materials for aerospace equipment] // Vse materialy. Entsiklopedicheskiy spravochnik. 2007. №5. S. 7–27.
4. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Kvalifikatsionnye ispytaniya i issledovaniya prochnosti aviatsionnyh materialov [Qualification tests and researches of durability of aviation materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
5. Erasov V.S., Nuzhnyj G.A. Zhestkij cikl nagruzheniya pri ustalostnyh ispytaniyah [Rigid cycle of loading at fatigue tests] //Aviacionnye materialy i tehnologii. 2011. №4. S. 35–40.
6. GOST 25.503–97. Mezhgosudarstvennyy standart. Raschety i ispytaniya na prochnost. Metod ispytaniya na szhatie [Interstate standard. Calculations and strength tests. Test method on compression]. M.: IPK. Izdatelstvo standartov. 2005. 28 s.
7. Prisposoblenie dlya ispytaniy na szhatie konstruktivno-podobnykh obraztsov [The adaptation for compression tests of constructive and similar samples]: pat. 157415 Ros. Federatsiya; opubl. 10.11.15.
8. Podzhivotov N.Yu., Kablov E.N., Antipov V.V., Erasov V.S., Serebrennikova N.Yu., Abdullin M.R., Limonin M.V. Sloistye metallopolimernye materialy v elementakh konstruktsii vozdushnykh sudov [Layered metalpolymeric materials in elements of design of air vehicles] // Perspektivnye materialy. 2016 (v pechati).
9. Serebrennikova N.Yu., Antipov V.V., Senatorova O.G., Erasov V.S., Kashirin V.V. Gibridnye sloistye materialy na baze alyuminiy-litievykh splavov primenitel'no k panelyam kryla samoleta [Hybrid layered materials on base aluminum-lithium alloys with reference to airplane wing panels] // Aviatsionnye materialy i tekhnologii. 2016. №3 (42). S. 3–8. DOI 10.18577/2071-9140-2016-0-3-3-8.
10. Antipov V.V., Senatorova O.G., Sidelnikov V.V., Shestov V.V. Konstruktsionnye sloistye materialy SIAL [SIAL constructional layered materials] // Klei, germetiki, tekhnologii. 2012. №6. S. 13–17.
11. Kablov E.N., Antipov V.V., Senatorova O.G. Sloistye alyumostekloplastiki SIAL-1441 i sotrudnichestvo s Airbus i TU Delft [Layered alyumostekloplastiki SIAL-1441 and cooperation with Airbus and TU Delft] // Tsvetnye metally. 2013. №9 (849). S. 50–53.
12. Kablov E.N., Antipov V.V., Senatorova O.G., Lukina N.F. Novyy klass sloistykh al-yumostekloplastikov na osnove alyuminiy-litievogo splava 1441 s ponizhennoy plotnostyu [New class layered alyumostekloplastikov on basis aluminum-lithium alloy 1441 with low-ered density] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 174–183.
13. Antipov V.V., Kolobnev N.I., Hohlatova L.B. Razvitie alyuminijlitievyh splavov i mnogostupenchatyh rezhimov termicheskoj obrabotki [Development aluminum lithium alloys and multistage modes of thermal processing] // Aviacionnye materialy i tehnologii. 2012. №S.
S. 183–195.
14. Startsev O.V., Krotov A.S., Senatorova O.G., Anikhovskaya L.I., Antipov V.V., Grash-chenkov D.V. Sorbatsiya i diffuziya vlagi v sloistykh metallopolimernykh kompozitsionnykh materialakh tipa «SIAL» [Sorbatsiya and moisture diffusion in layered metalpolymeric composite materials of the SIAL type] // Materialovedenie. 2011. №12. S. 38–44
15. Klochkova Yu.Yu., Klochkov G.G., Romanenko V.A., Popov V.I. Struktura i svojstva listov iz vysokoprochnogo alyuminij-litievogo splava V-1469 [Structure and properties of sheets from high-strength aluminum-lithium alloy V-1469] // Aviacionnye materialy i tehnologii. 2015. №4 (37).
S. 3–8. DOI: 10.18577/2071-9140-2015-0-4-3-8.
16. Oreshko E.I., Erasov V.S., Podzhivotov N.Yu., Lucenko A.N. Raschet na prochnost gibridnoj paneli kryla na baze listov i profilej iz vysokoprochnogo alyuminijlitievogo splava i sloistogo alyumostekloplastika [Strength calculation of hybrid wing panel on the basis of sheets and profiles from high-strength aluminum lithium alloy and laminated aluminum fiberglass] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 53–61. DOI: 10.18577/2071-9140-2016-0-1-53-61.
17. Oreshko E.I., Erasov V.S., Podjivotov N.Yu. Vybor shemy raspolozheniya vysokomodulnyh sloev v mnogoslojnoj gibridnoj plastine dlya ee naibolshego soprotivleniya potere ustojchivosti [Arrangement of high-modular layers in a multilayer hybrid plate for its greatest resistance to stability loss] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 109–117. DOI: 10.18577/2071-9140-2014-0-S4-109-117.
18. Erasov V.S., Grinevich A.V., Senik V.Ya. i dr. Raschetnye znacheniya harakteristik prochnosti aviacionnyh materialov [Calculated values of characteristics of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №2. S. 14–16.
19. Khertel G. Tonkostennye konstruktsii [Thin-walled designs]. M.: Mashinostroenie, 1965. 528 s.