Articles

1.
УДК 669.017
Lukina E.A.1, Korolyov V.A.1
Features of process of the selection laser synthesis with reference to cast alloys on the basis of nickel and Ni3Al intermetallic compound
The formation of track-structure in the crystallization under selective laser melting process of cast Ni-base superalloys and Ni3Al superalloys metal powders is reviewed in the article. Carried experiments has shown that the tracks are consist of the cells, which are joined in sub-grains. Their boundaries are often decorated of direct carbide and primary γ'-phase nets. It is established that crack formation due to internal stresses is carried on grain boundaries. It is shown that the heating of the building platform promotes to reducing of cracks amount. The further thermovacuum treatment and hot isostatic pressing provide formation of bulk material without cracks and with favorable morphology of γ'-phase.
Keywords: selective laser melting, intermetallic superalloys, Ni3Al, track structure, cell ctructure.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative de-velopments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravleniya razvitiya tekhnologiy proizvodstva zharoprochnykh materialov dlya aviatsionnogo dvigatelestroeniya [The priority directions of development of production technologies of heat resisting materials for aviation engine-building] // Problemy chernoy metallurgii i materialovedeniya. 2013. №3. S. 47–54.
3. Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii [Tendencies and reference points of innovative development of Russia]: sb. nauch.-inform. mater. 3-e izd. M.: VIAM, 2015. 720 s.
4. Kablov E.N. Korrozija ili zhizn [Corrosion or life] // Nauka i zhizn. 2012. №3. S. 16–21.
5. Ospennikova O.G., Orlov M.R., Avtaev V.V. Anizotropiya uprugoplasticheskikh kharakteri-stik zharoprochnykh nikelevykh splavov – osnova konstruirovaniya monokristallicheskikh tur-binnykh lopatok [Anisotropy of elasto-plastic characteristics of heat resisting nickel alloys – basis of designing of single-crystal turbine blades] // Deformatsiya i razrushenie materialov. 2013. №11. S. 12–19.
6. Evgenov A.G., Nerush S.V., Vasilenko S.A. Poluchenie i oprobovanie melkodispersnogo metalli-cheskogo poroshka vysokohromistogo splava na nikelevoj osnove primenitelno k lazernoj LMD-naplavke [The obtaining and testing of the fine-dispersed metal powder of the high-chromium alloy on nickel-base for laser LMD-welding] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №5. St. 04. Available at: http://www.viam-works.ru (accessed: March 23, 2016). DOI: 10.18577/2307-6046-2014-0-5-4-4.
7. Nerush S.V., Evgenov A.G., Ermolaev A.S., Rogalev A.M. Issledovanie melkodispersnogo metal-licheskogo poroshka zharoprochnogo splava na nikelevoy osnove dlya lazernoy LMD-naplavki [Research of a fine-dispersed metal powder of a heat resisting alloy on a nickel basis for the laser LMD-welding] // Voprosy materialovedeniya. 2013. №4 (76). S. 98–107.
8. Nerush S.V., Evgenov A.G. Issledovanie melkodispersnogo metallicheskogo poroshka zharo-prochnogo splava marki EP648-VI primenitelno k lazernoj LMD-naplavke, a takzhe ocenka kachestva naplavki poroshkovogo materiala na nikelevoj osnove na rabochie lopatki TVD [Re-search of fine-dispersed metal powder of the heat resisting alloy of the EP648-VI brand for laser metal deposition (LMD) and also the assessment quality of welding of powder material on the nickel basis on working blades THP] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №3. St. 01. Available at: http://www.viam-works.ru (accessed: March 23, 2016). DOI: 10.18577/2307-6046-2014-0-3-1-1.
9. Evgenov A.G., Rogalev A.M., Nerush S.V., Mazalov I.S. Issledovanie svojstv splava EP648, polu-chennogo metodom selektivnogo lazernogo splavleniya metallicheskih poroshkov [A study of properties of EP648 alloy manufactured by the selective laser sintering of metal powders] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 02. Available at: http://www.viam-works.ru (accessed: March 23, 2016). DOI: 10.18577/2307-6046-2015-0-2-2-2.
10. Evgenov A.G., Rogalev A.M., Karachevtsev F.N., Mazalov I.S. Vliyanie goryachego izostatich-eskogo pressovaniya i termicheskoy obrabotki na svoystva splava EP648, sintezirovannogo metodom selektivnogo lazernogo splavleniya [Influence of hot isostatic pressing and thermal pro-cessing on properties of alloy EP648 synthesized by a method of a selective laser splavleniye] // Tekhnologiya mashinostroeniya. 2015. №9. S. 11–16.
11. Kisel V., Gulevich A. Itterbievye tverdotelnye lazernye sistemy [Ytterbium solid-state laser systems] // Fotonika. 2011. №2. S. 20–24.
12. Khomenko M.D., Niz'ev V.G., Miradze F.Kh., Grishaev R.V. Issledovaniya IPLIT RAN po modelirovaniyu lazernogo spekaniya metallicheskikh poroshkov [Researches Institute of problems of laser and information technologies of the Russian Academy of Sciences on modeling of laser agglomeration of metal powders] // Additivnye tekhnologii: nastoyashchee i budushchee: sb. dokl. Mezhdunar. nauch. konf. M.: VIAM, 2015. S. 6.
13. Nizev V.G., Miradze F.Kh. Chislennoe modelirovanie lazernogo spekaniya metallicheskikh poroshkov [Numerical modeling of laser agglomeration of metal powders] // Vestnik Rossiyskogo fonda fundamentalnykh issledovaniy. 2014. №3 (83). S. 58–67.
14. Yali Li, Dongdong Gu. Parametric analysis of fhermal behavior during selective laser smelting additive manufacturing of aluminum alloy powder // Materials and Design. 2014. Vol. 63. P. 856–867.
15. Metallovedenie i obrabotka tsvetnykh splavov [Metallurgical science and processing of color alloys]: sb. nauch. statey / pod red. A.F. Belova. M.: Nauka, 1992. 230 s
2. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravleniya razvitiya tekhnologiy proizvodstva zharoprochnykh materialov dlya aviatsionnogo dvigatelestroeniya [The priority directions of development of production technologies of heat resisting materials for aviation engine-building] // Problemy chernoy metallurgii i materialovedeniya. 2013. №3. S. 47–54.
3. Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii [Tendencies and reference points of innovative development of Russia]: sb. nauch.-inform. mater. 3-e izd. M.: VIAM, 2015. 720 s.
4. Kablov E.N. Korrozija ili zhizn [Corrosion or life] // Nauka i zhizn. 2012. №3. S. 16–21.
5. Ospennikova O.G., Orlov M.R., Avtaev V.V. Anizotropiya uprugoplasticheskikh kharakteri-stik zharoprochnykh nikelevykh splavov – osnova konstruirovaniya monokristallicheskikh tur-binnykh lopatok [Anisotropy of elasto-plastic characteristics of heat resisting nickel alloys – basis of designing of single-crystal turbine blades] // Deformatsiya i razrushenie materialov. 2013. №11. S. 12–19.
6. Evgenov A.G., Nerush S.V., Vasilenko S.A. Poluchenie i oprobovanie melkodispersnogo metalli-cheskogo poroshka vysokohromistogo splava na nikelevoj osnove primenitelno k lazernoj LMD-naplavke [The obtaining and testing of the fine-dispersed metal powder of the high-chromium alloy on nickel-base for laser LMD-welding] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №5. St. 04. Available at: http://www.viam-works.ru (accessed: March 23, 2016). DOI: 10.18577/2307-6046-2014-0-5-4-4.
7. Nerush S.V., Evgenov A.G., Ermolaev A.S., Rogalev A.M. Issledovanie melkodispersnogo metal-licheskogo poroshka zharoprochnogo splava na nikelevoy osnove dlya lazernoy LMD-naplavki [Research of a fine-dispersed metal powder of a heat resisting alloy on a nickel basis for the laser LMD-welding] // Voprosy materialovedeniya. 2013. №4 (76). S. 98–107.
8. Nerush S.V., Evgenov A.G. Issledovanie melkodispersnogo metallicheskogo poroshka zharo-prochnogo splava marki EP648-VI primenitelno k lazernoj LMD-naplavke, a takzhe ocenka kachestva naplavki poroshkovogo materiala na nikelevoj osnove na rabochie lopatki TVD [Re-search of fine-dispersed metal powder of the heat resisting alloy of the EP648-VI brand for laser metal deposition (LMD) and also the assessment quality of welding of powder material on the nickel basis on working blades THP] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №3. St. 01. Available at: http://www.viam-works.ru (accessed: March 23, 2016). DOI: 10.18577/2307-6046-2014-0-3-1-1.
9. Evgenov A.G., Rogalev A.M., Nerush S.V., Mazalov I.S. Issledovanie svojstv splava EP648, polu-chennogo metodom selektivnogo lazernogo splavleniya metallicheskih poroshkov [A study of properties of EP648 alloy manufactured by the selective laser sintering of metal powders] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 02. Available at: http://www.viam-works.ru (accessed: March 23, 2016). DOI: 10.18577/2307-6046-2015-0-2-2-2.
10. Evgenov A.G., Rogalev A.M., Karachevtsev F.N., Mazalov I.S. Vliyanie goryachego izostatich-eskogo pressovaniya i termicheskoy obrabotki na svoystva splava EP648, sintezirovannogo metodom selektivnogo lazernogo splavleniya [Influence of hot isostatic pressing and thermal pro-cessing on properties of alloy EP648 synthesized by a method of a selective laser splavleniye] // Tekhnologiya mashinostroeniya. 2015. №9. S. 11–16.
11. Kisel V., Gulevich A. Itterbievye tverdotelnye lazernye sistemy [Ytterbium solid-state laser systems] // Fotonika. 2011. №2. S. 20–24.
12. Khomenko M.D., Niz'ev V.G., Miradze F.Kh., Grishaev R.V. Issledovaniya IPLIT RAN po modelirovaniyu lazernogo spekaniya metallicheskikh poroshkov [Researches Institute of problems of laser and information technologies of the Russian Academy of Sciences on modeling of laser agglomeration of metal powders] // Additivnye tekhnologii: nastoyashchee i budushchee: sb. dokl. Mezhdunar. nauch. konf. M.: VIAM, 2015. S. 6.
13. Nizev V.G., Miradze F.Kh. Chislennoe modelirovanie lazernogo spekaniya metallicheskikh poroshkov [Numerical modeling of laser agglomeration of metal powders] // Vestnik Rossiyskogo fonda fundamentalnykh issledovaniy. 2014. №3 (83). S. 58–67.
14. Yali Li, Dongdong Gu. Parametric analysis of fhermal behavior during selective laser smelting additive manufacturing of aluminum alloy powder // Materials and Design. 2014. Vol. 63. P. 856–867.
15. Metallovedenie i obrabotka tsvetnykh splavov [Metallurgical science and processing of color alloys]: sb. nauch. statey / pod red. A.F. Belova. M.: Nauka, 1992. 230 s
2.
category: Testing of materials and structures
УДК 669.017
Kochubey A.Ya.1, Medvedev P.N.1
Direct pole figures in the study of structure formation processes during heating of deformed metals and alloys
Work is executed within implementation of the complex scientific direction 2.1. «Fundamental the oriented researches» («The strategic directions of development of materials and technologies of their processing for the period till 2030») [1, 2].
The paper presents the methodological research bases of structure formation processes during heating of deformed metals and alloys using direct pole figures [3, 4]. The connection of structural transformations with the respective stereographic projection and direct pole figures changes obtained by x-ray has been shown [5, 6]. Examples of research and primary recrystallization process using direct figure pole have been demonstrated.
Keywords: straight pole figure, X-ray analysis, heat treatment, recrystallization
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] // Aviatsionnye materialy i tekhnologii. 2012. №S. S. 7–17.
3. Umanskiy Ya.S., Skakov Yu.A., Ivanov A.N., Rastorguev L.N. Kristallografiya, rentgenografiya i elektronnaya mikroskopiya [Crystallography, radiographic and electron microscopy]. M.: Metallurgiya, 1982. 632 s.
4. Vishnyakov Ya.D., Babareko A.A., Vladimirov S.A., Egiz I.V. Teoriya obrazovaniya tekstur v metallakh i splavakh [The theory of formation of structures in metals and alloys]. M.: Nauka, 1979. 344 s.
5. Borodkina M.M., Spektor E.N. Rentgenograficheskiy analiz tekstury metallov i splavov [Radiographic analysis of structure of metals and alloys]. M.: Metallurgiya, 1981. 272 s.
6. Gorelik S.S., Skakov Yu.A., Rastorguev L.N. Rentgenograficheskiy i elektronno-opticheskiy analiz [Radiographic and electron-optical analysis]: ucheb. posobie dlya vuzov; 4-e izd., dop. i pererab. M.: MISIS, 2002. 360 s.
7. Kochubey A.Ya., Medvedev P.N., Klochkov G.G., Avtaev V.V. Zakonomernosti teksturoobrazovaniya pri ploskoy osadke splava sistemy Al–Cu–Li [Patterns of teksturoobrazovaniye at flat deposit of alloy of Al–Cu–Li system] // TLS. 2016. №1. S. 78–87.
8. Kochubey A.Ya., Serebryanyy V.N. Vliyanie termomekhanicheskikh parametrov na formirovanie tekstury i struktury pri goryachey obrabotke davleniem splava sistemy Mg–Al–Zn [Influence of thermomechanical parameters on structure and structure forming at hot working pressure of alloy of Mg–Al–Zn system] // TLS. 2007. №2. S. 105–109.
9. Serebryanyy V.N., Kochubey A.Ya., Kurtasov S.F., Melnikov K.E. Teksturnye sostoyaniya goryachedeformirovannogo magnievogo splava MA2-1 [Textural conditions of hot formed MA2-1 magnesium alloy] // Metally. 2007. №1. S. 87–93.
10. Davydov V.G., Ver L.B., Kochubey A.Ya. Vliyanie razmera zerna na diagrammy strukturnykh sostoyaniy splava MA2-1 [Influence of grain size on charts of structural conditions of alloy MA2-1] // TLS. 2003. №2–3. S. 28–34.
11. Kablov E.N. Konstruktsionnye i funktsionalnye materialy – osnova ekonomicheskogo i nauchno-tekhnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
12. Fridlyander I.N., Grushko O.E., Antipov V.V., Kolobnev N.I., Khokhlatova L.B. Alyuminiylitievye splavy [Aluminumlithium alloys] // 75 let. Aviatsionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubileynyy nauch.-tekhnich. sb. M.: VIAM, 2007. S. 163–171.
13. Milevskaya T.V., Ruschits S.V., Tkachenko E.A., Antonov S.M. Deformacionnoe povedenie vysokoprochnyh alyuminievyh splavov v usloviyah goryachej deformacii [Deformation behavior of high-strength aluminum alloys in conditions of hot deformation] //Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 3–9. DOI: 10.18577/2071-9140-2015-0-2-3-9.
14. Alyuminievye splavy v aviakosmicheskoy tekhnike [Aluminum alloys in aerospace equipment] / pod obshch. red. E.N. Kablova. M.: Nauka, 2001. 192 s.
15. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Alyuminievye deformiruemye splavy [Aluminum deformable alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] // Aviatsionnye materialy i tekhnologii. 2012. №S. S. 7–17.
3. Umanskiy Ya.S., Skakov Yu.A., Ivanov A.N., Rastorguev L.N. Kristallografiya, rentgenografiya i elektronnaya mikroskopiya [Crystallography, radiographic and electron microscopy]. M.: Metallurgiya, 1982. 632 s.
4. Vishnyakov Ya.D., Babareko A.A., Vladimirov S.A., Egiz I.V. Teoriya obrazovaniya tekstur v metallakh i splavakh [The theory of formation of structures in metals and alloys]. M.: Nauka, 1979. 344 s.
5. Borodkina M.M., Spektor E.N. Rentgenograficheskiy analiz tekstury metallov i splavov [Radiographic analysis of structure of metals and alloys]. M.: Metallurgiya, 1981. 272 s.
6. Gorelik S.S., Skakov Yu.A., Rastorguev L.N. Rentgenograficheskiy i elektronno-opticheskiy analiz [Radiographic and electron-optical analysis]: ucheb. posobie dlya vuzov; 4-e izd., dop. i pererab. M.: MISIS, 2002. 360 s.
7. Kochubey A.Ya., Medvedev P.N., Klochkov G.G., Avtaev V.V. Zakonomernosti teksturoobrazovaniya pri ploskoy osadke splava sistemy Al–Cu–Li [Patterns of teksturoobrazovaniye at flat deposit of alloy of Al–Cu–Li system] // TLS. 2016. №1. S. 78–87.
8. Kochubey A.Ya., Serebryanyy V.N. Vliyanie termomekhanicheskikh parametrov na formirovanie tekstury i struktury pri goryachey obrabotke davleniem splava sistemy Mg–Al–Zn [Influence of thermomechanical parameters on structure and structure forming at hot working pressure of alloy of Mg–Al–Zn system] // TLS. 2007. №2. S. 105–109.
9. Serebryanyy V.N., Kochubey A.Ya., Kurtasov S.F., Melnikov K.E. Teksturnye sostoyaniya goryachedeformirovannogo magnievogo splava MA2-1 [Textural conditions of hot formed MA2-1 magnesium alloy] // Metally. 2007. №1. S. 87–93.
10. Davydov V.G., Ver L.B., Kochubey A.Ya. Vliyanie razmera zerna na diagrammy strukturnykh sostoyaniy splava MA2-1 [Influence of grain size on charts of structural conditions of alloy MA2-1] // TLS. 2003. №2–3. S. 28–34.
11. Kablov E.N. Konstruktsionnye i funktsionalnye materialy – osnova ekonomicheskogo i nauchno-tekhnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
12. Fridlyander I.N., Grushko O.E., Antipov V.V., Kolobnev N.I., Khokhlatova L.B. Alyuminiylitievye splavy [Aluminumlithium alloys] // 75 let. Aviatsionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubileynyy nauch.-tekhnich. sb. M.: VIAM, 2007. S. 163–171.
13. Milevskaya T.V., Ruschits S.V., Tkachenko E.A., Antonov S.M. Deformacionnoe povedenie vysokoprochnyh alyuminievyh splavov v usloviyah goryachej deformacii [Deformation behavior of high-strength aluminum alloys in conditions of hot deformation] //Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 3–9. DOI: 10.18577/2071-9140-2015-0-2-3-9.
14. Alyuminievye splavy v aviakosmicheskoy tekhnike [Aluminum alloys in aerospace equipment] / pod obshch. red. E.N. Kablova. M.: Nauka, 2001. 192 s.
15. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Alyuminievye deformiruemye splavy [Aluminum deformable alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
3.
УДК 543.51:669
Alekseev A.V.1, Yakimovich P.V.1
Determination of copper, zinc, arsenic and selenium in complex alloyed high temperature nickel alloys using ICP-MS
Now in the modern aviation industry and engine manufacturing high temperature nickel alloys are used in the manufacture of critical parts experiencing during its work, the huge thermal and power load. On the properties of the produced materials significant negative impact can have impurities of different elements. Therefore, an important task is to control the chemical composition of nickel alloys, especially the content of trace impurities, which include copper, zinc, arsenic and selenium.
In this work the determination of copper, zinc, arsenic and selenium in certified reference materials of complexly alloyed Nickel alloys using the method of mass spectrometry with inductively coupled plasma (ICP-MS). The method of dissolution of the sample and its preparation for analysisis described. Applied various methods of eliminating spectral interferences: the reaction-collision cell, or a mathematical correction. The detection limit was, % of the mass: 0,00005 Cu; 0,00007 Zn; 0,00005 Se; 0,
Keywords: inductively coupled plasma mass spectrometry (ICP-MS), nickel alloys, determination of copper, determination of zinc, determination of arsenic, determination of selenium, microwave sample preparation.
Reference List
1. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative de-velopments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Chabina E.B. [Phosphorus and sulfur segregation in model heat resistant Ni-based alloy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 02. Available at: http://www.viam-works.ru (accessed: 07 July, 2016). DOI: 10.18577/2307-6046-2015-0-9-2-2.
4. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Liteynye zharoprochnye nikelevye splavy dlya perspektivnykh aviatsionnykh GTD [Cast heat resisting nickel alloys for perspective aviation GTЕ] // Tekhnologiya legkikh splavov. 2007. №2. S. 6–16.
5. Echin A.B., Bondarenko Y.A. Structural features and properties of single-crystal Ni-based superalloy produced under conditions of variable temperature gradient on the solidification front // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2015. №8. St. 01. Available at: http://viam-works.ru (accessed: 07 July, 2016). DOI: 10.18577/2307-6046-2015-0-8-1-1.
6. Kablov E.N., Sidorov V.V., Kablov D.E., Rigin V.E., Goryunov A.V. Sovremennye tehnologii polucheniya prutkovyh zagotovok iz litejnyh zharoprochnyh splavov novogo pokoleniya [Modern technologies of receiving the bar stock preparations from foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 97–105.
7. Shein E.A. Tendentsii v oblasti legirovaniya i mikrolegirovaniya zharoprochnykh monokristallicheskikh splavov na osnove nikelya (obzor) [Tendencies in the field of alloying and microalloying of heat resisting single-crystal alloys on the basis of nickel (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №3. St. 02. Available at: http://viam-works.ru (accessed: 07 July, 2016). DOI: 10.18557/2307-6046-2016-0-3-2-2.
8. Kablov E.N., Buntushkin V.P., Povarova K.B., Bazyleva O.A., Morozova G.I., Kazanskaya N.K. Malolegirovannye legkie zharoprochnye vysokotemperaturnye materialy na osnove intermetallida Ni3Al [The low-alloyed easy heat resisting high-temperature materials on the basis of Ni3Al intermetallic compound] // Metally. 1999. №1. S. 58–65.
9. Lomberg B.S., Ovsepjan S.V., Bakradze M.M. Osobennosti legirovanija i termicheskoj obrabotki zharoprochnyh nikelevyh splavov dlja diskov gazoturbinnyh dvigatelej no-vogo pokolenija [Features of alloying and thermal processing of heat resisting nickel alloys for disks of gas turbine engines of new generation] //Aviacionnye materialy i tehnologii. 2010. №2. S. 3–8.
10. Min P.G., Sidorov V.V. Rafinirovanie othodov zharoprochnogo nikelevogo splava ZhS32-VI ot primesi kremniya v usloviyah vakuumnoj indukcionnoj plavki [Refining of scraps of Ni-base superalloy ZhS32-VI to eliminate silicon impurity under conditions of vacuum induction melting] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №9. St. 01. Available at: http://viam-works.ru (accessed: 07 July, 2016).
11. GOST 6689.1–92. Nikel, splavy nikelevye i medno-nikelevye. Metody opredeleniya medi [Nickel, alloys nickel and copper-nickel. Methods of definition of copper]. M.: Izd-vo standartov, 1992. S. 1
12. Mirzaeva Kh.A., Shikhakhmedova Z.M., Babuev M.A. Opredelenie medi v alyuminievykh splavakh [Copper definition in aluminum alloys] // Vestnik Dagestanskogo nauchnogo tsentra. 2014. №54. S. 37–40.
13. GOST 6689.4–92. Nikel, splavy nikelevye i medno-nikelevye. Metody opredeleniya tsinka [Nickel, alloys nickel and copper-nickel. Methods of definition of zinc]. M.: Izd-vo standartov, 1992. S. 1
14. Pashadzhanov A.M., Rustamov N.Kh. Atomno-absorbtsionnoe opredelenie tsinka v mednykh splavakh [Nuclear and absorbing definition of zinc in copper alloys] // Zavodskaya laboratoriya. Diagnostika materialov. 2006. T. 72. №5. S. 14–16.
15. GOST 6689.13–92. Nikel, splavy nikelevye i medno-nikelevye. Metody opredeleniya myshyaka [Nickel, alloys nickel and copper-nickel. Methods of definition of arsenic]. M.: Izd-vo standartov, 1992. S. 2.
16. GOST 13047.25–2002. Nikel. Kobalt. Metody opredeleniya selena v nikele [Nickel. Cobalt. Methods of definition of selenium in nickel]. M.: Standartinform, 2002. S. 1
17. Moor C., Devos W., Guecheva M., Kobler J. Inductively coupled plasma mass spectrometry: a versatile tool for a variety of different tasks // Fresenius' Journal of Analytical Chemistry. 2000. Vol. 366. No. 2. P. 159–164.
18. Hu J., Wang H. Determination of Trace Elements in Super Alloy by ICP-MS // Mikrochim. Acta. 2001. Vol. 137. P. 149–155.
19. Pupyshev A.A., Epova E.N. Spektralnye pomekhi poliatomnykh ionov v metode mass-spektrometrii s induktivno svyazannoy plazmoy [Spectral hindrances of polynuclear ions in mass-spectrometry method with inductively connected plasma] // Analitika i kontrol'. 2001. T. 5. №4. S. 335–369.
20. Pupyshev A.A., Surikov V.T. Mass-spektrometriya s induktivno svyazannoy plazmoy. Obrazovanie ionov [Mass-spectrometry with inductively connected plasma. Formation of ions]. Ekaterinburg: UrO RAN, 2006. 276 s.
21. Leykin A.Yu., Yakimovich P.V. Sistemy podavleniya spektral'nykh interferentsiy v mass-spektrometrii s induktivno svyazannoy plazmoy [Systems of suppression of spectral interferences in mass-spectrometry with inductively connected plasma] // Zhurnal analiticheskoy khimii. 2012. T. 67. №8. S. 752–762.
22. Gao Y., Liu R. еt al. Application of chemical vapor generation in ICP-MS: A review // Chinа Sci. Bull. 2013. Vol. 58. No. 8. P. 1980–1991.
23. Nie X., Liang Y. Determination of trace elements in high purity nickel by high resolution induc-tively coupled plasma mass spectrometry // J. Cent. South Univ. 2012. Vol. 19. P. 2416−2420.
24. Pupyshev A.A., Danilova D.A. Ispolzovanie atomno-emissionnoy spektrometrii s induktivno svyazannoy plazmoy dlya analiza materialov i produktov chernoy metallurgii [Use of nuclear and emission spectrometry with inductively connected plasma for the analysis of materials and products of ferrous metallurgy] // Analitika i kontrol. 2007. T. 11. №2–3. S. 131–181.
25. Aries S., Valladon M. et al. A routine method for oxide and hydroxide interference correction in ICP-MS chemical analysis of environmental and geological samples // Geostandards Newsletter. 2000. Vol. 24. P. 19–31.
26. Yakubenko E.V., Voytkova Z.A., Chernikova I.I., Ermolaeva T.N. Mikrovolnovaya probopodgotovka dlya opredeleniya Si, P, V, Cr, Mn, Ni, Cu, W metodom AES-ISP v konstruktsionnykh stalyakh [Microwave test preparation for definition of Si, P, V, Cr, Mn, Ni, Cu, W nuclear power plant-ISP method in constructional stalyakh] // Zavodskaya laboratoriya. Diagnostika materialov. 2014. T. 80. №1. S. 12–15.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative de-velopments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Chabina E.B. [Phosphorus and sulfur segregation in model heat resistant Ni-based alloy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 02. Available at: http://www.viam-works.ru (accessed: 07 July, 2016). DOI: 10.18577/2307-6046-2015-0-9-2-2.
4. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Liteynye zharoprochnye nikelevye splavy dlya perspektivnykh aviatsionnykh GTD [Cast heat resisting nickel alloys for perspective aviation GTЕ] // Tekhnologiya legkikh splavov. 2007. №2. S. 6–16.
5. Echin A.B., Bondarenko Y.A. Structural features and properties of single-crystal Ni-based superalloy produced under conditions of variable temperature gradient on the solidification front // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2015. №8. St. 01. Available at: http://viam-works.ru (accessed: 07 July, 2016). DOI: 10.18577/2307-6046-2015-0-8-1-1.
6. Kablov E.N., Sidorov V.V., Kablov D.E., Rigin V.E., Goryunov A.V. Sovremennye tehnologii polucheniya prutkovyh zagotovok iz litejnyh zharoprochnyh splavov novogo pokoleniya [Modern technologies of receiving the bar stock preparations from foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 97–105.
7. Shein E.A. Tendentsii v oblasti legirovaniya i mikrolegirovaniya zharoprochnykh monokristallicheskikh splavov na osnove nikelya (obzor) [Tendencies in the field of alloying and microalloying of heat resisting single-crystal alloys on the basis of nickel (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №3. St. 02. Available at: http://viam-works.ru (accessed: 07 July, 2016). DOI: 10.18557/2307-6046-2016-0-3-2-2.
8. Kablov E.N., Buntushkin V.P., Povarova K.B., Bazyleva O.A., Morozova G.I., Kazanskaya N.K. Malolegirovannye legkie zharoprochnye vysokotemperaturnye materialy na osnove intermetallida Ni3Al [The low-alloyed easy heat resisting high-temperature materials on the basis of Ni3Al intermetallic compound] // Metally. 1999. №1. S. 58–65.
9. Lomberg B.S., Ovsepjan S.V., Bakradze M.M. Osobennosti legirovanija i termicheskoj obrabotki zharoprochnyh nikelevyh splavov dlja diskov gazoturbinnyh dvigatelej no-vogo pokolenija [Features of alloying and thermal processing of heat resisting nickel alloys for disks of gas turbine engines of new generation] //Aviacionnye materialy i tehnologii. 2010. №2. S. 3–8.
10. Min P.G., Sidorov V.V. Rafinirovanie othodov zharoprochnogo nikelevogo splava ZhS32-VI ot primesi kremniya v usloviyah vakuumnoj indukcionnoj plavki [Refining of scraps of Ni-base superalloy ZhS32-VI to eliminate silicon impurity under conditions of vacuum induction melting] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №9. St. 01. Available at: http://viam-works.ru (accessed: 07 July, 2016).
11. GOST 6689.1–92. Nikel, splavy nikelevye i medno-nikelevye. Metody opredeleniya medi [Nickel, alloys nickel and copper-nickel. Methods of definition of copper]. M.: Izd-vo standartov, 1992. S. 1
12. Mirzaeva Kh.A., Shikhakhmedova Z.M., Babuev M.A. Opredelenie medi v alyuminievykh splavakh [Copper definition in aluminum alloys] // Vestnik Dagestanskogo nauchnogo tsentra. 2014. №54. S. 37–40.
13. GOST 6689.4–92. Nikel, splavy nikelevye i medno-nikelevye. Metody opredeleniya tsinka [Nickel, alloys nickel and copper-nickel. Methods of definition of zinc]. M.: Izd-vo standartov, 1992. S. 1
14. Pashadzhanov A.M., Rustamov N.Kh. Atomno-absorbtsionnoe opredelenie tsinka v mednykh splavakh [Nuclear and absorbing definition of zinc in copper alloys] // Zavodskaya laboratoriya. Diagnostika materialov. 2006. T. 72. №5. S. 14–16.
15. GOST 6689.13–92. Nikel, splavy nikelevye i medno-nikelevye. Metody opredeleniya myshyaka [Nickel, alloys nickel and copper-nickel. Methods of definition of arsenic]. M.: Izd-vo standartov, 1992. S. 2.
16. GOST 13047.25–2002. Nikel. Kobalt. Metody opredeleniya selena v nikele [Nickel. Cobalt. Methods of definition of selenium in nickel]. M.: Standartinform, 2002. S. 1
17. Moor C., Devos W., Guecheva M., Kobler J. Inductively coupled plasma mass spectrometry: a versatile tool for a variety of different tasks // Fresenius' Journal of Analytical Chemistry. 2000. Vol. 366. No. 2. P. 159–164.
18. Hu J., Wang H. Determination of Trace Elements in Super Alloy by ICP-MS // Mikrochim. Acta. 2001. Vol. 137. P. 149–155.
19. Pupyshev A.A., Epova E.N. Spektralnye pomekhi poliatomnykh ionov v metode mass-spektrometrii s induktivno svyazannoy plazmoy [Spectral hindrances of polynuclear ions in mass-spectrometry method with inductively connected plasma] // Analitika i kontrol'. 2001. T. 5. №4. S. 335–369.
20. Pupyshev A.A., Surikov V.T. Mass-spektrometriya s induktivno svyazannoy plazmoy. Obrazovanie ionov [Mass-spectrometry with inductively connected plasma. Formation of ions]. Ekaterinburg: UrO RAN, 2006. 276 s.
21. Leykin A.Yu., Yakimovich P.V. Sistemy podavleniya spektral'nykh interferentsiy v mass-spektrometrii s induktivno svyazannoy plazmoy [Systems of suppression of spectral interferences in mass-spectrometry with inductively connected plasma] // Zhurnal analiticheskoy khimii. 2012. T. 67. №8. S. 752–762.
22. Gao Y., Liu R. еt al. Application of chemical vapor generation in ICP-MS: A review // Chinа Sci. Bull. 2013. Vol. 58. No. 8. P. 1980–1991.
23. Nie X., Liang Y. Determination of trace elements in high purity nickel by high resolution induc-tively coupled plasma mass spectrometry // J. Cent. South Univ. 2012. Vol. 19. P. 2416−2420.
24. Pupyshev A.A., Danilova D.A. Ispolzovanie atomno-emissionnoy spektrometrii s induktivno svyazannoy plazmoy dlya analiza materialov i produktov chernoy metallurgii [Use of nuclear and emission spectrometry with inductively connected plasma for the analysis of materials and products of ferrous metallurgy] // Analitika i kontrol. 2007. T. 11. №2–3. S. 131–181.
25. Aries S., Valladon M. et al. A routine method for oxide and hydroxide interference correction in ICP-MS chemical analysis of environmental and geological samples // Geostandards Newsletter. 2000. Vol. 24. P. 19–31.
26. Yakubenko E.V., Voytkova Z.A., Chernikova I.I., Ermolaeva T.N. Mikrovolnovaya probopodgotovka dlya opredeleniya Si, P, V, Cr, Mn, Ni, Cu, W metodom AES-ISP v konstruktsionnykh stalyakh [Microwave test preparation for definition of Si, P, V, Cr, Mn, Ni, Cu, W nuclear power plant-ISP method in constructional stalyakh] // Zavodskaya laboratoriya. Diagnostika materialov. 2014. T. 80. №1. S. 12–15.
4.
category: Material processing technologies
УДК 66.017
Izakov I.A.1, Kapitanenko D.V.2, Bazhenov A.R.2
Research of parameters of technological processes of isothermal deformation
Results of theoretical and experimental researches of isothermal deformation technological processes parameters are presented in this article. The influence of thermal effect of plastic deformation and dynamic recrystallization at depending on temperature and speed on the strain resistance and the influence of isothermal deformation rate at die working life are investigated. The method of evaluating the true temperature of the metal during deformation under isothermal conditions, based on the energy account, spent on the plastic deformation and heat removed from the workpiece is proposed. The method of calculating the optimum strain rate taking into account the creep of the die material is proposed. The creep curves of die material at a constant temperature is used. Some results (influence of deformation thermal effect on dynamic recrystallization, for example) were used for dynamic softening experimental researches results analyzing.
Keywords: recrystallization, deformation, die tooling , isothermal deformation.
Reference List
1. Figlin S.Z., Boytsov V.V., Kalpin Yu.G. Izotermicheskoe deformirovanie metallov [Isothermal deformation of metals]. M.: Mashinostroenie, 1978. 239 s.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative de-velopments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaya innovacionnaya tehnologiya izotermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharoprochnyh splavov [Complex innovative technology of isothermal punching on air in mode of superplasticity of disks from superhot strength alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.
4. Razuvaev E.I., Moiseev N.V., Kapitanenko D.V., Bubnov M.V. Sovremennye tehnologii obrabotki metallov davleniem [Modern technologies of plastic working of metals] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 03. Available at: http://www.viam-works.ru (accessed: May 16, 2016). DOI: 10.18577/2307-6046-2015-0-2-3-3.
5. Kablov E.N. Razrabotki VIAM dlya gazoturbinnykh dvigateley i ustanovok [Development of VIAM for gas turbine engines and installations] // Krylya Rodiny. 2010. №4. S. 31–33.
6. Bernshteyn M.L. Struktura deformirovannykh metallov [Structure of the deformed metals]. M.: Metallurgiya, 1977. S. 432.
7. Braslavskiy D.I., Izakov I.A., Roshchina I.N. Dinamicheskaya rekristallizatsiya splava KhN77TYuR v protsesse izotermicheskoy deformatsii [Dynamic recrystallization of alloy KhN77TYuR in the course of isothermal deformation] // Metallovedenie i termicheskaya obrabotka metallov. 1984. №5. S. 39–41.
8. Bernshteyn M.L., Kaputkina L.M., Dobatkin S.V. Novoe v issledovaniyakh fazovykh i strukturnykh prevrashcheniy v stalyakh [New in researches of phase and structural transformations in stalyakh]. M.: MDNTP, 1985. S. 63–66.
9. Gorelik S.S. Rekristallizatsiya metallov i splavov [Recrystallization of metals and alloys]. 2-e izd., pererab. i dop. M.: Metallurgiya, 1978. 568 s.
10. Dadras P., Thomas J.F. Characterization and modeling for forging deformation of Ti–6Al–2Sn–4Zr––2Mo–0,1Si // Met. Trans. 1981. Vol. 12A. No. 11. P. 1867–1876.
11. Chirkov E.F. Temp razuprochneniya pri nagrevakh – kriteriy otsenki zharoprochnosti kon-struktsionnykh splavov sistem Al–Cu–Mg i Al–Cu [Rate of loss of strength when heatings – criterion of assessment of thermal stability of structural alloys of Al–Cu–Mg and Al–Cu systems ] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2013. №2. St. 02. Available at: http://www.viam-works.ru (accessed: May 16, 2016).
12. Semiatin S.L., Lahoti G.D. Deformation and Unstable Flow in Hot Forging of Ti–6Al–2Sn–4Zr–2Mo––0,1Si // Met. Trans. 1981. Vol. 12A. No. 10. P. 1705–1717.
13. Luton M.J., Sellars C.M. Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation // Acta Metallurgica. 1969. Vol. 17. No. 8. P. 1033–1043.
14. Figlin S.Z., Kaplin Yu.G., Boytsov V.V. Teplovydelenie pri izotermicheskoy osadke i pressovanii [Heat release at isothermal deposit and pressing] // Kuznechno-shtampovochnoe proizvodstvo. 1975. №6. S. 9–11.
15. Severdenko V.P. Plastichnost i obrabotka metallov davleniem [Plasticity and processing of metals by pressure]. Minsk: Nauka i tekhnika, 1968. S. 5–12.
16. Kablov E.N. Zharoprochnye konstruktsionnye materialy [Heat resisting constructional materials] // Liteynoe proizvodstvo. 2005. №7. S. 2–7.
17. Smirnova Yu.V., Boytsov V.V., Izakov I.A., Gruber M.B. O vliyanii masshtabnogo faktora na svoystva litogo zharoprochnogo shtampovogo materiala [About influence of large-scale factor on properties of cast heat resisting shtampovy material] // Kuznechno-shtampovochnoe proizvodstvo. 1984. №10. S. 23–24.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative de-velopments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaya innovacionnaya tehnologiya izotermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharoprochnyh splavov [Complex innovative technology of isothermal punching on air in mode of superplasticity of disks from superhot strength alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.
4. Razuvaev E.I., Moiseev N.V., Kapitanenko D.V., Bubnov M.V. Sovremennye tehnologii obrabotki metallov davleniem [Modern technologies of plastic working of metals] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 03. Available at: http://www.viam-works.ru (accessed: May 16, 2016). DOI: 10.18577/2307-6046-2015-0-2-3-3.
5. Kablov E.N. Razrabotki VIAM dlya gazoturbinnykh dvigateley i ustanovok [Development of VIAM for gas turbine engines and installations] // Krylya Rodiny. 2010. №4. S. 31–33.
6. Bernshteyn M.L. Struktura deformirovannykh metallov [Structure of the deformed metals]. M.: Metallurgiya, 1977. S. 432.
7. Braslavskiy D.I., Izakov I.A., Roshchina I.N. Dinamicheskaya rekristallizatsiya splava KhN77TYuR v protsesse izotermicheskoy deformatsii [Dynamic recrystallization of alloy KhN77TYuR in the course of isothermal deformation] // Metallovedenie i termicheskaya obrabotka metallov. 1984. №5. S. 39–41.
8. Bernshteyn M.L., Kaputkina L.M., Dobatkin S.V. Novoe v issledovaniyakh fazovykh i strukturnykh prevrashcheniy v stalyakh [New in researches of phase and structural transformations in stalyakh]. M.: MDNTP, 1985. S. 63–66.
9. Gorelik S.S. Rekristallizatsiya metallov i splavov [Recrystallization of metals and alloys]. 2-e izd., pererab. i dop. M.: Metallurgiya, 1978. 568 s.
10. Dadras P., Thomas J.F. Characterization and modeling for forging deformation of Ti–6Al–2Sn–4Zr––2Mo–0,1Si // Met. Trans. 1981. Vol. 12A. No. 11. P. 1867–1876.
11. Chirkov E.F. Temp razuprochneniya pri nagrevakh – kriteriy otsenki zharoprochnosti kon-struktsionnykh splavov sistem Al–Cu–Mg i Al–Cu [Rate of loss of strength when heatings – criterion of assessment of thermal stability of structural alloys of Al–Cu–Mg and Al–Cu systems ] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2013. №2. St. 02. Available at: http://www.viam-works.ru (accessed: May 16, 2016).
12. Semiatin S.L., Lahoti G.D. Deformation and Unstable Flow in Hot Forging of Ti–6Al–2Sn–4Zr–2Mo––0,1Si // Met. Trans. 1981. Vol. 12A. No. 10. P. 1705–1717.
13. Luton M.J., Sellars C.M. Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation // Acta Metallurgica. 1969. Vol. 17. No. 8. P. 1033–1043.
14. Figlin S.Z., Kaplin Yu.G., Boytsov V.V. Teplovydelenie pri izotermicheskoy osadke i pressovanii [Heat release at isothermal deposit and pressing] // Kuznechno-shtampovochnoe proizvodstvo. 1975. №6. S. 9–11.
15. Severdenko V.P. Plastichnost i obrabotka metallov davleniem [Plasticity and processing of metals by pressure]. Minsk: Nauka i tekhnika, 1968. S. 5–12.
16. Kablov E.N. Zharoprochnye konstruktsionnye materialy [Heat resisting constructional materials] // Liteynoe proizvodstvo. 2005. №7. S. 2–7.
17. Smirnova Yu.V., Boytsov V.V., Izakov I.A., Gruber M.B. O vliyanii masshtabnogo faktora na svoystva litogo zharoprochnogo shtampovogo materiala [About influence of large-scale factor on properties of cast heat resisting shtampovy material] // Kuznechno-shtampovochnoe proizvodstvo. 1984. №10. S. 23–24.
5.
category: Testing of materials and structures
УДК 621.763
Sokolov E.G.1, Ozolin A.V.1, Kozachenko A.D.2
Influence of cobalt on the process of brazing of diamond-abrasive tools by Sn–Cu–Co–W composite brazes
It was researched the influence of cobalt powder on the viscosity of composite brazes
Sn–Cu–Co–W and on the hot cracking of brazed diamond-impregnated layers.
The object of the study was the process of brazing of shaped diamond-abrasive tools by composite brazes Sn–Cu–Co–W. Purpose – to determinate the optimal content of cobalt powder in the composite brazing alloy, ensuring the formation of uniform diamond-bearing coatings on complex shaped surfaces of diamond tools. For experimental studies was prepared the brazing paste Sn–Cu–Co–W with a cobalt powder content of 20 to 34% (wt.). Brazes without diamonds were applied to the cylindrical rollers with a diameter of 20 mm, made of steel St.3. The mixture of braze and AS150 diamonds (400/315 micron grain size) containing 25% of diamonds (by volume) was applied to the shaped rollers with a maximum diameter of 85 mm, made of steel 45. Samples were dried and annealed in vacuum at 820°C for 40 minutes exposure. It is found that with increas
Keywords: cobalt, composite brazing, viscosity, diamond tool.
Reference List
1. Orlov A.M. Dobycha i obrabotka prirodnogo kamnya [Production and processing of natural stone]. M.: Stroyizdat, 1977. 351 s.
2. Miflig D.M., Levin M.D. Almaznye fasonnye roliki dlya shlifovaniya arkhitekturnykh izdeliy iz mramora i granita [Diamond shaped rollers for grinding of architectural products from marble and granite] // Instumentalniy svit. 1997. №2. S. 12.
3. Almaznye fasonnye roliki dlya shlifovaniya kamnya proizvodstva «ALKON BEVERS» [Diamond shaped rollers for grinding of stone of production "ALKON BEVERS"] // Instumentalniy svit. 2002. №2. S. 8.
4. Diamond tools for the stone industry. Diamant Boart, 2008. 43 p.
5. Trenker A., Seidemann H. High-vacuum brazing of diamond tools // Industrial Diamond Review. 2002. Vol. 62 (1). P. 49–51.
6. Lee C.H., Ham J.O., Song M.S., Lee C.H. The interfacial reaction between diamond grit and Ni-based brazing filler metal // Materials transactions. 2007. Vol. 48 (4). P. 889–891.
7. Sposob polucheniya abrazivnogo instrumenta iz sverkhtverdykh materialov [Way of receiving abrasive tool from superhard materials]: pat. 2457935 Ros. Federatsiya; opubl. 10.08.12. Byul. №22.
8. Sokolov E.G., Artemev V.P., Kozachenko A.D. Formirovanie metallicheskoy svyazki almazno-abrazivnogo instrumenta pri kompozitsionnoy payke [Forming of metal linking of diamond abrasive tool at the composition soldering] // Tekhnologiya metallov. 2012. №12. S. 35–37.
9. Kozachenko A.D., Sokolov E.G. Vliyanie tugoplavkikh napolniteley na protsess kompozitsionnoy payki almazno-abrazivnykh instrumentov [Influence of high-melting fillers on process of the composition soldering of diamond abrasive tools] // Nauchnyy zhurnal KubGAU [Elektronnyy resurs]. 2015. №04 (108). Available at: http://ej.kubagro.ru/2015/04/pdf/59.pdf (accessed: October 10, 2016).
10. Artemev V.P., Sokolov E.G., Kozachenko A.D. Issledovanie vzaimodeystviya kompozitsionnykh pripoev s almazom [Research of interaction of composition solders with diamond] // Metallovedenie i termicheskaya obrabotka metallov. 2013. №6. S. 28–31.
11. Elanskiy G.N. Stroenie i svoystva metallicheskikh rasplavov [Structure and properties metal melts]. M.: Metallurgiya, 1991. 160 s.
12. Yu-Kai Chen, Chia-Ming Hsu, Sinn-Wen Chen, Chih-Ming Chen, Yu-Chih Huang. Phase Equilibria of Sn–Co–Cu Ternary System // Metallurgical and Materials Transactions A. 2012. Vol. 43. Is. 10. P. 3586–3595.
13. Khodakov G.S. Reologiya suspenziy. Teoriya fazovogo techeniya i ee eksperimentalnoe obosnovanie [Rheology of suspensions. Theory of phase current and its experimental justification] // Rossiyskiy khimicheskiy zhurnal. 2003. T. XLVII. №2. S. 33–44.
14. Chekunov I.P. Kinetika formirovaniya payanykh soedineniy stalnykh uzlov kompozitsionnymi pripoyami [Kinetics of forming of sweated connections of steel nodes composition solders] // Svarochnoe proizvodstvo. 1998. №2. S. 21–24.
2. Miflig D.M., Levin M.D. Almaznye fasonnye roliki dlya shlifovaniya arkhitekturnykh izdeliy iz mramora i granita [Diamond shaped rollers for grinding of architectural products from marble and granite] // Instumentalniy svit. 1997. №2. S. 12.
3. Almaznye fasonnye roliki dlya shlifovaniya kamnya proizvodstva «ALKON BEVERS» [Diamond shaped rollers for grinding of stone of production "ALKON BEVERS"] // Instumentalniy svit. 2002. №2. S. 8.
4. Diamond tools for the stone industry. Diamant Boart, 2008. 43 p.
5. Trenker A., Seidemann H. High-vacuum brazing of diamond tools // Industrial Diamond Review. 2002. Vol. 62 (1). P. 49–51.
6. Lee C.H., Ham J.O., Song M.S., Lee C.H. The interfacial reaction between diamond grit and Ni-based brazing filler metal // Materials transactions. 2007. Vol. 48 (4). P. 889–891.
7. Sposob polucheniya abrazivnogo instrumenta iz sverkhtverdykh materialov [Way of receiving abrasive tool from superhard materials]: pat. 2457935 Ros. Federatsiya; opubl. 10.08.12. Byul. №22.
8. Sokolov E.G., Artemev V.P., Kozachenko A.D. Formirovanie metallicheskoy svyazki almazno-abrazivnogo instrumenta pri kompozitsionnoy payke [Forming of metal linking of diamond abrasive tool at the composition soldering] // Tekhnologiya metallov. 2012. №12. S. 35–37.
9. Kozachenko A.D., Sokolov E.G. Vliyanie tugoplavkikh napolniteley na protsess kompozitsionnoy payki almazno-abrazivnykh instrumentov [Influence of high-melting fillers on process of the composition soldering of diamond abrasive tools] // Nauchnyy zhurnal KubGAU [Elektronnyy resurs]. 2015. №04 (108). Available at: http://ej.kubagro.ru/2015/04/pdf/59.pdf (accessed: October 10, 2016).
10. Artemev V.P., Sokolov E.G., Kozachenko A.D. Issledovanie vzaimodeystviya kompozitsionnykh pripoev s almazom [Research of interaction of composition solders with diamond] // Metallovedenie i termicheskaya obrabotka metallov. 2013. №6. S. 28–31.
11. Elanskiy G.N. Stroenie i svoystva metallicheskikh rasplavov [Structure and properties metal melts]. M.: Metallurgiya, 1991. 160 s.
12. Yu-Kai Chen, Chia-Ming Hsu, Sinn-Wen Chen, Chih-Ming Chen, Yu-Chih Huang. Phase Equilibria of Sn–Co–Cu Ternary System // Metallurgical and Materials Transactions A. 2012. Vol. 43. Is. 10. P. 3586–3595.
13. Khodakov G.S. Reologiya suspenziy. Teoriya fazovogo techeniya i ee eksperimentalnoe obosnovanie [Rheology of suspensions. Theory of phase current and its experimental justification] // Rossiyskiy khimicheskiy zhurnal. 2003. T. XLVII. №2. S. 33–44.
14. Chekunov I.P. Kinetika formirovaniya payanykh soedineniy stalnykh uzlov kompozitsionnymi pripoyami [Kinetics of forming of sweated connections of steel nodes composition solders] // Svarochnoe proizvodstvo. 1998. №2. S. 21–24.
6.
УДК 629.7.018.4
Nuzhnyy G.A.1, Gulina I.V.1
Research of long-term action of permanent load and corrosion environment on fracture toughness constructional aluminum alloys
Method of research of kinetics of destruction metallic material by long-term action of permanent load and corrosion environment based on specimen of new type was worked out. This specimen excel specimen of standard ASTM Е1681 in functional capabilities that intended for threshold valuation of stress intensity factor at fixed crack opening by bolt and may was exhibited on exposition in any corrosion or aggressive environment and also have the opportunity to definition of applied tensile load to specimen in testing. Testing of specimens of slab constructional aluminum alloys 1163-Т и V95p.c.-Т2 was carried out. Paradoxical fact of growth of conventional stress intensity factor by propagation of corrosion crack was determined that was conditioned by change of topography of ruptured zone.
Keywords: fracture toughness, corrosion environment, crack
Reference List
1. Cherepanov G.P. Mekhanika khrupkogo razrusheniya [Mechanics of brittle destruction] // Izhevsk: IKI, 2012. 872 s.
2. Muskhelishvili N.I. Nekotorye osnovnye zadachi matematicheskoy teorii uprugosti [Some main objectives of the mathematical theory of elasticity]. M.: Nauka, 1966. 708 s.
3. Westergaard H.M. Bearing Pressures and Cracks // Journal of Applied Mechanics. 1939. Vol. 6. P. A49-53.
4. Sedov L.I. Mekhanika sploshnoy sredy [Mechanics of continuous medium]. M.: Nauka, 1973. T. 1. 536 s.
5. Erasov V.S., Nuzhnyj G.A., Grinevich A.V., Terehin A.L. Treshhinostojkost aviacionnyh materialov v processe ispytaniya na ustalost [Crack growth resistance of aviation materials in fatigue testing] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №10. St. 06. Available at: http://www.viam-works.ru (accessed: October 13, 2016).
6. Grinevich A.V., Nuzhnyy G.A., Gulina I.V. Poisk kriteriya korrozionnoy povrezhdaemosti [Search of criterion of corrosion damageability] // Aviatsionnye materialy i tekhnologii. 2014. №S4. S. 29–33. DOI: 10.18577/2071-9140-2014-0-s4-29-33.
7. Kablov E.N., Startsev O.V. Fundamentalnye i prikladnye issledovaniya korrozii i stareniya materialov v klimaticheskih usloviyah (obzor) [The basic and applied research in the field of corrosion and ageing of materials in natural environments (review)] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
8. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
9. Kablov E.N. Korrozija ili zhizn [Corrosion or life] // Nauka i zhizn. 2012. №11. S. 16–21.
10. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Kvalifikatsionnye ispytaniya i issledovaniya prochnosti aviatsionnyh materialov [Qualification tests and researches of durability of aviation materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
11. Grinevich A.V., Lutsenko A.N., Karimova S.A. Raschetnye harakteristiki metallicheskih materialov s uchetom vlazhnosti [The design characteristic of metallic materials taking into account the humidity] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №7. St. 10. Available at: http://www.viam-works.ru (accessed: October 13, 2016). DOI: 10.18577/2307-6046-2014-0-7-10-10.
12. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
13. Zhilikov V.P., Karimova S.A., Leshko S.S., Chesnokov D.V. Issledovanie dinamiki korrozii alyuminievyh splavov pri ispytanii v kamere solevogo tumana (KST) [Research of dynamics of corrosion of aluminum alloys when testing in the salt spray chamber (SSC)] // Aviacionnye materialy i tehnologii. 2012. №4. S. 18–22.
14. Kurs M.G., Karimova S.A. Naturno-uskorennye ispytaniya: osobennosti metodiki i sposoby ocenki korrozionnyh harakteristik alyuminievyh splavov [Salt-accelerated outdoor corrosion testing: methodology and evaluation of corrosion susceptibility of aluminum alloy] // Aviacionnye materialy i tehnologii. 2014. №1. S. 51–57.
15. Erasov V.S., Mitrakov O.V., Shvets S.M., Lavrov A.V. Vyrashchivanie iskhodnoy treshchiny pri ispytanii na vyazkost razrusheniya (treshchinostoykost) [Cultivation of initial crack at destruction viscosity test (crack resistance)] // Aviatsionnye materialy i tekhnologii. 2014. №S4. S. 55–59. DOI: 10.18577/2071-9140-2014-0-s4-55-59.
2. Muskhelishvili N.I. Nekotorye osnovnye zadachi matematicheskoy teorii uprugosti [Some main objectives of the mathematical theory of elasticity]. M.: Nauka, 1966. 708 s.
3. Westergaard H.M. Bearing Pressures and Cracks // Journal of Applied Mechanics. 1939. Vol. 6. P. A49-53.
4. Sedov L.I. Mekhanika sploshnoy sredy [Mechanics of continuous medium]. M.: Nauka, 1973. T. 1. 536 s.
5. Erasov V.S., Nuzhnyj G.A., Grinevich A.V., Terehin A.L. Treshhinostojkost aviacionnyh materialov v processe ispytaniya na ustalost [Crack growth resistance of aviation materials in fatigue testing] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №10. St. 06. Available at: http://www.viam-works.ru (accessed: October 13, 2016).
6. Grinevich A.V., Nuzhnyy G.A., Gulina I.V. Poisk kriteriya korrozionnoy povrezhdaemosti [Search of criterion of corrosion damageability] // Aviatsionnye materialy i tekhnologii. 2014. №S4. S. 29–33. DOI: 10.18577/2071-9140-2014-0-s4-29-33.
7. Kablov E.N., Startsev O.V. Fundamentalnye i prikladnye issledovaniya korrozii i stareniya materialov v klimaticheskih usloviyah (obzor) [The basic and applied research in the field of corrosion and ageing of materials in natural environments (review)] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
8. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
9. Kablov E.N. Korrozija ili zhizn [Corrosion or life] // Nauka i zhizn. 2012. №11. S. 16–21.
10. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Kvalifikatsionnye ispytaniya i issledovaniya prochnosti aviatsionnyh materialov [Qualification tests and researches of durability of aviation materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
11. Grinevich A.V., Lutsenko A.N., Karimova S.A. Raschetnye harakteristiki metallicheskih materialov s uchetom vlazhnosti [The design characteristic of metallic materials taking into account the humidity] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №7. St. 10. Available at: http://www.viam-works.ru (accessed: October 13, 2016). DOI: 10.18577/2307-6046-2014-0-7-10-10.
12. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
13. Zhilikov V.P., Karimova S.A., Leshko S.S., Chesnokov D.V. Issledovanie dinamiki korrozii alyuminievyh splavov pri ispytanii v kamere solevogo tumana (KST) [Research of dynamics of corrosion of aluminum alloys when testing in the salt spray chamber (SSC)] // Aviacionnye materialy i tehnologii. 2012. №4. S. 18–22.
14. Kurs M.G., Karimova S.A. Naturno-uskorennye ispytaniya: osobennosti metodiki i sposoby ocenki korrozionnyh harakteristik alyuminievyh splavov [Salt-accelerated outdoor corrosion testing: methodology and evaluation of corrosion susceptibility of aluminum alloy] // Aviacionnye materialy i tehnologii. 2014. №1. S. 51–57.
15. Erasov V.S., Mitrakov O.V., Shvets S.M., Lavrov A.V. Vyrashchivanie iskhodnoy treshchiny pri ispytanii na vyazkost razrusheniya (treshchinostoykost) [Cultivation of initial crack at destruction viscosity test (crack resistance)] // Aviatsionnye materialy i tekhnologii. 2014. №S4. S. 55–59. DOI: 10.18577/2071-9140-2014-0-s4-55-59.
7.
category: Functional and smart materials
УДК 621.186.4
Butakov V.V.1
Features of receiving flexible heatinsulating material
The article considers the process of production a flexible insulation material method of forming from water slurries. Hypothesized the relationship parameters of the material structure and its resistance to stretching and bending resistance. A new method of homogenization of water slurry is suggested. The article compares the proposed method with the traditional method of homogenization using a blade mixer. This work has allowed to confirm the hypothesis a more flexible material with the increase of average length of the fibers in the material.
Keywords: heat insulation, flexible fibrous material, minimum bend radius
Reference List
1. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
2. Dospekhi dlya Burana. Materialy i tekhnologii VIAM dlya MKS «Energiya–Buran» / pod obshch. red. E.N. Kablova [Armor for the Buran. Materials and VIAM technologies for ISS of «Energiya–Buran»]. M.: Nauka i zhizn, 2013. 128 s.
3. Kablov E.N. Konstruktsionnye i funktsionalnye materialy – osnova ekonomicheskogo i nauchno-tekhnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
4. Ivahnenko Yu.A., Babashov V.G., Zimichev A.M., Tinyakova E.V. Vysokotemperaturnye teploizolyacionnye i teplozashhitnye materialy na osnove volokon tugoplavkih soedinenij [High-temperature heatinsulating and heat-protective materials on the basis of fibers of high-melting connections] // Aviacionnye materialy i tehnologii. 2012. №S. S. 380–386.
5. Grashchenkov D.V., Shchetanov B.V., Tinyakova E.V., Shcheglova T.M. O vozmozhnosti ispolzovaniya kvartsevogo volokna v kachestve svyazuyushchego pri poluchenii legkovesnogo teplozashchitnogo materiala na osnove volokon Al2O3 [About possibility of use of quartz fiber as lightweight heat-protective material binding at receiving on the basis of Al2O3 fibers] // Aviacionnye materialy i tehnologii. 2011. №4. S. 8‒14.
6. Barbotko S.L. Pozharobezopasnost aviacionnyh materialov [Fire safety of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 431–439.
7. Zimichev A.M., Soloveva E.P. Volokno dioksida tsirkoniya dlya vysokotemperaturnogo primeneniya (obzor) [Zirconia fiber for high temperature application (review)] // Aviacionnye materialy i tehnologii. 2014. №3. S. 55–61. DOI: 10.18577/2071-9140-2014-03-55-61.
8. Babashov V.G., Varrik N.M. Vysokotemperaturnyj gibkij voloknistyj teploizolyacionnyj material [High-temperature flexible fibrous insulation material] // Trudy VIAM :elektron. nauch.-tehnich. zhurn. 2015. №1. St. 03. Available at: http://viam-works.ru (accessed: July 27, 2016). DOI: 10.18577/2307-6046-2015-0-1-3-3.
9. Varrik N.M. Termostojkie volokna i teplozvukoizolyacionnye ognezashhitnye materialy [Heat-resistant fibers and heat and sound insulating fireproof materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 07. Available at: http://viam-works.ru (accessed: July 27, 2016). DOI: 10.18577/2307-6046-2014-0-6-7-7.
10. Lugovoy A.A., Babashov V.G., Karpov Yu.V. Temperaturoprovodnost gradientnogo teploizolyatsionnogo materiala [The thermal diffusivity of the gradientthermal insulation material] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №2. St. 02. Available at: http://viam-works.ru (accessed: July 27, 2016). DOI: 10.18577/2307-6046-2014-0-2-2-2.
11. Ivakhnenko Yu.A., Varrik N.M. Materialy dlya vysokotemperaturnykh uplotneniy (obzor) [Materials for high-temperature sealants (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2015. №6. St. 02. Available at: http://viam-works.ru (accessed: July 27, 2016). DOI: 10.18577/2307-6046-2015-0-6-2-2.
12. Ivakhnenko Yu.A., Babashov V.G., Basargin O.V., Butakov V.V. Model povedeniya voloknistogo materiala pri izgibe [Model of behavior of fibrous material at bend] // Vse materialy. Enciklopedicheskiy spravochnik. 2012. №12. S. 12–15.
13. Babashov V.G., Butakov V.V., Basargin O.V., Nikitina V.Yu., Shcheglova T.M. Otsenka anizotropii materiala VTI-16 putem sopostavleniya prochnosti pri rastyazhenii obrazcov, vyrezannyh v prodolnom i poperechnom napravlenii [The estimation of VTI-16 anisotropy by comparison tensile strength of the samples, cut out in the longitudinal and cross direction] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №7. St. 09. Available at: http://viam-works.ru (accessed: July 27, 2016). DOI: 10.18577/2307-6046-2015-0-7-9-9.
14. Kolyshev S.G., Basargin O.V., Butakov V.V. Eksperimenty po opredeleniyu prochnosti pri rastyazhenii obraztsov iz legkovesnykh gibkikh voloknistykh materialov [Experiments by determination of durability at stretching of samples from lightweight flexible fibrous materials] // Vse materialy. Entsiklopedicheskiy spravochnik. 2014. №5. S. 8–11.
15. Duka A.V. Razrabotka tekhnologii usovershenstvovanykh kvartsevykh TZM na osnove razvitiya printsipov strukturoobrazovaniya voloknistykh pulp: avtoref. dis. kand. tekhn. nauk [Development of technology of advanced quartz TZM on the basis of development of principles of structurization of fibrous pulps: thesis of Cand. Tech. Sci.]. M.: VIAM, 1989. 22 s.
16. Sposob polucheniya voloknistogo teploizolyatsionnogo materiala: pat. 2553870 Ros. Federatsiya [Way of receiving fibrous heatinsulating material: pat. 2553870 Rus. Federation]; opubl. 25.05.15.
2. Dospekhi dlya Burana. Materialy i tekhnologii VIAM dlya MKS «Energiya–Buran» / pod obshch. red. E.N. Kablova [Armor for the Buran. Materials and VIAM technologies for ISS of «Energiya–Buran»]. M.: Nauka i zhizn, 2013. 128 s.
3. Kablov E.N. Konstruktsionnye i funktsionalnye materialy – osnova ekonomicheskogo i nauchno-tekhnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
4. Ivahnenko Yu.A., Babashov V.G., Zimichev A.M., Tinyakova E.V. Vysokotemperaturnye teploizolyacionnye i teplozashhitnye materialy na osnove volokon tugoplavkih soedinenij [High-temperature heatinsulating and heat-protective materials on the basis of fibers of high-melting connections] // Aviacionnye materialy i tehnologii. 2012. №S. S. 380–386.
5. Grashchenkov D.V., Shchetanov B.V., Tinyakova E.V., Shcheglova T.M. O vozmozhnosti ispolzovaniya kvartsevogo volokna v kachestve svyazuyushchego pri poluchenii legkovesnogo teplozashchitnogo materiala na osnove volokon Al2O3 [About possibility of use of quartz fiber as lightweight heat-protective material binding at receiving on the basis of Al2O3 fibers] // Aviacionnye materialy i tehnologii. 2011. №4. S. 8‒14.
6. Barbotko S.L. Pozharobezopasnost aviacionnyh materialov [Fire safety of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 431–439.
7. Zimichev A.M., Soloveva E.P. Volokno dioksida tsirkoniya dlya vysokotemperaturnogo primeneniya (obzor) [Zirconia fiber for high temperature application (review)] // Aviacionnye materialy i tehnologii. 2014. №3. S. 55–61. DOI: 10.18577/2071-9140-2014-03-55-61.
8. Babashov V.G., Varrik N.M. Vysokotemperaturnyj gibkij voloknistyj teploizolyacionnyj material [High-temperature flexible fibrous insulation material] // Trudy VIAM :elektron. nauch.-tehnich. zhurn. 2015. №1. St. 03. Available at: http://viam-works.ru (accessed: July 27, 2016). DOI: 10.18577/2307-6046-2015-0-1-3-3.
9. Varrik N.M. Termostojkie volokna i teplozvukoizolyacionnye ognezashhitnye materialy [Heat-resistant fibers and heat and sound insulating fireproof materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 07. Available at: http://viam-works.ru (accessed: July 27, 2016). DOI: 10.18577/2307-6046-2014-0-6-7-7.
10. Lugovoy A.A., Babashov V.G., Karpov Yu.V. Temperaturoprovodnost gradientnogo teploizolyatsionnogo materiala [The thermal diffusivity of the gradientthermal insulation material] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №2. St. 02. Available at: http://viam-works.ru (accessed: July 27, 2016). DOI: 10.18577/2307-6046-2014-0-2-2-2.
11. Ivakhnenko Yu.A., Varrik N.M. Materialy dlya vysokotemperaturnykh uplotneniy (obzor) [Materials for high-temperature sealants (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2015. №6. St. 02. Available at: http://viam-works.ru (accessed: July 27, 2016). DOI: 10.18577/2307-6046-2015-0-6-2-2.
12. Ivakhnenko Yu.A., Babashov V.G., Basargin O.V., Butakov V.V. Model povedeniya voloknistogo materiala pri izgibe [Model of behavior of fibrous material at bend] // Vse materialy. Enciklopedicheskiy spravochnik. 2012. №12. S. 12–15.
13. Babashov V.G., Butakov V.V., Basargin O.V., Nikitina V.Yu., Shcheglova T.M. Otsenka anizotropii materiala VTI-16 putem sopostavleniya prochnosti pri rastyazhenii obrazcov, vyrezannyh v prodolnom i poperechnom napravlenii [The estimation of VTI-16 anisotropy by comparison tensile strength of the samples, cut out in the longitudinal and cross direction] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №7. St. 09. Available at: http://viam-works.ru (accessed: July 27, 2016). DOI: 10.18577/2307-6046-2015-0-7-9-9.
14. Kolyshev S.G., Basargin O.V., Butakov V.V. Eksperimenty po opredeleniyu prochnosti pri rastyazhenii obraztsov iz legkovesnykh gibkikh voloknistykh materialov [Experiments by determination of durability at stretching of samples from lightweight flexible fibrous materials] // Vse materialy. Entsiklopedicheskiy spravochnik. 2014. №5. S. 8–11.
15. Duka A.V. Razrabotka tekhnologii usovershenstvovanykh kvartsevykh TZM na osnove razvitiya printsipov strukturoobrazovaniya voloknistykh pulp: avtoref. dis. kand. tekhn. nauk [Development of technology of advanced quartz TZM on the basis of development of principles of structurization of fibrous pulps: thesis of Cand. Tech. Sci.]. M.: VIAM, 1989. 22 s.
16. Sposob polucheniya voloknistogo teploizolyatsionnogo materiala: pat. 2553870 Ros. Federatsiya [Way of receiving fibrous heatinsulating material: pat. 2553870 Rus. Federation]; opubl. 25.05.15.
8.
category: Nanomaterials
УДК 678.8
Shvetsov E.P.1, Grebeneva T.A.1
The polymeric nanomodified composite material for the construction industry
Developed nano-modified polymer binder and fiberglass based on it is characterized by high strength characteristics and essential performance properties of a highly developed manufacturability binder, using nanodisperse modifiers, as well as manufacturing technology PCM.
Work is executed within implementation of the complex scientific direction 13.1. «Binding for polymeric and composite materials of constructional and special purpose» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
Keywords: nano-modified polymer binder, nano-modified fiberglass composite material, building construction
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33
2. Mikhaylin Yu.A. Konstruktsionnye polimernye kompozitsionnye materialy [Constructional polymeric composite materials]. SPb.: NOT, 2008. 820 s.
3. Chursova L.V., Kim M.A., Panina N.N., Shvetsov E.P. Nanomodificirovannoe epoksidnoe svyazuyushhee dlya stroitelnoj industrii [Nanomodified epoxy binder for the construction industry] // Aviacionnye materialy i tehnologii. 2013. №1. S. 40–47.
4. Chursova L.V., Raskutin A.E., Gurevich Ya.M., Panina N.N. Svyazuyushchee kholodnogo otverzhdeniya dlya stroitelnoy industrii [Binding cold curing for the construction industry] // Klei. Germetiki. Tekhnologii. 2012. №5. S. 40–44.
5. Gunyaev G.M., Kablov E.N., Aleksashin V.M. Modifitsirovanie konstruktsionnykh ugleplastikov uglerodnymi nanochastitsami [Modifying constructional ugleplastikov carbon nanoparticles] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 5–11.
6. Kablov E.N., Kondrashov S.V., Yurkov G.Yu. Perspektivy ispolzovaniya uglerodsoderzhashchikh nanochastits v svyazuyushchikh dlya polimernykh kompozitsionnykh materialov [Perspectives of use of carbon-containing nanoparticles in binding for polymeric composite materials] // Rossiyskie nanotekhnologii. 2013. T. 8. №3–4. S. 24–42.
7. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozitsionnykh materialov aviatsionnogo naznacheniya. I. Mekhanizmy stareniya [Climatic aging of composite materials of aviation assignment. I. Aging mechanisms] // Deformatsiya i razrushenie materialov. 2010. №11. S. 19–27.
8. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svyazujushhie dlya perspektivnyh metodov izgotovleniya konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
9. Timoshkov P.N., Kogan D.I. Sovremennye tehnologii proizvodstva polimernyh kompozicionnyh materialov novogo pokoleniya [Modern production technologies of polymeric composite materials of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 07. Available at: http://www.viam-works.ru (accessed: 19 April, 2015).
10. Lesovik V.S., Strokova V.V. O razvitii nauchnogo napravleniya «Nanosistemy v stroitelnom materialovedenii» [About development of the scientific direction «Nanosystems in construction materials science»] // Stroitelnye materialy. 2006. №9. S. 18–20.
11. Akatenkov R.V., Kondrashov S.V., Fokin A.S., Marahovskij P.S. Osobennosti formirovaniya polimernyh setok pri otverzhdenii jepoksidnyh oligomerov s funkcializovannymi nanotrubkami [Features of forming of polymeric grids when curing epoxy oligomers with functionalizing nanotubes] // Aviacionnye materialy i tehnologii. 2011. №2. S. 31–37.
12. Poluboyarov V.A., Korotaeva Z.A., Belkova T.B., Goncharov A.I., Trofimov A.S., Selyutin G.E. Vliyanie modifitsirovaniya polimerov nanodispersnymi keramicheskimi chastitsami na svoystva nanokompozitov [Influence of modifying of polymers by nanodispersion ceramic particles on properties of nanocomposites] // Materialovedenie. 2011. №10. S. 42–47.
13. Kotov Yu.A. Elektricheskiy vzryv provoloki – metod polucheniya slaboagregirovannykh nanoporoshkov [Electric explosion of wire – method of receiving poorly aggregated nanopowders] // Rossiyskie nanotekhnologii. 2009. T. 4. №1–2. S. 40–49.
14. Storozhenko P.A., Guseynov Sh.L., Malashin S.I. Nanodispersnye poroshki: metody polucheniya i sposoby prakticheskogo primeneniya [Nanodisperse powders: methods of receiving and ways of practical application] // Rossiyskie nanotekhnologii. 2009. T. 4. №1–2. S. 27–39.
15. Ivanov V.V. Nanoporoshki nuzhny i vostrebovany sovremennym rynkom [Nanopowders are necessary and demanded by the modern market] // Rossiyskie nanotekhnologii. 2009. T. 4. №1–2. S. 22–26.
16. Litvinov V.B., Toksanbaev M.S., Kobets L.P., Deev I.S., Ryabovol D.Yu., Nelyub V.A. Kinetika otverzhdeniya epoksidnykh svyazuyushchikh i mikrostruktura polimernykh matrits v uglepla-stikakh na ikh osnove [Kinetics of curing epoxy binding and microstructure of polymeric matrixes in ugleplastikakh on their basis] // Materialovedenie. 2011. №7. S. 49–56.
17. Deev I.S., Kobets L.P. Issledovanie mikrostruktury i osobennostey razrusheniya epoksidnykh polimerov i kompozitsionnykh materialov na ikh osnove [Research of microstructure and features of destruction of epoxy polymers and composite materials on their basis] // Materialovedenie. 2010. №5. S. 8–16.
18. Deev I.S., Kobets L.P. «Torsionnoe» razrushenie epoksidnykh polimerov i matrits v polimernykh kompozitsionnykh materialakh [«Torsionnoye» destruction of epoxy polymers and matrixes in polymeric composite materials] // Deformatsiya i razrushenie materialov i nanomaterialov: sb. mater. Mezhdunar. konf. M.: IMET RAN, 2011. S. 596–597.
2. Mikhaylin Yu.A. Konstruktsionnye polimernye kompozitsionnye materialy [Constructional polymeric composite materials]. SPb.: NOT, 2008. 820 s.
3. Chursova L.V., Kim M.A., Panina N.N., Shvetsov E.P. Nanomodificirovannoe epoksidnoe svyazuyushhee dlya stroitelnoj industrii [Nanomodified epoxy binder for the construction industry] // Aviacionnye materialy i tehnologii. 2013. №1. S. 40–47.
4. Chursova L.V., Raskutin A.E., Gurevich Ya.M., Panina N.N. Svyazuyushchee kholodnogo otverzhdeniya dlya stroitelnoy industrii [Binding cold curing for the construction industry] // Klei. Germetiki. Tekhnologii. 2012. №5. S. 40–44.
5. Gunyaev G.M., Kablov E.N., Aleksashin V.M. Modifitsirovanie konstruktsionnykh ugleplastikov uglerodnymi nanochastitsami [Modifying constructional ugleplastikov carbon nanoparticles] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 5–11.
6. Kablov E.N., Kondrashov S.V., Yurkov G.Yu. Perspektivy ispolzovaniya uglerodsoderzhashchikh nanochastits v svyazuyushchikh dlya polimernykh kompozitsionnykh materialov [Perspectives of use of carbon-containing nanoparticles in binding for polymeric composite materials] // Rossiyskie nanotekhnologii. 2013. T. 8. №3–4. S. 24–42.
7. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozitsionnykh materialov aviatsionnogo naznacheniya. I. Mekhanizmy stareniya [Climatic aging of composite materials of aviation assignment. I. Aging mechanisms] // Deformatsiya i razrushenie materialov. 2010. №11. S. 19–27.
8. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svyazujushhie dlya perspektivnyh metodov izgotovleniya konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
9. Timoshkov P.N., Kogan D.I. Sovremennye tehnologii proizvodstva polimernyh kompozicionnyh materialov novogo pokoleniya [Modern production technologies of polymeric composite materials of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 07. Available at: http://www.viam-works.ru (accessed: 19 April, 2015).
10. Lesovik V.S., Strokova V.V. O razvitii nauchnogo napravleniya «Nanosistemy v stroitelnom materialovedenii» [About development of the scientific direction «Nanosystems in construction materials science»] // Stroitelnye materialy. 2006. №9. S. 18–20.
11. Akatenkov R.V., Kondrashov S.V., Fokin A.S., Marahovskij P.S. Osobennosti formirovaniya polimernyh setok pri otverzhdenii jepoksidnyh oligomerov s funkcializovannymi nanotrubkami [Features of forming of polymeric grids when curing epoxy oligomers with functionalizing nanotubes] // Aviacionnye materialy i tehnologii. 2011. №2. S. 31–37.
12. Poluboyarov V.A., Korotaeva Z.A., Belkova T.B., Goncharov A.I., Trofimov A.S., Selyutin G.E. Vliyanie modifitsirovaniya polimerov nanodispersnymi keramicheskimi chastitsami na svoystva nanokompozitov [Influence of modifying of polymers by nanodispersion ceramic particles on properties of nanocomposites] // Materialovedenie. 2011. №10. S. 42–47.
13. Kotov Yu.A. Elektricheskiy vzryv provoloki – metod polucheniya slaboagregirovannykh nanoporoshkov [Electric explosion of wire – method of receiving poorly aggregated nanopowders] // Rossiyskie nanotekhnologii. 2009. T. 4. №1–2. S. 40–49.
14. Storozhenko P.A., Guseynov Sh.L., Malashin S.I. Nanodispersnye poroshki: metody polucheniya i sposoby prakticheskogo primeneniya [Nanodisperse powders: methods of receiving and ways of practical application] // Rossiyskie nanotekhnologii. 2009. T. 4. №1–2. S. 27–39.
15. Ivanov V.V. Nanoporoshki nuzhny i vostrebovany sovremennym rynkom [Nanopowders are necessary and demanded by the modern market] // Rossiyskie nanotekhnologii. 2009. T. 4. №1–2. S. 22–26.
16. Litvinov V.B., Toksanbaev M.S., Kobets L.P., Deev I.S., Ryabovol D.Yu., Nelyub V.A. Kinetika otverzhdeniya epoksidnykh svyazuyushchikh i mikrostruktura polimernykh matrits v uglepla-stikakh na ikh osnove [Kinetics of curing epoxy binding and microstructure of polymeric matrixes in ugleplastikakh on their basis] // Materialovedenie. 2011. №7. S. 49–56.
17. Deev I.S., Kobets L.P. Issledovanie mikrostruktury i osobennostey razrusheniya epoksidnykh polimerov i kompozitsionnykh materialov na ikh osnove [Research of microstructure and features of destruction of epoxy polymers and composite materials on their basis] // Materialovedenie. 2010. №5. S. 8–16.
18. Deev I.S., Kobets L.P. «Torsionnoe» razrushenie epoksidnykh polimerov i matrits v polimernykh kompozitsionnykh materialakh [«Torsionnoye» destruction of epoxy polymers and matrixes in polymeric composite materials] // Deformatsiya i razrushenie materialov i nanomaterialov: sb. mater. Mezhdunar. konf. M.: IMET RAN, 2011. S. 596–597.
9.
category: Protection against climatic and microbiological degradations
УДК 678.019.32:539.37
Dobrodushnova V.I.1, Kozlova M.V.1
The influence of hygrothermal and climatic aging on the thermoplastics deformation patterns
The effect of hygrothermal and climatic aging on the deformation patterns of thermoplastics with linear (organic glass brand СО-120) and rarely cross-linked (organic glass brand BOC-2) structures was investigated. It has been shown that the thermos-moisture-saturation for 132 days at 70°C and humidity of 85% leads to a marked uniaxial tension curves decrease at room temperature and temperatures equal to 0,95 the softening temperature of the respective materials. At the same time exposure to moderately warm climate conditions for 12 months leads to strain curves decrease only at elevated temperatures.
This work was performed as part of the comprehensive scientific areas 2.2. «Qualification and materials research» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
Keywords: organic glass, strain curve, rubber-like elastic strain, hygrothermal aging, climatic aging
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative de-velopments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Sentyurin E.G., Mekalina I.V., Trigub T.S., Klimova S.F. Modifitsirovannye organicheskie stekla dlya perspektivnoy aviatsionnoy tekhniki [The modified organic glasses for perspective aviation engineering]// Vse materialy. Entsiklopedicheskiy spravochnik. 2012. № 2. S. 2–4.
3. Gorelov Yu.P., Chmykhova T.G., Shalaginova I.A. Novye organicheskie stekla dlya aviastroeniya [New organic glasses for aircraft industry] // Plasticheskie massy. 2009. №12. C. 20–22.
4. Kablov E.N. Materialy i khimicheskie tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
5. Kharitonov G.M., Yakovlev N.O., Mekalina I.V. Vliyanie fiziko-mekhanicheskikh kharakteristik orgstekol na napryazheniya v samoletnom osteklenii pri aerodinamicheskom nagreve [Influence of physicomechanical characteristics of organic glasses on tension in aircraft glazing at aerodynamic heating] // Aviatsionnye materialy i tekhnologii. 2015. №S1. S. 56–60. DOI: 10.18577/2071-9140-2015-0-S1-56-60.
6. Yakovlev N.O., Erasov V.S., Sentyurin E.G., Kharitonov G.M. Kompleks metodik otsenki fiziko-mekhanicheskikh kharakteristik organicheskikh stekol s uchetom vliyaniya vysokoelasticheskoy deformatsii [Complex of techniques of assessment of physicomechanical characteristics of organic glasses taking into account high-elastic deformation influence] // Vse materialy. Entsiklopedicheskiy spravochnik. 2013. №10. S. 6–11.
7. Yakovlev N.O. Issledovanie i opisanie relaksacionnogo povedeniya polimernyh materialov (obzor) [Study and description of relaxation behavior of polymers (review)] //Aviacionnye materialy i tehnologii. 2014. №S4. S. 50–54. DOI: 10.18577/2071-9140-2014-0-S4-50-54.
8. Yakovlev N.O., Mekalina I.V., Sentyurin E.G. Peculiarities of resilient highly elastic deformation of organic glasses with linear and rarely cross-linked structure // Inorganic Materials: Applied Research. 2015. Т. 6. №4. С. 336–342.
9. Kablov E.N. Konstruktsionnye i funktsionalnye materialy – osnova ekonomicheskogo i nauchno-tekhnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
10. Mekalina I.V., Sentyurin E.G., Klimova S.F., Bogatov V.A. Novye «serebrostojkie» organicheskie stekla [New «silver resistant» organic glasses] // Aviacionnye materialy i tehnologii. 2012. №4. S. 45–48.
11. Kablov E.N. Khimiya v aviatsionnom materialovedenii [Chemistry in aviation materials science] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 3–4.
12. Bogatov V.A., Trigub T.S., Mekalina I.V., Ayzatulina M.K. Otsenka ekspluatatsionnykh kharakteristik novykh teplostoykikh organicheskikh stekol VOS-1 i VOS-2 [Assessment of utilization properties of new heatresistant organic glasses VOS-1 and VOS-2] // Aviatsionnye materialy i tekhnologii. 2010. №1. S. 21–26.
13. Kablov E.N., Yakovlev N.O., Kharitonov G.M., Mekalina I.V. Osobennosti relaksa-tsionnogo povedeniya polimernykh stekol na osnove polimetilmetakrilata i ikh uchet pri prochnostnom raschete aviatsionnogo ostekleniya [Features of relaxation behavior of polymeric glasses on basis polimetilmetakrilata and their accounting at strength calculation of aviation glazing] // Vse materialy. Entsiklopedicheskiy spravochnik. 2016. №9. S. 7–12.
14. Yakovlev N.O. Vliyanie vysokoelasticheskoy deformatsii na napryazhenno-deformirovannoe sostoyanie aviatsionnykh organicheskikh stekol: avtoref. dis. kand. tekhn. nauk [Influence of high-elastic deformation on intense the deformed condition of aviation organic glasses: thesis cand. Sc. (Tech.)]. M.: VIAM, 2013. 24 s.
15. Yakovlev N.O., Erasov V.S., Sentyurin E.G., Haritonov G.M. Relaksaciya ostatochnyh napryazhenij v aviacionnyh organicheskih steklah pri poslepoletnoj stoyanke samoleta [Relaxation of residual stresses in aviation organic glasses at postflight parking of airplane] //Aviacionnye materialy i tehnologii. 2012. №2 (23). S. 66–69.
16. Yakovlev N.O. Otsenka granits oblasti relaksatsionnogo povedeniya organicheskogo stekla na osnove polimetilmetakrilata [Assessment of borders of area of relaxation behavior of organic glass on basis polimetilmetakrilata] // Plasticheskie massy. 2015. №1–2. S. 36–39.
17. Yakovlev N.O. Relaksatsionnoe povedenie organicheskogo stekla na osnove polimetilmetakrilata [Relaxation behavior of organic glass on basis polimetilmetakrilata] // Zavodskaya laboratoriya. Diagnostika materialov. 2015. T. 81. №5. S. 57–60.
2. Sentyurin E.G., Mekalina I.V., Trigub T.S., Klimova S.F. Modifitsirovannye organicheskie stekla dlya perspektivnoy aviatsionnoy tekhniki [The modified organic glasses for perspective aviation engineering]// Vse materialy. Entsiklopedicheskiy spravochnik. 2012. № 2. S. 2–4.
3. Gorelov Yu.P., Chmykhova T.G., Shalaginova I.A. Novye organicheskie stekla dlya aviastroeniya [New organic glasses for aircraft industry] // Plasticheskie massy. 2009. №12. C. 20–22.
4. Kablov E.N. Materialy i khimicheskie tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
5. Kharitonov G.M., Yakovlev N.O., Mekalina I.V. Vliyanie fiziko-mekhanicheskikh kharakteristik orgstekol na napryazheniya v samoletnom osteklenii pri aerodinamicheskom nagreve [Influence of physicomechanical characteristics of organic glasses on tension in aircraft glazing at aerodynamic heating] // Aviatsionnye materialy i tekhnologii. 2015. №S1. S. 56–60. DOI: 10.18577/2071-9140-2015-0-S1-56-60.
6. Yakovlev N.O., Erasov V.S., Sentyurin E.G., Kharitonov G.M. Kompleks metodik otsenki fiziko-mekhanicheskikh kharakteristik organicheskikh stekol s uchetom vliyaniya vysokoelasticheskoy deformatsii [Complex of techniques of assessment of physicomechanical characteristics of organic glasses taking into account high-elastic deformation influence] // Vse materialy. Entsiklopedicheskiy spravochnik. 2013. №10. S. 6–11.
7. Yakovlev N.O. Issledovanie i opisanie relaksacionnogo povedeniya polimernyh materialov (obzor) [Study and description of relaxation behavior of polymers (review)] //Aviacionnye materialy i tehnologii. 2014. №S4. S. 50–54. DOI: 10.18577/2071-9140-2014-0-S4-50-54.
8. Yakovlev N.O., Mekalina I.V., Sentyurin E.G. Peculiarities of resilient highly elastic deformation of organic glasses with linear and rarely cross-linked structure // Inorganic Materials: Applied Research. 2015. Т. 6. №4. С. 336–342.
9. Kablov E.N. Konstruktsionnye i funktsionalnye materialy – osnova ekonomicheskogo i nauchno-tekhnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
10. Mekalina I.V., Sentyurin E.G., Klimova S.F., Bogatov V.A. Novye «serebrostojkie» organicheskie stekla [New «silver resistant» organic glasses] // Aviacionnye materialy i tehnologii. 2012. №4. S. 45–48.
11. Kablov E.N. Khimiya v aviatsionnom materialovedenii [Chemistry in aviation materials science] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 3–4.
12. Bogatov V.A., Trigub T.S., Mekalina I.V., Ayzatulina M.K. Otsenka ekspluatatsionnykh kharakteristik novykh teplostoykikh organicheskikh stekol VOS-1 i VOS-2 [Assessment of utilization properties of new heatresistant organic glasses VOS-1 and VOS-2] // Aviatsionnye materialy i tekhnologii. 2010. №1. S. 21–26.
13. Kablov E.N., Yakovlev N.O., Kharitonov G.M., Mekalina I.V. Osobennosti relaksa-tsionnogo povedeniya polimernykh stekol na osnove polimetilmetakrilata i ikh uchet pri prochnostnom raschete aviatsionnogo ostekleniya [Features of relaxation behavior of polymeric glasses on basis polimetilmetakrilata and their accounting at strength calculation of aviation glazing] // Vse materialy. Entsiklopedicheskiy spravochnik. 2016. №9. S. 7–12.
14. Yakovlev N.O. Vliyanie vysokoelasticheskoy deformatsii na napryazhenno-deformirovannoe sostoyanie aviatsionnykh organicheskikh stekol: avtoref. dis. kand. tekhn. nauk [Influence of high-elastic deformation on intense the deformed condition of aviation organic glasses: thesis cand. Sc. (Tech.)]. M.: VIAM, 2013. 24 s.
15. Yakovlev N.O., Erasov V.S., Sentyurin E.G., Haritonov G.M. Relaksaciya ostatochnyh napryazhenij v aviacionnyh organicheskih steklah pri poslepoletnoj stoyanke samoleta [Relaxation of residual stresses in aviation organic glasses at postflight parking of airplane] //Aviacionnye materialy i tehnologii. 2012. №2 (23). S. 66–69.
16. Yakovlev N.O. Otsenka granits oblasti relaksatsionnogo povedeniya organicheskogo stekla na osnove polimetilmetakrilata [Assessment of borders of area of relaxation behavior of organic glass on basis polimetilmetakrilata] // Plasticheskie massy. 2015. №1–2. S. 36–39.
17. Yakovlev N.O. Relaksatsionnoe povedenie organicheskogo stekla na osnove polimetilmetakrilata [Relaxation behavior of organic glass on basis polimetilmetakrilata] // Zavodskaya laboratoriya. Diagnostika materialov. 2015. T. 81. №5. S. 57–60.