Articles

1.
УДК 669.245
Volkov A.M.1, Vostrikov A.V.1
Nucleation and growth of grains in P/M Ni-base superalloys for disks application
The processes of grain boundaries formation in PM Ni-base superalloys are reviewed in the article. The powder are produced by various methods namely gas atomization and plasma rotate electrode process. It was shown that the grain size after hot isostatic pressing (HIP) is about 1/3 from initial powder size. This approximately ratio practically does not depend on powder production method.
The work is executed within implementation of the complex scientific direction 10.2. «Isothermal deformation on air of new generation of heterophase difficult deformable hot strength alloys» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
Keywords: disk billet, jet-engine, powder, Ni-base superalloy, microstructure, grain, recrystallization, HIP.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Entsiklopedicheskiy spravochnik. 2008. №3. S. 2–14.
3. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatatsii aviatsionnoy tekhniki [Quality control of materials – security accreditation of operation of aviation engineering] // Aviatsionnye materialy i tekhnologii. 2001. №1. S. 3–8.
4. Kablov E.N. Nauka kak otrasl ekonomiki [Science as economy industry] // Nauka i zhizn. 2009. №10. S. 7–8.
5. Gorelik S.S. Rekristallizatsiia metallov i splavov [Recrystallization of metals and alloys]. M.: Metallurgiia, 1978. 568 s.
6. Fizicheskoe metallovedenie v 3 t. [Physical metallurgical science in 3vol.] M.: Metallurgiia, 1987. T. 3: Fiziko-mekhanicheskie svoistva metallov i splavov / pod red. R.U. Kana, P.T. Khaazena. 663 s.
7. Bronfin M.B., Kishkin S.T., Nikulina I.V., Sorokina L.P., Usikov M.P. Dislokatsii i zharoprochnost [Dislocations and thermal stability] // Aviatsionnye materialy na rubezhe XX–XXI vekov. M.: VIAM, 1994. S. 452–460.
8. Portnoi V.K., Alalykin A.A., Novikov I.I. Formirovanie ultramelkozernistoi struktury v zharoprochnykh nikelevykh splavakh pri goriachei deformatsii [Forming of ultrafine grained structure in heat resisting nickel alloys at hot deformation] // Metallovedenie i obrabotka tsvetnykh splavov. M.: Nauka, 1992. S. 98–110.
9. Bakradze M.M., Ovsepyan S.V., Shugaev S.A., Letnikov M.N. Vliyanie rezhimov zakalki na strukturu i svojstva shtampovok diskov iz zharoprochnogo nikelevogo splava EK151-ID [The influence of quenching on structure and properties nickel-based superalloy EK151-ID forgings] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №9. St. 01. Available at: http://www.viam-works.ru (accessed: February 10, 2017).
10. Galkina V.G., Lomberg B.S. Vliianie mikrostruktury na kharakteristiki vysokozharoprochnogo splava EP962 [Influence of microstructure on EP962 high-hot strength alloy characteristics] // Aviatsionnaia promyshlennost. 1985. №4. S. 42–45.
11. Lomberg B.S., Gorin V.A., Gerasimov D.E., Rakhmanov N.S., Stepanov V.P. Vysokozharoprochnye deformiruemye nikelevye splavy dlia diskov GTD i tekhnologiia ikh proizvodstva [High-heat resisting deformable nickel alloys for disks GTЕ and technology of their production] // Tekhnologiia legkikh splavov. 1993. №7–8. S. 54–63.
12. Lomberg B.S., Bakradze M.M., Chabina E.B., Filonova E.V. Vzaimosvyaz struktury i svojstv vysokozharoprochnykh nikelevykh splavov dlya diskov gazoturbinnykh dvigatelej [Interrelation of structure and properties of high-heat resisting nickel alloys for disks of gas turbine engines] // Aviacionnye materialy i tekhnologii. 2011. №2. S. 25–30.
13. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaya innovacionnaya tehnologiya izotermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharoprochnyh splavov [Complex innovative technology of isothermal punching on air in mode of superplasticity of disks from superhot strength alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.
14. Garibov G.S., Grits N.M., Fedorenko E.A. i dr. Issledovanie vozmozhnosti izgotovleniia zagotovok diskov GTD s peremennoi strukturoi i funktsionalno-gradientnymi svoistvami iz granul raznykh fraktsii [Research of possibility of manufacturing of preparations of disks GTЕ with variable structure and functional and gradient properties from granules of different fractions] // Tekhnologiia legkikh splavov. 2011. №4. S. 41–50.
15. Egorov D.A., Garibov G.S., Grits N.M. i dr. Issledovanie materiala zagotovok diskov s peremennoi strukturoi iz granul zharoprochnykh nikelevykh splavov, izgotovlennykh po tekhnologii priamogo GIP [Research of material of preparations of disks with variable structure from granules of the heat resisting nickel alloys made on technologies of direct НIP] // Tekhnologiia legkikh splavov. 2014. №3. S. 67–77.
16. Garibov G.S., Grits N.M., Volkov A.M. i dr. Metallovedcheskie aspekty proizvodstva zagotovok diskov iz granuliruemykh zharoprochnykh nikelevykh splavov metodom GIP [Metallovedchesky aspects of production of preparations of disks from granulated heat resisting nickel alloys НIP method] // Tekhnologiia legkikh splavov. 2014. №3. S. 54–59.
17. Vostrikov A.V., Garibov G.S., Ber L.B., Shliapin S.D. Issledovanie fiziko-mekhanicheskikh svoistv granul iz novogo vysokoprochnogo nikelevogo splava, izgotovlennykh metodom PREP [Research of physicomechanical properties of granules from the new high-strength nickel alloy, made by the PREP method] // Tekhnologiia legkikh splavov. 2013. №2. S. 69–75.
18. Kablov D.E., Shompolov E.G., Sidorov V.V., Goriunov A.V. Vakuumnaia induktsionnaia plavilno-razlivochnaia ustanovka VIM 12 III HMC dlia polucheniia vysokokachestvennykh zharoprochnykh nikelevykh splavov [The vacuum induction melting-pouring installation VIM 12 III HMC for high quality supрeralloys nickel base production] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2014. №5. St. 05. Available at: http://www.viam-works.ru (accessed: February 10, 2017). DOI: 10.18577/2307-6046-2014-0-5-5-5.
19. Evgenov A.G., Nerush S.V., Vasilenko S.A. Poluchenie i oprobovanie melkodispersnogo metallicheskogo poroshka vysokohromistogo splava na nikelevoj osnove primenitelno k lazernoj LMD-naplavke [The obtaining and testing of the fine-dispersed metal powder of the high-chromium alloy on nickel-base for laser metal deposition] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №5. St. 04. Available at: http://www.viam-works.ru (accessed: February 10, 2017). DOI: 10.18577/2307-6046-2014-0-5-4-4.
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Entsiklopedicheskiy spravochnik. 2008. №3. S. 2–14.
3. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatatsii aviatsionnoy tekhniki [Quality control of materials – security accreditation of operation of aviation engineering] // Aviatsionnye materialy i tekhnologii. 2001. №1. S. 3–8.
4. Kablov E.N. Nauka kak otrasl ekonomiki [Science as economy industry] // Nauka i zhizn. 2009. №10. S. 7–8.
5. Gorelik S.S. Rekristallizatsiia metallov i splavov [Recrystallization of metals and alloys]. M.: Metallurgiia, 1978. 568 s.
6. Fizicheskoe metallovedenie v 3 t. [Physical metallurgical science in 3vol.] M.: Metallurgiia, 1987. T. 3: Fiziko-mekhanicheskie svoistva metallov i splavov / pod red. R.U. Kana, P.T. Khaazena. 663 s.
7. Bronfin M.B., Kishkin S.T., Nikulina I.V., Sorokina L.P., Usikov M.P. Dislokatsii i zharoprochnost [Dislocations and thermal stability] // Aviatsionnye materialy na rubezhe XX–XXI vekov. M.: VIAM, 1994. S. 452–460.
8. Portnoi V.K., Alalykin A.A., Novikov I.I. Formirovanie ultramelkozernistoi struktury v zharoprochnykh nikelevykh splavakh pri goriachei deformatsii [Forming of ultrafine grained structure in heat resisting nickel alloys at hot deformation] // Metallovedenie i obrabotka tsvetnykh splavov. M.: Nauka, 1992. S. 98–110.
9. Bakradze M.M., Ovsepyan S.V., Shugaev S.A., Letnikov M.N. Vliyanie rezhimov zakalki na strukturu i svojstva shtampovok diskov iz zharoprochnogo nikelevogo splava EK151-ID [The influence of quenching on structure and properties nickel-based superalloy EK151-ID forgings] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №9. St. 01. Available at: http://www.viam-works.ru (accessed: February 10, 2017).
10. Galkina V.G., Lomberg B.S. Vliianie mikrostruktury na kharakteristiki vysokozharoprochnogo splava EP962 [Influence of microstructure on EP962 high-hot strength alloy characteristics] // Aviatsionnaia promyshlennost. 1985. №4. S. 42–45.
11. Lomberg B.S., Gorin V.A., Gerasimov D.E., Rakhmanov N.S., Stepanov V.P. Vysokozharoprochnye deformiruemye nikelevye splavy dlia diskov GTD i tekhnologiia ikh proizvodstva [High-heat resisting deformable nickel alloys for disks GTЕ and technology of their production] // Tekhnologiia legkikh splavov. 1993. №7–8. S. 54–63.
12. Lomberg B.S., Bakradze M.M., Chabina E.B., Filonova E.V. Vzaimosvyaz struktury i svojstv vysokozharoprochnykh nikelevykh splavov dlya diskov gazoturbinnykh dvigatelej [Interrelation of structure and properties of high-heat resisting nickel alloys for disks of gas turbine engines] // Aviacionnye materialy i tekhnologii. 2011. №2. S. 25–30.
13. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaya innovacionnaya tehnologiya izotermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharoprochnyh splavov [Complex innovative technology of isothermal punching on air in mode of superplasticity of disks from superhot strength alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.
14. Garibov G.S., Grits N.M., Fedorenko E.A. i dr. Issledovanie vozmozhnosti izgotovleniia zagotovok diskov GTD s peremennoi strukturoi i funktsionalno-gradientnymi svoistvami iz granul raznykh fraktsii [Research of possibility of manufacturing of preparations of disks GTЕ with variable structure and functional and gradient properties from granules of different fractions] // Tekhnologiia legkikh splavov. 2011. №4. S. 41–50.
15. Egorov D.A., Garibov G.S., Grits N.M. i dr. Issledovanie materiala zagotovok diskov s peremennoi strukturoi iz granul zharoprochnykh nikelevykh splavov, izgotovlennykh po tekhnologii priamogo GIP [Research of material of preparations of disks with variable structure from granules of the heat resisting nickel alloys made on technologies of direct НIP] // Tekhnologiia legkikh splavov. 2014. №3. S. 67–77.
16. Garibov G.S., Grits N.M., Volkov A.M. i dr. Metallovedcheskie aspekty proizvodstva zagotovok diskov iz granuliruemykh zharoprochnykh nikelevykh splavov metodom GIP [Metallovedchesky aspects of production of preparations of disks from granulated heat resisting nickel alloys НIP method] // Tekhnologiia legkikh splavov. 2014. №3. S. 54–59.
17. Vostrikov A.V., Garibov G.S., Ber L.B., Shliapin S.D. Issledovanie fiziko-mekhanicheskikh svoistv granul iz novogo vysokoprochnogo nikelevogo splava, izgotovlennykh metodom PREP [Research of physicomechanical properties of granules from the new high-strength nickel alloy, made by the PREP method] // Tekhnologiia legkikh splavov. 2013. №2. S. 69–75.
18. Kablov D.E., Shompolov E.G., Sidorov V.V., Goriunov A.V. Vakuumnaia induktsionnaia plavilno-razlivochnaia ustanovka VIM 12 III HMC dlia polucheniia vysokokachestvennykh zharoprochnykh nikelevykh splavov [The vacuum induction melting-pouring installation VIM 12 III HMC for high quality supрeralloys nickel base production] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2014. №5. St. 05. Available at: http://www.viam-works.ru (accessed: February 10, 2017). DOI: 10.18577/2307-6046-2014-0-5-5-5.
19. Evgenov A.G., Nerush S.V., Vasilenko S.A. Poluchenie i oprobovanie melkodispersnogo metallicheskogo poroshka vysokohromistogo splava na nikelevoj osnove primenitelno k lazernoj LMD-naplavke [The obtaining and testing of the fine-dispersed metal powder of the high-chromium alloy on nickel-base for laser metal deposition] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №5. St. 04. Available at: http://www.viam-works.ru (accessed: February 10, 2017). DOI: 10.18577/2307-6046-2014-0-5-4-4.
2.
УДК 621.98.043:669.245
Sidorov S.A.1, Bazhenov A.R.1, Chebotareva E.S.2
Development of the theory and practice of production of punchings of disks of from gas turbine engines of heterophase nickel-based superalloys
The article presents information about development of technological processes used for manufacturing discs of gas turbine engines connected with the increasing complexity of the chemical and phase composition of nickel-based superalloys.
The article shows efficiency of hot deformation processes under solvus temperature provided preliminary thermomechanical treatment which provides high technological ductility of workpiece.
Keywords: gas turbine engines discs, nickel-based superalloys, deformation, isothermal forging, hot isostatic pressing.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Tumanov A.T., Shalin R.E., Starkov D.P. Razvitie aviatsionnoi nauki i tekhniki v SSSR. Istoriko-tekhnicheskie ocherki [Development of aviation science and equipment in the USSR. Historical and technical sketches] // M.: Nauka, 1980. S. 332–334.
3. Livanov V.A., Nuss P.A., Fainbron S.M., Kashcheeva A.V. Vliianie termicheskoi obrabotki na prokatyvaemost slitkov splava ZhS6KP [Influence of thermal processing on rollability of ingots of alloy ZhS6KP] // Tekhnologiia legkikh splavov, №2, 1972. S. 115–118.
4. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
5. Lomberg B.S., Gorin V.A., Gerasimov D.E. i dr. Vysokozharoprochnye deformiruemye nikelevye splavy dlia diskov GTD i tekhnologiia ikh proizvodstva [High-heat resisting deformable nickel alloys for disks GTЕ and technology of their production] // Tekhnologiia legkikh splavov. 1993. №7–8. S. 54–63.
6. Skliarov N.M. Put dlinoiu v 70 let – ot drevesiny do supermaterialov [Way of 70 years – from wood to supermaterials] / pod obshch. red. E.N. Kablova // M.: MISiS–VIAM, 2002. S. 317–319.
7. Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi [History of aviation materials science. VIAM – 80 years: years and people] / pod obshh. red. E.N. Kablova. M.: VIAM, 2012. S. 245–248.
8. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennykh zharoprochnykh materialov i tekhnologii ikh proizvodstva dlia aviatsionnogo dvigatelestroeniia [Creation of modern heat resisting materials and technologies of their production for aviation engine building] // Krylya Rodiny. 2012. №3–4. S. 34–38.
9. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaya innovacionnaya tehnologiya izotermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharoprochnyh splavov [Complex innovative technology of isothermal punching on air in mode of superplasticity of disks from superhot strength alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.
10. Ponomarenko D.A., Skugorev A.V., Sidorov S.A., Strokov V.V. Tekhnologicheskie vozmozhnosti spetsializirovannykh izotermicheskikh pressov siloi 6,3 i 16 MN v proizvodstve detalei aviatsionno-kosmicheskogo naznacheniia [Technological capabilities specialized isothermal pressov with a force of 6,3 and 16 MN in production of details of aerospace assignment] // KShP OMD. 2015. №9. S. 36–41.
11. Razuvaev E.I., Bubnov M.V., Grigoreva G.A., Sidorov S.A. Razvitie i prakticheskoe primenenie fiziko-khimicheskoi teorii v protsessakh obrabotki davleniem aviatsionnykh stalei i splavov [Development and practical application of the physical and chemical theory in processes of processing by pressure aviation steels and alloys] // Novosti materialovedeniia. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2015. №1. St. 07. Available at: http://www.materialsnews.ru (accessed: February 23, 2017).
12. Razuvaev E.I., Bubnov M.V., Bakradze M.M., Sidorov S.A. GIP i deformatsiia granulirovannykh zharoprochnykh nikelevykh splavov [HIP and deformation of the granulated heat resisting nickel alloys] // Aviatsionnye materialy i tekhnologii. 2016. №S1. S. 80–86. DOI: 10.18577/2071-9140-2016-0-S1-80-86.
13. Eisen W.B. PM – Past, Present and Future: report // Crucible Research. Рittsburg, 1996. P. 23–27.
14. Eisen W.B. The Current Status of as-HIP Superalloy in Aircraft Engines // Proceeding of International Techno-Business Conference on the Superalloys Industry «Superalloys for Gas Turbine». Tampa: Florida, 1998. P. 73–84.
15. Malley D.R., Stulga I.E., Ondercin R.I. Production of Near Net Shapes by Hot Isostatic Pressing of Super-alloys Powder // National Powder Metallurgy Conference Proceedings. 1983. 3 8. P. 229–246.
2. Tumanov A.T., Shalin R.E., Starkov D.P. Razvitie aviatsionnoi nauki i tekhniki v SSSR. Istoriko-tekhnicheskie ocherki [Development of aviation science and equipment in the USSR. Historical and technical sketches] // M.: Nauka, 1980. S. 332–334.
3. Livanov V.A., Nuss P.A., Fainbron S.M., Kashcheeva A.V. Vliianie termicheskoi obrabotki na prokatyvaemost slitkov splava ZhS6KP [Influence of thermal processing on rollability of ingots of alloy ZhS6KP] // Tekhnologiia legkikh splavov, №2, 1972. S. 115–118.
4. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
5. Lomberg B.S., Gorin V.A., Gerasimov D.E. i dr. Vysokozharoprochnye deformiruemye nikelevye splavy dlia diskov GTD i tekhnologiia ikh proizvodstva [High-heat resisting deformable nickel alloys for disks GTЕ and technology of their production] // Tekhnologiia legkikh splavov. 1993. №7–8. S. 54–63.
6. Skliarov N.M. Put dlinoiu v 70 let – ot drevesiny do supermaterialov [Way of 70 years – from wood to supermaterials] / pod obshch. red. E.N. Kablova // M.: MISiS–VIAM, 2002. S. 317–319.
7. Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi [History of aviation materials science. VIAM – 80 years: years and people] / pod obshh. red. E.N. Kablova. M.: VIAM, 2012. S. 245–248.
8. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennykh zharoprochnykh materialov i tekhnologii ikh proizvodstva dlia aviatsionnogo dvigatelestroeniia [Creation of modern heat resisting materials and technologies of their production for aviation engine building] // Krylya Rodiny. 2012. №3–4. S. 34–38.
9. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaya innovacionnaya tehnologiya izotermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharoprochnyh splavov [Complex innovative technology of isothermal punching on air in mode of superplasticity of disks from superhot strength alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.
10. Ponomarenko D.A., Skugorev A.V., Sidorov S.A., Strokov V.V. Tekhnologicheskie vozmozhnosti spetsializirovannykh izotermicheskikh pressov siloi 6,3 i 16 MN v proizvodstve detalei aviatsionno-kosmicheskogo naznacheniia [Technological capabilities specialized isothermal pressov with a force of 6,3 and 16 MN in production of details of aerospace assignment] // KShP OMD. 2015. №9. S. 36–41.
11. Razuvaev E.I., Bubnov M.V., Grigoreva G.A., Sidorov S.A. Razvitie i prakticheskoe primenenie fiziko-khimicheskoi teorii v protsessakh obrabotki davleniem aviatsionnykh stalei i splavov [Development and practical application of the physical and chemical theory in processes of processing by pressure aviation steels and alloys] // Novosti materialovedeniia. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2015. №1. St. 07. Available at: http://www.materialsnews.ru (accessed: February 23, 2017).
12. Razuvaev E.I., Bubnov M.V., Bakradze M.M., Sidorov S.A. GIP i deformatsiia granulirovannykh zharoprochnykh nikelevykh splavov [HIP and deformation of the granulated heat resisting nickel alloys] // Aviatsionnye materialy i tekhnologii. 2016. №S1. S. 80–86. DOI: 10.18577/2071-9140-2016-0-S1-80-86.
13. Eisen W.B. PM – Past, Present and Future: report // Crucible Research. Рittsburg, 1996. P. 23–27.
14. Eisen W.B. The Current Status of as-HIP Superalloy in Aircraft Engines // Proceeding of International Techno-Business Conference on the Superalloys Industry «Superalloys for Gas Turbine». Tampa: Florida, 1998. P. 73–84.
15. Malley D.R., Stulga I.E., Ondercin R.I. Production of Near Net Shapes by Hot Isostatic Pressing of Super-alloys Powder // National Powder Metallurgy Conference Proceedings. 1983. 3 8. P. 229–246.
3.
category: Heat-resistant materials
УДК 666.7
Ivakhnenko Yu.A.1, Varrik N.M.1
Fibrous gradient ceramic material
The development of modern engineering and industrial technologies aims to develop new materials that can meet ever more severe conditions. One of these conditions is the ability to work at high temperatures, so one of the important materials is the high temperature insulation. Requirements for the insulation materials include first high thermal properties, namely high temperature resistance and low coefficient of thermal conductivity; and the minimum specific weight, chemical resistance, mechanical strength, elasticity and other performance properties relevant to their technological and environmental safety. In this work we try to create a high-temperature thermal insulation material for insulation of metal energy device cases, operating at temperatures above 1500°С. The use of structural ceramic materials in conjunction with metal parts requires the use of a material that has the ability to absorb strain caused by the difference between the coefficients of thermal expansion constructi
Keywords: oxide fiber, gradient material, heat insulation.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
3. Grashchenkov D.V., Shchetanov B.V., Tinyakova E.V., Shcheglova T.M. O vozmozhnosti ispolzovaniya kvartsevogo volokna v kachestve svyazuyushchego pri poluchenii legkovesnogo teplozashchitnogo materiala na osnove volokon Al2O3 [About possibility of use of quartz fiber as lightweight heat-protective material binding at receiving on the basis of Al2O3 fibers] // Aviacionnye materialy i tehnologii. 2011. №4. S. 8‒14.
4. Ivahnenko Yu.A., Babashov V.G., Zimichev A.M., Tinyakova E.V. Vysokotemperaturnye teploizolyacionnye i teplozashhitnye materialy na osnove volokon tugoplavkih soedinenij [High-temperature heatinsulating and heat-protective materials on the basis of fibers of high-melting connections] // Aviacionnye materialy i tehnologii. 2012. №S. S. 380–386.
5. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: March 21, 2017).
6. Kablov E.N. Razrabotki VIAM dlya gazoturbinnykh dvigateley i ustanovok [Development of VIAM for gas turbine engines and installations] // Krylya Rodiny. 2010. №4. S. 31–33.
7. Hybrid ceramic material composed of insulating and structural ceramic layers: pat. 6733907 USA; field 26.09.01; publ. 11.05.04.
8. Flexible ceramic-metal insulation composite and method of making: pat. 5744252 USA; field 11.06.93; publ. 28.04.98.
9. Thermal gradient resistant ceramic composite: pat. 6251815 USA; field 18.01.00; publ. 26.06.01.
10. Sposob polucheniia voloknistogo keramicheskogo materiala [Way of receiving fibrous ceramic material]: pat. 2466966 Ros. Federatsiia; zaiavl. 11.05.11; opubl. 20.11.12, Biul. №32. 8 s.
11. Aviatsionnye materialy: spravochnik v 13 t. [Aviation materials: the directory in 13 vol.] M.: VIAM. 2011. T. 9: Teplozashchitnye, teploizoliatsionnye i kompozitsionnye materialy, vysokotemperaturnye nemetallicheskie pokrytiia. S. 31–37.
12. Babashov V.G., Varrik N.M. Vysokotemperaturnyj gibkij voloknistyj teploizolyacionnyj material [High-temperature flexible fibrous insulation material] // Trudy VIAM :elektron. nauch.-tehnich. zhurn. 2015. №1. St. 03. Available at: http://viam-works.ru (accessed: March 21, 2017).
13. Ivakhnenko Iu.A., Kuzmin V.V., Bespalov A.S. Sostoianie i perspektivy razvitiia teplo-zvukoizoliatsionnykh pozharobezopasnykh materialov [Condition and perspectives of development of heatsound-proof fireproof materials] // Problemy bezopasnosti poletov, №7. 2014. S. 27–30.
14. Zimichev A.M., Varrik N.M. K voprosu primeneniya diskretnyh volokon iz tugoplavkih oksidov dlya formirovaniya serdechnika termostojkih uplotnitelnyh shnurov [On the issue of application of discrete fibers of refractory oxides to form cores of heat-resistant sealing cords] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 07. Available at: http://www.viam-works.ru (accessed: March 21, 2017). DOI: 10.18577/2307-6046-2015-0-2-7-7.
15. Maksimov V.G., Varrik N.M. Vysokotemperaturnaia keramicheskaia teploizoliatsiia (obzor) [High-temperature ceramic heat insulation (review)] // Novosti materialovedeniia. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2015. №6. St. 09. Available at: http://www.materialsnews.ru (accessed: March 21, 2017).
2. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
3. Grashchenkov D.V., Shchetanov B.V., Tinyakova E.V., Shcheglova T.M. O vozmozhnosti ispolzovaniya kvartsevogo volokna v kachestve svyazuyushchego pri poluchenii legkovesnogo teplozashchitnogo materiala na osnove volokon Al2O3 [About possibility of use of quartz fiber as lightweight heat-protective material binding at receiving on the basis of Al2O3 fibers] // Aviacionnye materialy i tehnologii. 2011. №4. S. 8‒14.
4. Ivahnenko Yu.A., Babashov V.G., Zimichev A.M., Tinyakova E.V. Vysokotemperaturnye teploizolyacionnye i teplozashhitnye materialy na osnove volokon tugoplavkih soedinenij [High-temperature heatinsulating and heat-protective materials on the basis of fibers of high-melting connections] // Aviacionnye materialy i tehnologii. 2012. №S. S. 380–386.
5. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: March 21, 2017).
6. Kablov E.N. Razrabotki VIAM dlya gazoturbinnykh dvigateley i ustanovok [Development of VIAM for gas turbine engines and installations] // Krylya Rodiny. 2010. №4. S. 31–33.
7. Hybrid ceramic material composed of insulating and structural ceramic layers: pat. 6733907 USA; field 26.09.01; publ. 11.05.04.
8. Flexible ceramic-metal insulation composite and method of making: pat. 5744252 USA; field 11.06.93; publ. 28.04.98.
9. Thermal gradient resistant ceramic composite: pat. 6251815 USA; field 18.01.00; publ. 26.06.01.
10. Sposob polucheniia voloknistogo keramicheskogo materiala [Way of receiving fibrous ceramic material]: pat. 2466966 Ros. Federatsiia; zaiavl. 11.05.11; opubl. 20.11.12, Biul. №32. 8 s.
11. Aviatsionnye materialy: spravochnik v 13 t. [Aviation materials: the directory in 13 vol.] M.: VIAM. 2011. T. 9: Teplozashchitnye, teploizoliatsionnye i kompozitsionnye materialy, vysokotemperaturnye nemetallicheskie pokrytiia. S. 31–37.
12. Babashov V.G., Varrik N.M. Vysokotemperaturnyj gibkij voloknistyj teploizolyacionnyj material [High-temperature flexible fibrous insulation material] // Trudy VIAM :elektron. nauch.-tehnich. zhurn. 2015. №1. St. 03. Available at: http://viam-works.ru (accessed: March 21, 2017).
13. Ivakhnenko Iu.A., Kuzmin V.V., Bespalov A.S. Sostoianie i perspektivy razvitiia teplo-zvukoizoliatsionnykh pozharobezopasnykh materialov [Condition and perspectives of development of heatsound-proof fireproof materials] // Problemy bezopasnosti poletov, №7. 2014. S. 27–30.
14. Zimichev A.M., Varrik N.M. K voprosu primeneniya diskretnyh volokon iz tugoplavkih oksidov dlya formirovaniya serdechnika termostojkih uplotnitelnyh shnurov [On the issue of application of discrete fibers of refractory oxides to form cores of heat-resistant sealing cords] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 07. Available at: http://www.viam-works.ru (accessed: March 21, 2017). DOI: 10.18577/2307-6046-2015-0-2-7-7.
15. Maksimov V.G., Varrik N.M. Vysokotemperaturnaia keramicheskaia teploizoliatsiia (obzor) [High-temperature ceramic heat insulation (review)] // Novosti materialovedeniia. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2015. №6. St. 09. Available at: http://www.materialsnews.ru (accessed: March 21, 2017).
4.
category: Composite materials
УДК 667.6
Aleksashin V.M.1, Derkov D.S.1
The study of the kinetics curing and vapor permeability modified fluorine-containing oligomers and conformal coatings on their based
The present paper is applied an empirical approach in kinetic studies. For paint coatings a detailed studying of the reaction mechanism is less important than optimizing the process or determining the influence of various factors on its speed, and using empirical dependencies will make it possible to obtain numerical characteristics quickly and easily.
Thermo-analytical studies of the curing process of modified fluorine-containing oligomeric compositions and conformal coatings on their basis were carried out. The curing process of the varnish composition of VL-21 was investigated by differential scanning calorimetry. A two-stage scheme of the curing reaction of the VL-21 composition is shown. Diffusion permeability of polymer films is investigated.
Keywords: varnish compositions, fluorine-containing oligomers, conformal coatings, kinetics of curing, diffusion permeability.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Buznik V.M. Sostoianie otechestvennoi khimii ftorpolimerov i vozmozhnye perspektivy razvitiia [Condition of domestic chemistry of fluoropolymers and possible perspectives of development] // Ros. khim. zhurn. 2008. T. 52. № 3. S. 7–12.
3. Buznik V.M. Sverhgidrofobnye materialy na osnove ftorpolimerov [Superwaterproof materials on the basis of fluoropolymers] //Aviation materials and technologies] //Aviacionnye materialy i tehnologii. 2013. №1. S. 29–34.
4. Kablov E.N. Materialy i khimicheskie tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
5. Kablov E.N. Aviatsionnoe materialovedenie v XXI veke. Perspektivy i zadachi [Aviation materials science in the XXI century. Perspectives and tasks] // Aviatsionnye materialy. Izbrannye trudy VIAM 1932–2002. M.: MISIS–VIAM. 2002. S. 23–47.
6. Nefedov N.I., Semenova L.V., Onosova L.A. Issledovanie protsessov otverzhdeniia ftorpolimernykh kompozitsii [Research of processes of curing of ftorpolimerny compositions] // Vse materialy. Entsiklopedicheskii spravochnik. 2013. №11. S. 23–27.
7. Nefedov N.I., Salikhov T.R., Melnikov D.A. Issledovanie protsessa otverzhdeniia ftorsoderzhashchikh oligomerov i konformnykh pokrytii na ikh osnove [Research of process of curing of fluorinated oligomers and conformal coverings on their basis] // Lakokrasochnye materialy i ikh primenenie. 2015. №1–2. S. 62–65.
8. Beider E.Ya., Donskoi A.A., Zhelezina G.F., Kondrashov E.K. et al. An experience of using fluoropolymer materials in aviation engineering // Russian Journal of General Chemistry. 2009. T. 79. №3. P. 548–564.
9. Antiufeeva N.V., Aleksashin V.M., Stoliankov Iu.V. Sovremennoe metodicheskoe obespechenie termoanaliticheskikh issledovanii polimernykh kompozitov i prepregov [Modern methodical ensuring thermoanalytical researches of polymeric composites and prepregs] // Kompozity i nanostruktury. 2014. T. 6. №3. S. 176–184.
10. ISO 11357-7:2002. Plastics-Differential scanning calorimetry (DSC). Part 7: Determination of crystallization kinetics.
11. Meng Z., Yang L., Geng W. et al. Kinetic Study on the Isothermal and Nonisothermal Crystallization of Monoglyceride Organogels // The Scientific World Journal. 2014. Vol. Article ID 149753. 7 p.
12. Zinet M., Refaa Z., Boutaous M. et al. Thermophysical Characterization and Crystallization Kinetics of Semi-Crystalline Polymers // Journal of Modern Physics. 2013. Vol. 4. P. 28–37.
13. Aleksashin V.M., Antiufeeva N.V. Razvitie metodov termicheskogo analiza v issledovaniiakh polimernykh kompozitsionnykh materialov [Development of methods of the thermal analysis in researches of polymeric composite materials] // Aviatsionnye materialy i tekhnologii. 2007. S. 245–249.
14. Kondrashov E.K. Sverkhtonkie vzaimodeistviia i diffuziia v polimerakh [Superthin interactions and diffusion in polymers]. M. Sputnik, 2004. S. 12–20.
15. Nefyodov N.I., Semyonova L.V. Tendencii razvitiya v oblasti konformnyh pokrytij dlya vlagozashhity i elektroizolyacii plat pechatnogo montazha i jelementov radiojelektronnoj apparatury [Development tendencies in the field on conformal coating for the moisture protection and electrical insulation of printed-circuit boards and electronic elements] // Aviacionnye materialy i tehnologii. 2013. №1. S. 50–52.
16. Semenova L.V., Kondrashov E.K. Modifitsirovannyi bromepoksidnyi lak VL-18 dlia zashchity polimernykh kompozitsionnykh materialov [The modified bromine epoxy varnish VL-18 for protection of polymeric composite materials] // Aviatsionnye materialy i tekhnologii. 2010. №1. S. 29–32.
17. Nefedov N.I., Kondrashov E.K., Semenova L.V., Lebedeva T.A. Erozionnostoikie pokrytiia dlia zashchity izdelii iz polimernykh kompozitsionnykh materialov [Erosion-resistant coatings for protection of articles from polymer composite materials] // Aviatsionnye materialy i tekhnologii. 2014. №S3. S. 25–27. DOI: 10.18577/2071-9140-2014-0-s3-25-27.
2. Buznik V.M. Sostoianie otechestvennoi khimii ftorpolimerov i vozmozhnye perspektivy razvitiia [Condition of domestic chemistry of fluoropolymers and possible perspectives of development] // Ros. khim. zhurn. 2008. T. 52. № 3. S. 7–12.
3. Buznik V.M. Sverhgidrofobnye materialy na osnove ftorpolimerov [Superwaterproof materials on the basis of fluoropolymers] //Aviation materials and technologies] //Aviacionnye materialy i tehnologii. 2013. №1. S. 29–34.
4. Kablov E.N. Materialy i khimicheskie tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
5. Kablov E.N. Aviatsionnoe materialovedenie v XXI veke. Perspektivy i zadachi [Aviation materials science in the XXI century. Perspectives and tasks] // Aviatsionnye materialy. Izbrannye trudy VIAM 1932–2002. M.: MISIS–VIAM. 2002. S. 23–47.
6. Nefedov N.I., Semenova L.V., Onosova L.A. Issledovanie protsessov otverzhdeniia ftorpolimernykh kompozitsii [Research of processes of curing of ftorpolimerny compositions] // Vse materialy. Entsiklopedicheskii spravochnik. 2013. №11. S. 23–27.
7. Nefedov N.I., Salikhov T.R., Melnikov D.A. Issledovanie protsessa otverzhdeniia ftorsoderzhashchikh oligomerov i konformnykh pokrytii na ikh osnove [Research of process of curing of fluorinated oligomers and conformal coverings on their basis] // Lakokrasochnye materialy i ikh primenenie. 2015. №1–2. S. 62–65.
8. Beider E.Ya., Donskoi A.A., Zhelezina G.F., Kondrashov E.K. et al. An experience of using fluoropolymer materials in aviation engineering // Russian Journal of General Chemistry. 2009. T. 79. №3. P. 548–564.
9. Antiufeeva N.V., Aleksashin V.M., Stoliankov Iu.V. Sovremennoe metodicheskoe obespechenie termoanaliticheskikh issledovanii polimernykh kompozitov i prepregov [Modern methodical ensuring thermoanalytical researches of polymeric composites and prepregs] // Kompozity i nanostruktury. 2014. T. 6. №3. S. 176–184.
10. ISO 11357-7:2002. Plastics-Differential scanning calorimetry (DSC). Part 7: Determination of crystallization kinetics.
11. Meng Z., Yang L., Geng W. et al. Kinetic Study on the Isothermal and Nonisothermal Crystallization of Monoglyceride Organogels // The Scientific World Journal. 2014. Vol. Article ID 149753. 7 p.
12. Zinet M., Refaa Z., Boutaous M. et al. Thermophysical Characterization and Crystallization Kinetics of Semi-Crystalline Polymers // Journal of Modern Physics. 2013. Vol. 4. P. 28–37.
13. Aleksashin V.M., Antiufeeva N.V. Razvitie metodov termicheskogo analiza v issledovaniiakh polimernykh kompozitsionnykh materialov [Development of methods of the thermal analysis in researches of polymeric composite materials] // Aviatsionnye materialy i tekhnologii. 2007. S. 245–249.
14. Kondrashov E.K. Sverkhtonkie vzaimodeistviia i diffuziia v polimerakh [Superthin interactions and diffusion in polymers]. M. Sputnik, 2004. S. 12–20.
15. Nefyodov N.I., Semyonova L.V. Tendencii razvitiya v oblasti konformnyh pokrytij dlya vlagozashhity i elektroizolyacii plat pechatnogo montazha i jelementov radiojelektronnoj apparatury [Development tendencies in the field on conformal coating for the moisture protection and electrical insulation of printed-circuit boards and electronic elements] // Aviacionnye materialy i tehnologii. 2013. №1. S. 50–52.
16. Semenova L.V., Kondrashov E.K. Modifitsirovannyi bromepoksidnyi lak VL-18 dlia zashchity polimernykh kompozitsionnykh materialov [The modified bromine epoxy varnish VL-18 for protection of polymeric composite materials] // Aviatsionnye materialy i tekhnologii. 2010. №1. S. 29–32.
17. Nefedov N.I., Kondrashov E.K., Semenova L.V., Lebedeva T.A. Erozionnostoikie pokrytiia dlia zashchity izdelii iz polimernykh kompozitsionnykh materialov [Erosion-resistant coatings for protection of articles from polymer composite materials] // Aviatsionnye materialy i tekhnologii. 2014. №S3. S. 25–27. DOI: 10.18577/2071-9140-2014-0-s3-25-27.
5.
category: Composite materials
УДК 667.621
Chursova L.V.1, Tsybin A.I.1, Grebeneva T.A.1
Matrix for polymeric composite and functional materials.Previous experience, modern state, development prospects
In this work development trends of thermosetting matrix, including previous experience, modern state and development prospects are discussed. The basic requirements for modern matrix, their properties and applications are considered. New promising classes of matrix are presented.
The work is done according to the program of the implementation of a complex direction 13.1. «Binders for polymer and composite materials for construction and special purpose» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
Keywords: epoxy matrix, polyester and vinylester matrix, heterocyclic matrix, phenol-formaldehyde matrix, organometallic and inorganic matrix, polyimides, benzoxazines.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Babin A. N. Svyazujushhie dlya polimernyh kompozicionnyh materialov novogo pokoleniya [Binding for polymeric composite materials of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 11. Available at: http://www.viam-works.ru (accessed: September 15, 2016).
3. Kablov E.N. Khimiya v aviatsionnom materialovedenii [Chemistry in aviation materials science] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 3–4.
4. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Razrabotki FGUP «VIAM» v oblasti rasplavnykh svyazuyushchikh dlya polimernykh kompozitsionnykh materialov [Development of VIAM Federal State Unitary Enterprise in the field of molten binding for polymeric composite materials] // Polimernye materialy i tekhnologii. 2016. T. 2. №2. S. 37–42.
5. Postnova M.V., Postnov V.I. Opyt razvitiya bezavtoklavnyh metodov formovaniya PKM [Development experience out-of-autoclave methods of formation PCM]// Trudy VIAM: ehlektron. nauch.-tekhnich. zhurn. 2014. №4. St. 06. Available at: http://www.viam-works.ru (accessed: September 15, 2016). DOI 10.18577/2307-6046-2014-0-4-6-6.
6. Babin A.N., Guseva M.A., Grebeneva T.A., Tkachuk A.I. Issledovanie reologicheskikh i strukturnykh kharakteristik epoksidnykh sviazuiushchikh, modifitsirovannykh poliizotsianatom [Study of the rheological and structural characteristics of the epoxy resins, modified by polyisocyanate] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №1. St. 11. Available at: http://www.viam-works.ru (accessed: September 15, 2016). DOI: 10.18577/2307-6046-2016-0-1-11-11.
7. Chursova L.V., Grebeneva T.A., Panina N.N., Tsybin A.I. Sviazuiushchie dlia polimernykh kompozitsionnykh materialov stroitelnogo naznacheniia [Binding for polymeric composite materials of construction assignment] // Vse materialy. Entsiklopedicheskii spravochnik. 2015. №8. S. 13–17.
8. Chursova L.V., Kim M.A., Panina N.N., Shvetsov E.P. Nanomodificirovannoe epoksidnoe svyazuyushhee dlya stroitelnoj industrii [Nanomodified epoxy binder for the construction industry] // Aviacionnye materialy i tehnologii. 2013. №1. S. 40–47.
9. Petrovа A.P., Dementyevа L.A., Lukina N.F., Chursova L.V. [Adhesive binders for polymer composite materials based on carbon- and glass fillers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 11. Available at: http://www.viam-works.ru (accessed: September 15, 2016). DOI: 10.18577/2307-6046-2015-0-9-11-11.
10. Shimkin A.A., Ponomarenko S.A., Mukhametov R.R. Issledovanie protsessa otverzhdeniia diftalonitrilnogo sviazuiushchego [Research of process of curing of the diftalonitrilny binding] // Zhurnal prikladnoi khimii. 2016. T. 89. №2. S. 256–264.
11. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
12. Kablov E.N. Aviatsionnoe materialovedenie: itogi i perspektivy [Aviation materials science: re-sults and perspectives] // Vestnik Rossiyskoy akademii nauk. 2002. T. 72. №1. S. 3–12.
2. Babin A. N. Svyazujushhie dlya polimernyh kompozicionnyh materialov novogo pokoleniya [Binding for polymeric composite materials of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 11. Available at: http://www.viam-works.ru (accessed: September 15, 2016).
3. Kablov E.N. Khimiya v aviatsionnom materialovedenii [Chemistry in aviation materials science] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 3–4.
4. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Razrabotki FGUP «VIAM» v oblasti rasplavnykh svyazuyushchikh dlya polimernykh kompozitsionnykh materialov [Development of VIAM Federal State Unitary Enterprise in the field of molten binding for polymeric composite materials] // Polimernye materialy i tekhnologii. 2016. T. 2. №2. S. 37–42.
5. Postnova M.V., Postnov V.I. Opyt razvitiya bezavtoklavnyh metodov formovaniya PKM [Development experience out-of-autoclave methods of formation PCM]// Trudy VIAM: ehlektron. nauch.-tekhnich. zhurn. 2014. №4. St. 06. Available at: http://www.viam-works.ru (accessed: September 15, 2016). DOI 10.18577/2307-6046-2014-0-4-6-6.
6. Babin A.N., Guseva M.A., Grebeneva T.A., Tkachuk A.I. Issledovanie reologicheskikh i strukturnykh kharakteristik epoksidnykh sviazuiushchikh, modifitsirovannykh poliizotsianatom [Study of the rheological and structural characteristics of the epoxy resins, modified by polyisocyanate] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №1. St. 11. Available at: http://www.viam-works.ru (accessed: September 15, 2016). DOI: 10.18577/2307-6046-2016-0-1-11-11.
7. Chursova L.V., Grebeneva T.A., Panina N.N., Tsybin A.I. Sviazuiushchie dlia polimernykh kompozitsionnykh materialov stroitelnogo naznacheniia [Binding for polymeric composite materials of construction assignment] // Vse materialy. Entsiklopedicheskii spravochnik. 2015. №8. S. 13–17.
8. Chursova L.V., Kim M.A., Panina N.N., Shvetsov E.P. Nanomodificirovannoe epoksidnoe svyazuyushhee dlya stroitelnoj industrii [Nanomodified epoxy binder for the construction industry] // Aviacionnye materialy i tehnologii. 2013. №1. S. 40–47.
9. Petrovа A.P., Dementyevа L.A., Lukina N.F., Chursova L.V. [Adhesive binders for polymer composite materials based on carbon- and glass fillers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 11. Available at: http://www.viam-works.ru (accessed: September 15, 2016). DOI: 10.18577/2307-6046-2015-0-9-11-11.
10. Shimkin A.A., Ponomarenko S.A., Mukhametov R.R. Issledovanie protsessa otverzhdeniia diftalonitrilnogo sviazuiushchego [Research of process of curing of the diftalonitrilny binding] // Zhurnal prikladnoi khimii. 2016. T. 89. №2. S. 256–264.
11. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
12. Kablov E.N. Aviatsionnoe materialovedenie: itogi i perspektivy [Aviation materials science: re-sults and perspectives] // Vestnik Rossiyskoy akademii nauk. 2002. T. 72. №1. S. 3–12.
6.
УДК 665.939.5
Petrova A.P.1
Heightening of thermal stability of glue at modification of organosilicone oligomers by carboranes
There are shown data of influence of carborane groups on properties of glue based on hetero-organic oligomers, are shown data of influence of isomer structure of carboranes group and data of influence of structure of siloxane oligomers on thermal stability of аdgesive joint.
The work has been executed by complex scientific direction 15.1. «Мultifunctional gluing systems» («Strategic direction of progress of materials and of refining technology thereof for the period till 2030»)
Keywords: methylphenylsiloxane, methylphenylcarboransiloxan, adhesives systems, thermal stability, thermal destruction, strength characteristics.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
3. Petrova A.P., Lukina N.F., Dementeva L.A., Avdonina I.A., Tiumeneva T.Iu., Zhadova N.S. Klei dlia aviatsionnoi tekhniki [Glues for aviation engineering] // RZhKh. 2010. T. LIV. №1. S. 46–52.
4. Valetskii P.M., Petrova A.P. Polimernye klei na osnove karboransoderzhashchikh soedinenii [Polymeric glues on basis carborane of containing connections] // Klei. Germetiki. Tekhnologii. 2005. №3. S. 2–5.
5. Petrova A.P. Povyshenie termostoikosti kleiashchikh sistem na osnove fenolformaldegidnykh oligomerov pri modifikatsii karboranami [Increasing thermal resistance of the adhesive systems based on phenol-formaldehyde oligomers with modification of the carborane] // Novosti materialovedeniia. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2017. №1. St. 03. Available at: http://www.materialsnews.ru (accessed: March 01, 2017).
6. Petrova A.P. Povyshenie termostoikosti poliuretanovykh kleiashchikh sistem pri modifika-tsii karboranami [Increasing thermal resistance of polyurethane adhesive systems with modification of the carborane] // Novosti materialovedeniia. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2017. №1. St. 04. Available at: http://www.materialsnews.ru (accessed: March 01, 2017).
7. Graims R. Karborany. Per. s angl. [Carboranes. Trans. from Engl.] / pod red. A.F. Zhigacha. M.: Mir, 1974. 264 s.
8. Petrova A.P., Valetskii P.M. Fenolno-kauchukovye karboransoderzhashchie klei s sobstvennym ferromagnetizmom [Phenolic and rubber carborane containing glues with own ferro magnetism] // Klei. Germetiki. Tekhnologii. 2007. №4. S. 6–10.
9. Petrova A.P. Magnitoprovodiashchie kleevye kompozitsii na osnove karboransoderzhashchikh so-edinenii [Magneto carrying-out glue compositions on basis carborane of containing connections] // Klei. Germetiki. Tekhnologii. 2006. №11. S. 3–4.
10. Petrova A.P., Dementeva L.A., Lukina N.F., Anikhovskaia L.I. Plenochnye konstruktsionnye klei [Film constructional glues] // Klei. Germetiki. Tekhnologii. 2014. №10. S. 7–12.
11. Sharova I.A., Petrova A.P. Obzor po materialam mezhdunarodnoj konferencii po kleyam i germetikam (WAC-2012, Franciya) [Review of world adhesive and sealant conference (WAC-2012, France] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №8. St. 06. Available at: http://www.viam-works.ru (accessed: January 19, 2017).
12. Lukina N.F., Dementeva L.A., Petrova A.P., Serezhenkov A.A. Konstrukcionnye i termostojkie klei [Constructional and heat-resistant glues] // Aviacionnye materialy i tehnologii. 2012. №S. S. 328–335.
13. Petrova A.P., Laptev A.B. Fenolno-kauchukovye klei, modifitsirovannye karboranami [The phenolic and rubber glues modified by carboranes] // Klei. Germetiki. Tekhnologii. 2017. №6 (v pechati).
14. Petrova A.P., Donskoi A.A., Chalykh A.E., Shcherbina A.A. Kleiashchie materialy. Germetiki: spravochnik [Gluing materials. Hermetics: directory]. SPb.: Professional, 2008. 589 s.
15. Lukina N.F., Dementeva L.A., Petrova A.P., Tiumeneva T.Iu. Svoistva kleev i kleiashchikh materialov dlia izdelii aviatsionnoi tekhniki [Properties of glues and gluing materials for products of aviation engineering] // Klei. Germetiki. Tekhnologii. 2009. №1. S. 14–24.
2. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
3. Petrova A.P., Lukina N.F., Dementeva L.A., Avdonina I.A., Tiumeneva T.Iu., Zhadova N.S. Klei dlia aviatsionnoi tekhniki [Glues for aviation engineering] // RZhKh. 2010. T. LIV. №1. S. 46–52.
4. Valetskii P.M., Petrova A.P. Polimernye klei na osnove karboransoderzhashchikh soedinenii [Polymeric glues on basis carborane of containing connections] // Klei. Germetiki. Tekhnologii. 2005. №3. S. 2–5.
5. Petrova A.P. Povyshenie termostoikosti kleiashchikh sistem na osnove fenolformaldegidnykh oligomerov pri modifikatsii karboranami [Increasing thermal resistance of the adhesive systems based on phenol-formaldehyde oligomers with modification of the carborane] // Novosti materialovedeniia. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2017. №1. St. 03. Available at: http://www.materialsnews.ru (accessed: March 01, 2017).
6. Petrova A.P. Povyshenie termostoikosti poliuretanovykh kleiashchikh sistem pri modifika-tsii karboranami [Increasing thermal resistance of polyurethane adhesive systems with modification of the carborane] // Novosti materialovedeniia. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2017. №1. St. 04. Available at: http://www.materialsnews.ru (accessed: March 01, 2017).
7. Graims R. Karborany. Per. s angl. [Carboranes. Trans. from Engl.] / pod red. A.F. Zhigacha. M.: Mir, 1974. 264 s.
8. Petrova A.P., Valetskii P.M. Fenolno-kauchukovye karboransoderzhashchie klei s sobstvennym ferromagnetizmom [Phenolic and rubber carborane containing glues with own ferro magnetism] // Klei. Germetiki. Tekhnologii. 2007. №4. S. 6–10.
9. Petrova A.P. Magnitoprovodiashchie kleevye kompozitsii na osnove karboransoderzhashchikh so-edinenii [Magneto carrying-out glue compositions on basis carborane of containing connections] // Klei. Germetiki. Tekhnologii. 2006. №11. S. 3–4.
10. Petrova A.P., Dementeva L.A., Lukina N.F., Anikhovskaia L.I. Plenochnye konstruktsionnye klei [Film constructional glues] // Klei. Germetiki. Tekhnologii. 2014. №10. S. 7–12.
11. Sharova I.A., Petrova A.P. Obzor po materialam mezhdunarodnoj konferencii po kleyam i germetikam (WAC-2012, Franciya) [Review of world adhesive and sealant conference (WAC-2012, France] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №8. St. 06. Available at: http://www.viam-works.ru (accessed: January 19, 2017).
12. Lukina N.F., Dementeva L.A., Petrova A.P., Serezhenkov A.A. Konstrukcionnye i termostojkie klei [Constructional and heat-resistant glues] // Aviacionnye materialy i tehnologii. 2012. №S. S. 328–335.
13. Petrova A.P., Laptev A.B. Fenolno-kauchukovye klei, modifitsirovannye karboranami [The phenolic and rubber glues modified by carboranes] // Klei. Germetiki. Tekhnologii. 2017. №6 (v pechati).
14. Petrova A.P., Donskoi A.A., Chalykh A.E., Shcherbina A.A. Kleiashchie materialy. Germetiki: spravochnik [Gluing materials. Hermetics: directory]. SPb.: Professional, 2008. 589 s.
15. Lukina N.F., Dementeva L.A., Petrova A.P., Tiumeneva T.Iu. Svoistva kleev i kleiashchikh materialov dlia izdelii aviatsionnoi tekhniki [Properties of glues and gluing materials for products of aviation engineering] // Klei. Germetiki. Tekhnologii. 2009. №1. S. 14–24.
7.
category: Testing of materials and structures
УДК 66.017
Interlaminar fracture toughness and fractography of epoxy and bismaleimide carbon composites
The work was focused on the definition of dominating energy dispersion mechanisms at delamination of woven carbon fiber polymer composites VKU-39 and BMI-3/3692 in the conditions of mode I (transverse tension) and mode II (shear). The results of structural and fractographic research of composites are presented in the work. It is shown that crack distribution in investigated composites can occur in the conditions of mode, distinct from the mode provided by the sample loading scheme.
Keywords: polymer composite, thermoset-thermoplastic blend, woven fabric, interlaminar fracture toughness, DCB, ENF, optical microscopy, fractography, scanning electron microscopy.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Khimiya v aviatsionnom materialovedenii [Chemistry in aviation materials science] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 3–4.
3. Kablov E.N. Materialy i khimicheskie tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
4. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokoleniya [Coalplastics and fibreglasses of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 09. Available at: http://www.viam-works.ru (accessed: May 15, 2016).
5. Raskutin A.E. Uglerodnye tkani dlia proizvodstva konstruktsii iz polimernykh kompozitsionnykh materialov [Carbon fabrics for production of designs from polymeric composite materials] // Materialovedenie. 2014. №8. S. 46–49.
6. Babaevskii P.G., Kulik S.G. Treshchinostoikost otverzhdennykh polimernykh kompozitsii [Crack firmness of otverzhdenny polymeric compositions]. M.: Khimiia, 1991. 336 s.
7. Finogenov G.N., Erasov V.S. Treshchinostoikost polimernykh kompozitov pri mezhsloinom otryve i sdvige [Crack firmness of polymeric composites at interlaminar separation and shift] // Aviatsionnye materialy i tekhnologii. 2003. №3. S. 62–67.
8. Guliaev A.I., Iakovlev N.O., Krylov V.D., Shurtakov S.V. Mikromekhanika razrusheniia stekloplastikov pri rassloenii po modam I i II [Microfracture mechanics of fibreglasses at stratification on modes of I and II] // Materialovedenie. 2016. №2. S. 13–22.
9. Iakovlev N.O., Erasov V.S., Krylov V.D., Popov Iu.O. Metody opredeleniia sdvigovykh kharakteristik polimernykh kompozitsionnykh materialov [Methods of definition of shift characteristics of polymeric composite materials] // Aviatsionnaia promyshlennost. 2014. №1. S. 20–23.
10. Erasov V.S., Krylov V.D., Panin S.V., Goncharov A.A. Ispytaniya polimernogo kompozitsionnogo materiala na udar padayushhim gruzom [Drop-weight impact testing of polymer composite material] // Aviacionnye materialy i tehnologii. 2013. №3. S. 60–64.
11. Guliaev A.I., Tenchurin T.Kh. Perspektivy primeneniia voloknistykh struktur, poluchennykh sposobom elektroformovaniia, dlia povysheniia udaro- i treshchinostoikosti polimernykh kompozitsionnykh materialov [Perspectives of application of the fibrous structures received in the way of electroformation, for increase of blow and crack of firmness of polymeric composite materials] // Konstruktsii iz kompozitsionnykh materialov. 2013. №3. C. 22–26.
12. Bolshakov V.A., Aleksashin V.M. Povyshenie ostatochnoj prochnosti pri szhatii posle nizkoskorostnogo udara ugleplastikov, izgotovlyaemyh infuzionnym metodom formovaniya [A way to increase the residual compression strength after low-speed impact of CFRP produced by vacuum infusion technology] // Aviacionnye materialy i tehnologii. 2013. №4. S. 47–50.
13. Kablov E.N., Kirillov V.N., Zhirnov A.D., Startsev O.V., Vapirov Iu.M. Tsentry dlia klimaticheskikh ispytanii aviatsionnykh PKM [The centers for climatic tests of aviation PCM] // Aviatsionnaia promyshlennost. 2009. №4. S. 36–46.
14. Startsev O.V., Kablov E.N., Makhonkov A.Iu. Zakonomernosti perekhoda epoksidnykh sviazuiushchikh kompozitsionnykh materialov po dannym dinamicheskogo mekhanicheskogo analiza [Patterns of transition of epoxy binding composite materials according to the dynamic mechanical analysis] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 104–113.
15. Valevin E.O., Zelenina I.V., Marakhovskii P.S., Guliaev A.I., Bukharov S.V. Issledovanie vliianiia teplovlazhnostnogo vozdeistviia na ftalonitrilnuiu matritsu [Research of influence of warmly vlazhnostny impact on ftalonitrilny matrix] // Materialovedenie. 2015. №9. S. 15–19.
16. Perov N.S., Chutskova E.Iu., Guliaev A.I., Abramov D.V. Evoliutsiia struktury polimernoi matritsy v ugleplastike na osnove politsianurata i poliarilsulfona v uskorennykh klimaticheskikh ispytaniiakh [Evolution of structure of polymeric matrix in ugleplastike on basis politsianurata and poliarilsulfona in the accelerated climatic tests] // Materialovedenie. 2016. №4. S. 14–20.
17. Panina N.N., Chursova L.V., Babin A.N., Grebeneva T.A., Gurevich Ia.M. Osnovnye sposoby modifikatsii epoksidnykh polimernykh materialov v Rossii [The main ways of updating of epoxy polymeric materials in Russia] // Vse materialy. Entsiklopedicheskii spravochnik. 2014. №9. S. 10–17.
18. Gulyaev A.I., Zhuravleva P.L. Metodologicheskie voprosy analiza fazovoj morfologii materialov na osnove sinteticheskih smol, modificirovannyh termoplastami (obzor) [Methodological aspects of the phase morphology analysis in materials based on synthetic resins modified by thermoplastics (review)] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №6. St. 09. Available at: http://viam-works.ru (accessed: May 15, 2016). DOI: 10.18577/2307-6046-2015-0-6-9-9.
19. Lobanov M.V., Guliaev A.I., Babin A.N. Povyshenie udaro- i treshchinostoikosti epoksidnykh reaktoplastov i kompozitov na ikh osnove s pomoshchiu dobavok termoplastov kak modifikatorov [Increase of blow and crack of firmness of epoxy thermosets and composites on their basis by means of additives of thermoplastics as modifiers] // Vysokomolekuliarnye soedineniia. Ser.: B. 2016. T. 58. №1. S. 3–15.
20. Tsotsis T.K. Interlayer toughening of composite materials // Polymer Composites. 2009. Vol. 30. No. 1. P. 70–86.
21. Pearson R.A., Yee A.F. Toughening mechanisms in thermoplastic-modified epoxies: 1. Modification using poly(phenylene oxide) // Polymer. 1993. Vol. 34. №17. P. 3658–3670.
22. Mimura K., Ito H., Fujioka H. Improvement of thermal and mechanical properties by control of morphologies in PES-modified epoxy resins // Polymer. 2000. Vol. 41. P. 4451–4459.
23. Hodgkin J.H., Simon G.P., Varley R.J. Thermoplastic toughening of epoxy resins: a critical review // Polymers for advanced technologies. 1998. Vol. 9. P. 3–10.
24. Merkulova Yu.I., Muhametov R.R. Nizkovyazkoe epoksidnoe svyazuyushhee dlya pererabotki metodom vakuumnoj infuzii [Development of a low-viscosity epoxy binder for processing by vacuum infusion] // Aviacionnye materialy i tehnologii. 2014. №1. S. 39–41. DOI: 10.18577/2071-9140-2014-0-1-39-41.
25. Mukhametov R.R., Shimkin A.A., Guliaev A.I., Kucherovskii A. I. Ftalonitrilnoe sviazuiushchee dlia termostoikikh kompozitov [Ftalonitrilnoye binding for heat-resistant composites] // Materialovedenie. 2015. №11. S. 48–53.
26. Iakovlev N.O., Lutsenko A.N., Artemeva I.V. Metody opredeleniia mezhsloevoi treshchinostoikosti sloistykh materialov [Methods of definition mezhsloyevy crack of firmness of layered materials] // Vse materialy. Entsiklopedicheskii spravochnik. Kommentarii k standartam, TU, sertifikatam. 2015. №10. S. 7–14.
27. Iakovlev N.O., Akolzin S.V., Shvets S.M. Opredelenie treshchinostoikosti polimernykh materialov [Definition of treshchinostoykost of polymeric materials] // Novosti materialovedeniia. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2014. № 4. St. 03. Available at: http://www.materalsnews.ru (accessed: May 15, 2016).
28. Krylov V.D., Iakovlev N.O., Kurganova Iu.A., Lashov O.A. Mezhsloevaia treshchinostoikost konstruktsionnykh polimernykh kompozitsionnykh materialov [Mezhsloyevy crack firmness of constructional polymeric composite materials] // Aviatsionnye materialy i tekhnologii. 2016. №1 (40). S. 79–85. DOI: 10.18577/2071-9140-2016-0-1-79-85.
29. Iakovlev N.O., Guliaev A.I., Krylov V.D., Shurtakov S.V. Mikrostruktura i svoistva konstruktsionnykh kompozitsionnykh materialov pri ispytanii na staticheskuiu mezhsloevuiu treshchinostoikost [Microstructure and properties of constructional composite materials when testing on static mezhsloyevy crack firmness] // Novosti materialovedeniia. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2016. №1. St. 09. Available at: http://www.materalsnews.ru (accessed: May 15, 2016).
30. Murakami A., Saunders D., Ooishi K. et al. Fracture behaviour of thermoplastic modified epoxy resins // Journal of Adhesion. 1992. Vol. 39. P. 227–242.
31. Deev I.S., Kobets L.P. Fraktografiia epoksidnykh polimerov [Fraktografiya of epoxy polymers] //Vysokomolekuliarnye soedineniia. Ser.: A. 1996. T. 38. №4. S. 627–633.
32. Bandyopadhyay S. Review of the microscopic and macroscopic aspects of fracture of unmodified and modified epoxy resins // Materials Science and Engineering A. 1990. Vol. A125. P. 157–184.
33. Iakovlev N.O., Guliaev A.I., Lashov O.A. Treshchinostoikost sloistykh polimernykh kompozitsionnykh materialov (obzor) [Crack firmness of layered polymeric composite materials (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №4 (40). St. 12. Available at: http://www.viam-works.ru (accessed: May 15, 2016) DOI: 10.185772307-6046-2016-0-4-12-12.
34. Di Liello V., Martuscelli E., Musto P., Ragosta G., Scarinzi G. Toughening of highly crosslinked thermosetting resins by blending with thermoplastic polyether imide // Die Angewandte Makromolekulare Chemie. 1993. №213. P. 93–111.
35. Kim J.-K., Mai Y.-W. Engineered Interfaces in Fiber Reinforced Composites. Elsevier, 1998. 486 р.
36. Ebeling T., Hiltner A., Baer E., Fraser I.M., Orton M.L. Delamination failure of a woven glass fiber composite // Journal of composite materials. 1997. Vol. 31. No. 13. P. 1318–1333.
37. Greenhalgh E.S. Failure analysis and fractography of polymer composites. Cambridge: Woodhead Publishing, 2008. 608 p.
2. Kablov E.N. Khimiya v aviatsionnom materialovedenii [Chemistry in aviation materials science] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 3–4.
3. Kablov E.N. Materialy i khimicheskie tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
4. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokoleniya [Coalplastics and fibreglasses of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 09. Available at: http://www.viam-works.ru (accessed: May 15, 2016).
5. Raskutin A.E. Uglerodnye tkani dlia proizvodstva konstruktsii iz polimernykh kompozitsionnykh materialov [Carbon fabrics for production of designs from polymeric composite materials] // Materialovedenie. 2014. №8. S. 46–49.
6. Babaevskii P.G., Kulik S.G. Treshchinostoikost otverzhdennykh polimernykh kompozitsii [Crack firmness of otverzhdenny polymeric compositions]. M.: Khimiia, 1991. 336 s.
7. Finogenov G.N., Erasov V.S. Treshchinostoikost polimernykh kompozitov pri mezhsloinom otryve i sdvige [Crack firmness of polymeric composites at interlaminar separation and shift] // Aviatsionnye materialy i tekhnologii. 2003. №3. S. 62–67.
8. Guliaev A.I., Iakovlev N.O., Krylov V.D., Shurtakov S.V. Mikromekhanika razrusheniia stekloplastikov pri rassloenii po modam I i II [Microfracture mechanics of fibreglasses at stratification on modes of I and II] // Materialovedenie. 2016. №2. S. 13–22.
9. Iakovlev N.O., Erasov V.S., Krylov V.D., Popov Iu.O. Metody opredeleniia sdvigovykh kharakteristik polimernykh kompozitsionnykh materialov [Methods of definition of shift characteristics of polymeric composite materials] // Aviatsionnaia promyshlennost. 2014. №1. S. 20–23.
10. Erasov V.S., Krylov V.D., Panin S.V., Goncharov A.A. Ispytaniya polimernogo kompozitsionnogo materiala na udar padayushhim gruzom [Drop-weight impact testing of polymer composite material] // Aviacionnye materialy i tehnologii. 2013. №3. S. 60–64.
11. Guliaev A.I., Tenchurin T.Kh. Perspektivy primeneniia voloknistykh struktur, poluchennykh sposobom elektroformovaniia, dlia povysheniia udaro- i treshchinostoikosti polimernykh kompozitsionnykh materialov [Perspectives of application of the fibrous structures received in the way of electroformation, for increase of blow and crack of firmness of polymeric composite materials] // Konstruktsii iz kompozitsionnykh materialov. 2013. №3. C. 22–26.
12. Bolshakov V.A., Aleksashin V.M. Povyshenie ostatochnoj prochnosti pri szhatii posle nizkoskorostnogo udara ugleplastikov, izgotovlyaemyh infuzionnym metodom formovaniya [A way to increase the residual compression strength after low-speed impact of CFRP produced by vacuum infusion technology] // Aviacionnye materialy i tehnologii. 2013. №4. S. 47–50.
13. Kablov E.N., Kirillov V.N., Zhirnov A.D., Startsev O.V., Vapirov Iu.M. Tsentry dlia klimaticheskikh ispytanii aviatsionnykh PKM [The centers for climatic tests of aviation PCM] // Aviatsionnaia promyshlennost. 2009. №4. S. 36–46.
14. Startsev O.V., Kablov E.N., Makhonkov A.Iu. Zakonomernosti perekhoda epoksidnykh sviazuiushchikh kompozitsionnykh materialov po dannym dinamicheskogo mekhanicheskogo analiza [Patterns of transition of epoxy binding composite materials according to the dynamic mechanical analysis] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 104–113.
15. Valevin E.O., Zelenina I.V., Marakhovskii P.S., Guliaev A.I., Bukharov S.V. Issledovanie vliianiia teplovlazhnostnogo vozdeistviia na ftalonitrilnuiu matritsu [Research of influence of warmly vlazhnostny impact on ftalonitrilny matrix] // Materialovedenie. 2015. №9. S. 15–19.
16. Perov N.S., Chutskova E.Iu., Guliaev A.I., Abramov D.V. Evoliutsiia struktury polimernoi matritsy v ugleplastike na osnove politsianurata i poliarilsulfona v uskorennykh klimaticheskikh ispytaniiakh [Evolution of structure of polymeric matrix in ugleplastike on basis politsianurata and poliarilsulfona in the accelerated climatic tests] // Materialovedenie. 2016. №4. S. 14–20.
17. Panina N.N., Chursova L.V., Babin A.N., Grebeneva T.A., Gurevich Ia.M. Osnovnye sposoby modifikatsii epoksidnykh polimernykh materialov v Rossii [The main ways of updating of epoxy polymeric materials in Russia] // Vse materialy. Entsiklopedicheskii spravochnik. 2014. №9. S. 10–17.
18. Gulyaev A.I., Zhuravleva P.L. Metodologicheskie voprosy analiza fazovoj morfologii materialov na osnove sinteticheskih smol, modificirovannyh termoplastami (obzor) [Methodological aspects of the phase morphology analysis in materials based on synthetic resins modified by thermoplastics (review)] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №6. St. 09. Available at: http://viam-works.ru (accessed: May 15, 2016). DOI: 10.18577/2307-6046-2015-0-6-9-9.
19. Lobanov M.V., Guliaev A.I., Babin A.N. Povyshenie udaro- i treshchinostoikosti epoksidnykh reaktoplastov i kompozitov na ikh osnove s pomoshchiu dobavok termoplastov kak modifikatorov [Increase of blow and crack of firmness of epoxy thermosets and composites on their basis by means of additives of thermoplastics as modifiers] // Vysokomolekuliarnye soedineniia. Ser.: B. 2016. T. 58. №1. S. 3–15.
20. Tsotsis T.K. Interlayer toughening of composite materials // Polymer Composites. 2009. Vol. 30. No. 1. P. 70–86.
21. Pearson R.A., Yee A.F. Toughening mechanisms in thermoplastic-modified epoxies: 1. Modification using poly(phenylene oxide) // Polymer. 1993. Vol. 34. №17. P. 3658–3670.
22. Mimura K., Ito H., Fujioka H. Improvement of thermal and mechanical properties by control of morphologies in PES-modified epoxy resins // Polymer. 2000. Vol. 41. P. 4451–4459.
23. Hodgkin J.H., Simon G.P., Varley R.J. Thermoplastic toughening of epoxy resins: a critical review // Polymers for advanced technologies. 1998. Vol. 9. P. 3–10.
24. Merkulova Yu.I., Muhametov R.R. Nizkovyazkoe epoksidnoe svyazuyushhee dlya pererabotki metodom vakuumnoj infuzii [Development of a low-viscosity epoxy binder for processing by vacuum infusion] // Aviacionnye materialy i tehnologii. 2014. №1. S. 39–41. DOI: 10.18577/2071-9140-2014-0-1-39-41.
25. Mukhametov R.R., Shimkin A.A., Guliaev A.I., Kucherovskii A. I. Ftalonitrilnoe sviazuiushchee dlia termostoikikh kompozitov [Ftalonitrilnoye binding for heat-resistant composites] // Materialovedenie. 2015. №11. S. 48–53.
26. Iakovlev N.O., Lutsenko A.N., Artemeva I.V. Metody opredeleniia mezhsloevoi treshchinostoikosti sloistykh materialov [Methods of definition mezhsloyevy crack of firmness of layered materials] // Vse materialy. Entsiklopedicheskii spravochnik. Kommentarii k standartam, TU, sertifikatam. 2015. №10. S. 7–14.
27. Iakovlev N.O., Akolzin S.V., Shvets S.M. Opredelenie treshchinostoikosti polimernykh materialov [Definition of treshchinostoykost of polymeric materials] // Novosti materialovedeniia. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2014. № 4. St. 03. Available at: http://www.materalsnews.ru (accessed: May 15, 2016).
28. Krylov V.D., Iakovlev N.O., Kurganova Iu.A., Lashov O.A. Mezhsloevaia treshchinostoikost konstruktsionnykh polimernykh kompozitsionnykh materialov [Mezhsloyevy crack firmness of constructional polymeric composite materials] // Aviatsionnye materialy i tekhnologii. 2016. №1 (40). S. 79–85. DOI: 10.18577/2071-9140-2016-0-1-79-85.
29. Iakovlev N.O., Guliaev A.I., Krylov V.D., Shurtakov S.V. Mikrostruktura i svoistva konstruktsionnykh kompozitsionnykh materialov pri ispytanii na staticheskuiu mezhsloevuiu treshchinostoikost [Microstructure and properties of constructional composite materials when testing on static mezhsloyevy crack firmness] // Novosti materialovedeniia. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2016. №1. St. 09. Available at: http://www.materalsnews.ru (accessed: May 15, 2016).
30. Murakami A., Saunders D., Ooishi K. et al. Fracture behaviour of thermoplastic modified epoxy resins // Journal of Adhesion. 1992. Vol. 39. P. 227–242.
31. Deev I.S., Kobets L.P. Fraktografiia epoksidnykh polimerov [Fraktografiya of epoxy polymers] //Vysokomolekuliarnye soedineniia. Ser.: A. 1996. T. 38. №4. S. 627–633.
32. Bandyopadhyay S. Review of the microscopic and macroscopic aspects of fracture of unmodified and modified epoxy resins // Materials Science and Engineering A. 1990. Vol. A125. P. 157–184.
33. Iakovlev N.O., Guliaev A.I., Lashov O.A. Treshchinostoikost sloistykh polimernykh kompozitsionnykh materialov (obzor) [Crack firmness of layered polymeric composite materials (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №4 (40). St. 12. Available at: http://www.viam-works.ru (accessed: May 15, 2016) DOI: 10.185772307-6046-2016-0-4-12-12.
34. Di Liello V., Martuscelli E., Musto P., Ragosta G., Scarinzi G. Toughening of highly crosslinked thermosetting resins by blending with thermoplastic polyether imide // Die Angewandte Makromolekulare Chemie. 1993. №213. P. 93–111.
35. Kim J.-K., Mai Y.-W. Engineered Interfaces in Fiber Reinforced Composites. Elsevier, 1998. 486 р.
36. Ebeling T., Hiltner A., Baer E., Fraser I.M., Orton M.L. Delamination failure of a woven glass fiber composite // Journal of composite materials. 1997. Vol. 31. No. 13. P. 1318–1333.
37. Greenhalgh E.S. Failure analysis and fractography of polymer composites. Cambridge: Woodhead Publishing, 2008. 608 p.
8.
category: Testing of materials and structures
УДК 620.179
Kochubey A.Ya.1, Treninkov I.A.1
Definition single crystals orientation parametres of nickel-base superalloys by diffractometer method
Definition Single crystals orientation parametres of nickel-base superalloys by diffractometer method is developed, including a mosaic structure, i.e. without application of Laue method. The method allows: to size up quantity of mosaic blocks in a crystal; to define crystallographic orientation of each block in the sample axes; to define misorientation blocks among themselves; to make samples with regulated crystallographic orientation for quantitative analysis of single crystals structure; to define a relationship orientation of single crystals substrate and coating, etc.
Keywords: single crystals, nickel-base superalloy, crystallographic orientation, mosaic structure.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii [Tendencies and reference points of innovative development of Russia]: sb. nauch.-inform. mater. 3-e izd. M.: VIAM, 2015. 720 s.
3. Shalin R.E., Svetlov I.L., Kachanov E.B. i dr. Monokristally nikelevykh zharoprochnykh splavov [Monocrystals of nickel hot strength alloys]. M.: Mashinostroenie, 1997. 336 s.
4. Kablov E.N., Petrushin N.V., Svetlov I.L. Sovremennye litye nikelevye zharoprochnye splavy [Modern cast nickel hot strength alloys] // Nauchnye idei S.T. Kishkina i sovremennoe materialovedenie: tr. Mezhdunar. nauch.-tekhnich. konf. M.: VIAM, 2006. S. 39–55.
5. Echin A.B., Bondarenko Yu.A. Osobennosti struktury i svojstva nikelevogo monokristallicheskogo splava, poluchennogo v usloviyah peremennogo temperaturnogo gradienta na fronte rosta [Structural features and properties of single-crystal Ni-based superalloy produced under conditions of variable temperature gradient on the solidification front] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 01. Available at: http://www.viam-works.ru (accessed: April 03, 2017). DOI: 10.18577/2307-6046-2015-0-8-1-1.
6. Iskhodzhanova I.V., Bondarenko Iu.A., Lapteva M.A. Otsenka struktury monokristallicheskogo zharoprochnogo nikelevogo splava, poluchennogo pri razlichnykh usloviiakh napravlennoi kristallizatsii, s ispolzovaniem metodov kolichestvennogo analiza videoizobrazhenii [Evaluation of the structure of monocrystalline Ni superalloys derived in different conditions of directional solidification using methods of quantitative analysis of video images] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2015. №12. St. 06. Available at: http://www.viam-works.ru (accessed: April 03, 2017). DOI: 10.18577/2307-6046-2015-0-12-6-6.
7. Petrushin N.V., Visik E.M., Gorbovets M.A., Nazarkin R.M. Strukturno-fazovye kharakteristiki i mekhanicheskie svoistva monokristallov zharoprochnykh nikelevykh reniisoderzhashchikh splavov s intermetallidno-karbidnym uprochneniem [Structural phase characteristics and mechanical properties of monocrystals of heat resisting nickel reniye of containing alloys with intermetallidno-carbide hardening] // Metally, 2016. №4. S. 57–70.
8. Gerasimov V.V. Ot monokristallicheskih neohlazhdaemyh lopatok k lopatkam turbin s pronikayushhim (transpiracionnym) ohlazhdeniem, izgotovlennym po additivnym tehnologiyam (obzor po tehnologii litya monokristallicheskih lopatok GTD) [From single-crystal uncooled blades to turbines blades with penetration (transpiration) cooling made by additive technologies (review on technology of single-crystal GTE bladescasting)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №10. St. 01. Available at: http://www.viam-works.ru (accessed: April 03, 2017). DOI: 10.18577/2307-6046-2016-0-10-1-1.
9. Naprienko S.A., Orlov M.R. Razrushenie monokristallicheskikh lopatok turbiny nazemnykh GTU [Damage of single-crystal turbine blades of GTP] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn., 2016. №2. St. 03. Available at: http://www.viam-works.ru (accessed: April 03, 2017). DOI: 10.18577/2307-6046-2016-0-2-3-3.
10. Kablov E.N., Toloraiia V.N., Ostroukhova G.A. Rostovaia struktura monokristallicheskikh otlivok iz nikelevykh zharoprochnykh splavov [Growing structure of single-crystal molding from nickel hot strength alloys] // Liteinye zharoprochnye splavy. Effekt S.T. Kishkina: nauch.-tekhn. sb. M.: Nauka, 2006. S. 219–245.
11. Toloraiia V.N., Kablov E.N., Demonis I.M. Tekhnologiia polucheniia monokristallicheskikh otlivok turbinnykh lopatok GTD zadannoi kristallograficheskoi orintatsii iz reniisoderzhashchikh zharoprochnykh splavov [Technology of receiving single-crystal molding of turbine blades of GTD of the set crystallographic orintatsiya from reniye of containing hot strength alloys] // Tam zhe. S. 206–218.
12. Gorelik S.S., Skakov Iu.A., Rastorguev L.N. Rentgenograficheskii i elektronno-opticheskii analiz: ucheb. posobie dlia vuzov [Radiographic and electron-optical analysis: the manual for higher education institutions]. 4-e izd. dop. i pererab. M.: MISIS, 2002. 360 s.
13. Shishkareva L.M., Kuzmina N.A. Obzor metodik opredeleniya kachestva struktury monokristallicheskih otlivok zharoprochnyh splavov [Review of methods for determining the quality of the structure of single-crystal superalloy castings] // Trudy VIAM: elektron. nauch.-tehni. zhurn. 2014. №1. St. 06. Available at: http://www.viam-works.ru (accessed: April 03, 2017).
14. Borodkina M.M., Spektor E.N. Rentgenovskii analiz tekstury metallov i splavov [X-ray analysis of structure of metals and alloys]. M: Metallurgiia, 1981. 272 s.
15. Treninkov I.A., Alekseev A.A., Zaitsev D.V., Filonova E.V. Issledovaniia fazovykh i strukturnykh izmenenii, a takzhe ostatochnykh napriazhenii v protsesse vysokotemperaturnoi polzuchesti v splave VZhM4 [Researches of phase and structural changes, and also residual stresses in the course of high-temperature creep in VZhM4 alloy]// Aviatsionnye materialy i tekhnologii, 2011. №2. S. 11–19.
2. Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii [Tendencies and reference points of innovative development of Russia]: sb. nauch.-inform. mater. 3-e izd. M.: VIAM, 2015. 720 s.
3. Shalin R.E., Svetlov I.L., Kachanov E.B. i dr. Monokristally nikelevykh zharoprochnykh splavov [Monocrystals of nickel hot strength alloys]. M.: Mashinostroenie, 1997. 336 s.
4. Kablov E.N., Petrushin N.V., Svetlov I.L. Sovremennye litye nikelevye zharoprochnye splavy [Modern cast nickel hot strength alloys] // Nauchnye idei S.T. Kishkina i sovremennoe materialovedenie: tr. Mezhdunar. nauch.-tekhnich. konf. M.: VIAM, 2006. S. 39–55.
5. Echin A.B., Bondarenko Yu.A. Osobennosti struktury i svojstva nikelevogo monokristallicheskogo splava, poluchennogo v usloviyah peremennogo temperaturnogo gradienta na fronte rosta [Structural features and properties of single-crystal Ni-based superalloy produced under conditions of variable temperature gradient on the solidification front] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 01. Available at: http://www.viam-works.ru (accessed: April 03, 2017). DOI: 10.18577/2307-6046-2015-0-8-1-1.
6. Iskhodzhanova I.V., Bondarenko Iu.A., Lapteva M.A. Otsenka struktury monokristallicheskogo zharoprochnogo nikelevogo splava, poluchennogo pri razlichnykh usloviiakh napravlennoi kristallizatsii, s ispolzovaniem metodov kolichestvennogo analiza videoizobrazhenii [Evaluation of the structure of monocrystalline Ni superalloys derived in different conditions of directional solidification using methods of quantitative analysis of video images] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2015. №12. St. 06. Available at: http://www.viam-works.ru (accessed: April 03, 2017). DOI: 10.18577/2307-6046-2015-0-12-6-6.
7. Petrushin N.V., Visik E.M., Gorbovets M.A., Nazarkin R.M. Strukturno-fazovye kharakteristiki i mekhanicheskie svoistva monokristallov zharoprochnykh nikelevykh reniisoderzhashchikh splavov s intermetallidno-karbidnym uprochneniem [Structural phase characteristics and mechanical properties of monocrystals of heat resisting nickel reniye of containing alloys with intermetallidno-carbide hardening] // Metally, 2016. №4. S. 57–70.
8. Gerasimov V.V. Ot monokristallicheskih neohlazhdaemyh lopatok k lopatkam turbin s pronikayushhim (transpiracionnym) ohlazhdeniem, izgotovlennym po additivnym tehnologiyam (obzor po tehnologii litya monokristallicheskih lopatok GTD) [From single-crystal uncooled blades to turbines blades with penetration (transpiration) cooling made by additive technologies (review on technology of single-crystal GTE bladescasting)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №10. St. 01. Available at: http://www.viam-works.ru (accessed: April 03, 2017). DOI: 10.18577/2307-6046-2016-0-10-1-1.
9. Naprienko S.A., Orlov M.R. Razrushenie monokristallicheskikh lopatok turbiny nazemnykh GTU [Damage of single-crystal turbine blades of GTP] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn., 2016. №2. St. 03. Available at: http://www.viam-works.ru (accessed: April 03, 2017). DOI: 10.18577/2307-6046-2016-0-2-3-3.
10. Kablov E.N., Toloraiia V.N., Ostroukhova G.A. Rostovaia struktura monokristallicheskikh otlivok iz nikelevykh zharoprochnykh splavov [Growing structure of single-crystal molding from nickel hot strength alloys] // Liteinye zharoprochnye splavy. Effekt S.T. Kishkina: nauch.-tekhn. sb. M.: Nauka, 2006. S. 219–245.
11. Toloraiia V.N., Kablov E.N., Demonis I.M. Tekhnologiia polucheniia monokristallicheskikh otlivok turbinnykh lopatok GTD zadannoi kristallograficheskoi orintatsii iz reniisoderzhashchikh zharoprochnykh splavov [Technology of receiving single-crystal molding of turbine blades of GTD of the set crystallographic orintatsiya from reniye of containing hot strength alloys] // Tam zhe. S. 206–218.
12. Gorelik S.S., Skakov Iu.A., Rastorguev L.N. Rentgenograficheskii i elektronno-opticheskii analiz: ucheb. posobie dlia vuzov [Radiographic and electron-optical analysis: the manual for higher education institutions]. 4-e izd. dop. i pererab. M.: MISIS, 2002. 360 s.
13. Shishkareva L.M., Kuzmina N.A. Obzor metodik opredeleniya kachestva struktury monokristallicheskih otlivok zharoprochnyh splavov [Review of methods for determining the quality of the structure of single-crystal superalloy castings] // Trudy VIAM: elektron. nauch.-tehni. zhurn. 2014. №1. St. 06. Available at: http://www.viam-works.ru (accessed: April 03, 2017).
14. Borodkina M.M., Spektor E.N. Rentgenovskii analiz tekstury metallov i splavov [X-ray analysis of structure of metals and alloys]. M: Metallurgiia, 1981. 272 s.
15. Treninkov I.A., Alekseev A.A., Zaitsev D.V., Filonova E.V. Issledovaniia fazovykh i strukturnykh izmenenii, a takzhe ostatochnykh napriazhenii v protsesse vysokotemperaturnoi polzuchesti v splave VZhM4 [Researches of phase and structural changes, and also residual stresses in the course of high-temperature creep in VZhM4 alloy]// Aviatsionnye materialy i tekhnologii, 2011. №2. S. 11–19.
9.
category: Testing of materials and structures
УДК 629.7.023
Filonova E.V.1, Markov A.B.2
The high-current pulse electronic bunches for surface engineering ion-plasma coverings
In communication of modern aircraft equipment service conditions complication and toughening the problem of materials and the types of their processing providing along with high durability increase aviation engine the most loaded details and knots operational properties level (first of all blades and compressor and turbine disks) creation, became extremely actual. That is the most important problem of modern aviation engine-building.
The solution of this task is carried out with use of several approaches: perspective high-alloyed polycrystalline and single-crystal alloys development; manufacturing, formation and processing products and preparations modernization; details superficial processing new methods development and drawing on their surface of various protective coatings.
Recently the special attention is given to high-intensity methods of superficial engineering of rather wide nomenclature details development and extremely fast introduction of created on their basis technical p
Keywords: radiation by the high-current electronic beams, the condensed ion-plasma coverings, structural and phase condition, microstructure research.
Reference List
1. Pout Dzh.M., Foti G., Dzhekobs D.K. Modifitsirovanie i legirovanie poverkhnosti lazernymi, ionnymi i elektronnymi puchkami [Modifying and surface alloying laser, ionic and electronic bunches]. M.: Metallurgiia, 1987. 424 s.
2. Abroian I.A., Andronov A.K., Titov A.I. Fizicheskie osnovy elektronnoi i ionnoi tekhnologii [Physical bases of electronic and ionic technology]. M.: Vysshaia shkola, 1984. 320 s.
3. Shulov V.A., Nochovnaya N.A., Engelko V.I. The recycling of metals. Vienna, 1999. P. 92–101.
4. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their pro-cessing for the period till 2030] // Aviatsionnye materialy i tekhnologii. 2012. №S. S. 7–17.
5. Kablov E.N. Sovremennye materialy – osnova innovatsionnoy modernizatsii Rossii [Modern mate-rials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
6. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
7. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskie napravleniia razvitiia konstruktsionnykh materialov i tekhnologii ikh pererabotki dlia aviatsionnykh dvigatelei nastoiashchego i budushchego [The strategic directions of development of constructional materials and technologies of their processing for aircraft engines of the present and the future] // Avtomaticheskaia svarka. 2013. №10. S. 23–32.
8. Muboyadzhyan S.A., Lutsenko A.N., Aleksandrov D.A., Gorlov D.S. Issledovanie vozmozhnosti povysheniya sluzhebnyh harakteristik lopatok kompressora GTD metodom ionnogo modificirovaniya poverhnosti [Research of possibility of increase of office characteristics of compressor blades of GTE by method of ionic modifying of surface] // Trudy VIAM: elektron. nauch-tehnih. zhurn. 2013. №1. St. 02. Available at: http://viam-works.ru (accessed: April 01, 2016)
9. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] //Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
10. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Zashhitnye i uprochnyayushhie ionno-plazmennye pokrytiya dlya lopatok i drugih otvetstvennyh detalej kompressora GTD [Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTE compressor] //Aviacionnye materialy i tehnologii. 2012. №S. S. 71–81.
11. Matveev P.V., Budinovskij S.A., Muboyadzhyan S.A., Kosmin A.A. Zashhitnye zharostojkie pokrytiya dlya splavov na osnove intermetallidov nikelya [High-temperature coatings for intermetallic nickel-based alloys] //Aviacionnye materialy i tehnologii. 2013. №2. S. 12–15.
12. Shulov V.A., Paikin A.G., Bytsenko O.A. i dr. Razrabotka elektronno-luchevogo tekhnologicheskogo protsessa vosstanovleniia svoistv lopatok turbiny GTD iz splava ZhS26NK s zharostoikim pokrytiem NiCrAlY [Development of electron beam technological process of recovery of properties of turbine blades of GTE from alloy ZhS26NK with heat resisting covering of NiCrAlY] // Uprochniaiushchie tekhnologii i pokrytiia, 2010. №3 S. 34–38.
13. Shulov V.A., Teryaev D.A., Shirvanyants G.G. et al. Application of high-current pulsed electron beams for the restoration of properties of the blades of gas-turbine engines // Russian Journal of Non-Ferrous Metals. 2015. Vol. 56. No. 3. P. 333–338. DOI: 10.3103/S1067821215030190.
14. Paikin A.G., Krainikov A.V., Shulov B.A., Bytsenko O.A. i dr. Tekhnologicheskie osnovy modifitsirovaniia poverkhnosti detalei iz zharoprochnykh nikelevykh splavov s zharostoikim NiCrAlY pokrytiem s primeneniem silnotochnykh impulsnykh elektronnykh puchkov [Technological bases of modifying of surface of details from heat resisting nickel alloys with heat resisting NiCrAlY covering using high-current pulse electronic bunches] // Fizika i khimiia obrabotki materialov. 2008. №2. S. 56–60.
15. Bytsenko O.A., Filonova E.V., Markov A.B., Belova N.A. Vliianie oblucheniia silnotochnymi impulsnymi elektronnymi puchkami na poverkhnostnye sloi sovremennykh zharoprochnykh nikelevykh splavov s ionno-plazmennymi pokrytiiami razlichnogo sostava [Influence of radiation by high-current pulse electronic bunches on surface layers of modern heat resisting nickel alloys with ion-plasma coverings of different structure] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №6 (42). St. 10. Available at: http://viam-works.ru (accessed: July 17, 2016). DOI: 10.18577/2307-6046-2016-0-6-10-10.
2. Abroian I.A., Andronov A.K., Titov A.I. Fizicheskie osnovy elektronnoi i ionnoi tekhnologii [Physical bases of electronic and ionic technology]. M.: Vysshaia shkola, 1984. 320 s.
3. Shulov V.A., Nochovnaya N.A., Engelko V.I. The recycling of metals. Vienna, 1999. P. 92–101.
4. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their pro-cessing for the period till 2030] // Aviatsionnye materialy i tekhnologii. 2012. №S. S. 7–17.
5. Kablov E.N. Sovremennye materialy – osnova innovatsionnoy modernizatsii Rossii [Modern mate-rials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
6. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
7. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskie napravleniia razvitiia konstruktsionnykh materialov i tekhnologii ikh pererabotki dlia aviatsionnykh dvigatelei nastoiashchego i budushchego [The strategic directions of development of constructional materials and technologies of their processing for aircraft engines of the present and the future] // Avtomaticheskaia svarka. 2013. №10. S. 23–32.
8. Muboyadzhyan S.A., Lutsenko A.N., Aleksandrov D.A., Gorlov D.S. Issledovanie vozmozhnosti povysheniya sluzhebnyh harakteristik lopatok kompressora GTD metodom ionnogo modificirovaniya poverhnosti [Research of possibility of increase of office characteristics of compressor blades of GTE by method of ionic modifying of surface] // Trudy VIAM: elektron. nauch-tehnih. zhurn. 2013. №1. St. 02. Available at: http://viam-works.ru (accessed: April 01, 2016)
9. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] //Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
10. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Zashhitnye i uprochnyayushhie ionno-plazmennye pokrytiya dlya lopatok i drugih otvetstvennyh detalej kompressora GTD [Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTE compressor] //Aviacionnye materialy i tehnologii. 2012. №S. S. 71–81.
11. Matveev P.V., Budinovskij S.A., Muboyadzhyan S.A., Kosmin A.A. Zashhitnye zharostojkie pokrytiya dlya splavov na osnove intermetallidov nikelya [High-temperature coatings for intermetallic nickel-based alloys] //Aviacionnye materialy i tehnologii. 2013. №2. S. 12–15.
12. Shulov V.A., Paikin A.G., Bytsenko O.A. i dr. Razrabotka elektronno-luchevogo tekhnologicheskogo protsessa vosstanovleniia svoistv lopatok turbiny GTD iz splava ZhS26NK s zharostoikim pokrytiem NiCrAlY [Development of electron beam technological process of recovery of properties of turbine blades of GTE from alloy ZhS26NK with heat resisting covering of NiCrAlY] // Uprochniaiushchie tekhnologii i pokrytiia, 2010. №3 S. 34–38.
13. Shulov V.A., Teryaev D.A., Shirvanyants G.G. et al. Application of high-current pulsed electron beams for the restoration of properties of the blades of gas-turbine engines // Russian Journal of Non-Ferrous Metals. 2015. Vol. 56. No. 3. P. 333–338. DOI: 10.3103/S1067821215030190.
14. Paikin A.G., Krainikov A.V., Shulov B.A., Bytsenko O.A. i dr. Tekhnologicheskie osnovy modifitsirovaniia poverkhnosti detalei iz zharoprochnykh nikelevykh splavov s zharostoikim NiCrAlY pokrytiem s primeneniem silnotochnykh impulsnykh elektronnykh puchkov [Technological bases of modifying of surface of details from heat resisting nickel alloys with heat resisting NiCrAlY covering using high-current pulse electronic bunches] // Fizika i khimiia obrabotki materialov. 2008. №2. S. 56–60.
15. Bytsenko O.A., Filonova E.V., Markov A.B., Belova N.A. Vliianie oblucheniia silnotochnymi impulsnymi elektronnymi puchkami na poverkhnostnye sloi sovremennykh zharoprochnykh nikelevykh splavov s ionno-plazmennymi pokrytiiami razlichnogo sostava [Influence of radiation by high-current pulse electronic bunches on surface layers of modern heat resisting nickel alloys with ion-plasma coverings of different structure] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №6 (42). St. 10. Available at: http://viam-works.ru (accessed: July 17, 2016). DOI: 10.18577/2307-6046-2016-0-6-10-10.