Articles

1.
УДК 669.018.44:669.245
Ospennikova O.G.1, L.I. Rassohina1, Bityutskaya O.N.1, Gamasina M.V.1
DEVELOPMENT OF TECHNOLOGICAL PARAMETERS OF OBTAINING OF CASTINGS OF SHAPED COMPONENTS OF AIRCRAFT GAS TURBINE ENGINE MADE OF HEAT-RESISTANT NICKEL ALLOY VZh159
The results of development of technological parameters of obtaining of castings of shaped parts made of cast version of alloy VZh159, superior in the properties of heat-resistant alloy of Nickel-chrome based EP648. The results of the study led to the conclusion that the use of the alloy VZh159 is possible for the manufacture of shaped castings of aircraft engine parts.
Keywords: alloy VZh159, castability molded part of the «diffuser», gas turbine engines.
Reference List
1. Sorokin L.I. Svarivaemost zharoprochnyh splavov, primenyaemyh v aviatsionnyh gazoturbinnyh dvigatelyah [Bondability of the hot strength alloys applied in aviation gas turbine engines] // Svarochnoe proizvodstvo. 1997. №4. S. 4–11.
2. Lomberg B.S., Ovsepyan S.V., Bakradze M.M., Mazalov I.S. Vysokozharoprochnye deformirue-mye nikelevye splavy dlya perspektivnyh gazoturbinnyh dvigatelej i gazoturbinnyh ustanovok [High-heat resisting deformable nickel alloys for perspective gas turbine engines and gas turbine units] // Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 98–103.
3. Moiseev S.A., Latyshev V.B. Zharoprochnye svarivaemye splavy dlya uzlov statora sovremennyh i perspektivnyh aviatsionnyh GTD [Heat resisting welded alloys for nodes of stator of modern and perspective aviation GTE] // Aviatsionnye materialy i tekhnologii. 2003. №1. S. 152–157.
4. Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii [Tendencies and reference points of innovative development of Russia]: sb. nauch.-inform. mater. 3-e izd. M.: VIAM, 2015. 720 s.
5. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravleniya razvitiya tekhnologij proizvodstva zharoprochnyh materialov dlya aviatsionnogo dvigatelestroeniya [The priority directions of development of production technologies of heat resisting materials for aviation engine building] // Problemy chernoj metallurgii i materialovedeniya. 2013. №3. S. 47–54.
6. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Litejnye zharoprochnye nikelevye splavy dlya perspektivnyh aviatsionnyh GTD [Cast heat resisting nickel alloys for perspective aviation GTE] // Tekhnologiya legkih splavov. 2007. №2. S. 6–16.
7. Evgenov A.G., Rogalev A.M., Nerush S.V., Mazalov I.S. Issledovanie svojstv splava EP648, poluchennogo metodom selektivnogo lazernogo splavleniya metallicheskih poroshkov [A study of properties of EP648 alloy manufactured by the selective laser sintering of metal powders] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 02. Available at: http://www.viam-works.ru (accessed: March 21, 2018). DOI: 10.18577/2307-6046-2015-0-2-2-2.
8. Kablov E.N., Evgenov A.G., Ospennikova O.G., Semenov B.I. i dr. Metalloporoshkovye kom-pozitsii zharoprochnogo splava EP648 proizvodstva FGUP «VIAM» GNTS RF v tekhnologiyah selektivnogo lazernogo splavleniya, lazernoj gazoporoshkovoj naplavki i vysokotochnogo litya polimerov, napolnennyh metallicheskimi poroshkami [Metalpowder compositions of EP648 hot strength alloy of production of VIAM Federal State Unitary Enterprise of GNTs Russian Federation in technologies of the selection laser fusing, laser gazoporoshkovy welding and high-precision molding of the polymers filled with metal powders] // Izvestiya vysshih uchebnyh zavedenij. Mashinostroenie. 2016. №9 (678). S. 62–80.
9. Evgenov A.G., Rogalev A.M., Karachevtsev F.N., Mazalov I.S. Vliyanie goryachego izostatiche-skogo pressovaniya i termicheskoj obrabotki na svojstva splava EP648, sintezirovannogo metodom selektivnogo lazernogo splavleniya [Influence of hot isostatic pressing and thermal processing on properties of alloy ЭП648 synthesized by method of the selection laser fusing] // Tekhnologiya mashinostroeniya. 2015. №9. S. 11–16.
10. Lomberg B.S., Moiseev S.A. Zharoprochnye i deformiruemye splavy dlya sovremennyh i perspektivnyh GTD [Heat resisting and deformable alloys for modern and perspective GTE] // Vse materialy. Entsiklopedicheskij spravochnik. 2007. №6. S. 2–5.
11. Solntsev S.S., Shvagireva V.V., Isaeva N.V., Soloveva G.A. Zharostojkoe pokrytie dlya zashhity vysokoprochnyh slozhnolegirovannyh nikelevyh splavov ot vysokotemperaturnoj gazovoj korrozii [High temperature coating for protection of high-strength complex alloyed of nickel alloys of high-temperature gas corrosion] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 04. Available at: http://www.viam-works.ru (accessed: March 21, 2018).DOI: 10.18577/2307-6046-2014-0-6-4-4.
12. Lomberg B.S., Kapitanenko D.V., Mazalov I.S., Bubnov M.V. Tekhnologicheskie parametry polucheniya detalej holodnoj shtampovkoj iz listovyh zagotovok zharoprochnyh splavov VZH159, VZH171 i vysokoprochnogo splava VZH172 [Technological parameters of receiving details cold forming from sheet preparations of hot strength alloys VZh159, VZh171 and VZh172 high-strength alloy] // Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem. 2015. №8. S. 14–19.
13. Mazalov I.S., Evgenov A.G., Prager S.M. Perspektivy primeneniya zharoprochnogo strukturnostabilnogo splava VZh159 dlya additivnogo proizvodstva vysokotemperaturnyh detalej GTD [Perspectives of heat resistant structurally stable alloy VZh159 application for additive production of high-temperature parts of GTE] // Aviacionnye materialy i tehnologii. 2016. №S1. S. 3–7. DOI: 10.18577/2071-9140-2016-0-S1-3-7.
14. Evgenov A.G., Gorbovec M.A., Prager S.M. Struktura i mehanicheskie svojstva zharoprochnyh splavov VZh159 i EP648, poluchennyh metodom selektivnogo lazernogo splavleniya [Structure and mechanical properties of heat resistant alloys VZh159 and EP648, prepared by selective laser fusing] // Aviacionnye materialy i tehnologii. 2016. №S1. S. 8–15. DOI: 10.18577/2071-9140-2016-0-S1-8-15.
15. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Lomberg B.S., Ovsepyan S.V., Bakradze M.M., Mazalov I.S. Vysokozharoprochnye deformirue-mye nikelevye splavy dlya perspektivnyh gazoturbinnyh dvigatelej i gazoturbinnyh ustanovok [High-heat resisting deformable nickel alloys for perspective gas turbine engines and gas turbine units] // Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 98–103.
3. Moiseev S.A., Latyshev V.B. Zharoprochnye svarivaemye splavy dlya uzlov statora sovremennyh i perspektivnyh aviatsionnyh GTD [Heat resisting welded alloys for nodes of stator of modern and perspective aviation GTE] // Aviatsionnye materialy i tekhnologii. 2003. №1. S. 152–157.
4. Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii [Tendencies and reference points of innovative development of Russia]: sb. nauch.-inform. mater. 3-e izd. M.: VIAM, 2015. 720 s.
5. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravleniya razvitiya tekhnologij proizvodstva zharoprochnyh materialov dlya aviatsionnogo dvigatelestroeniya [The priority directions of development of production technologies of heat resisting materials for aviation engine building] // Problemy chernoj metallurgii i materialovedeniya. 2013. №3. S. 47–54.
6. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Litejnye zharoprochnye nikelevye splavy dlya perspektivnyh aviatsionnyh GTD [Cast heat resisting nickel alloys for perspective aviation GTE] // Tekhnologiya legkih splavov. 2007. №2. S. 6–16.
7. Evgenov A.G., Rogalev A.M., Nerush S.V., Mazalov I.S. Issledovanie svojstv splava EP648, poluchennogo metodom selektivnogo lazernogo splavleniya metallicheskih poroshkov [A study of properties of EP648 alloy manufactured by the selective laser sintering of metal powders] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 02. Available at: http://www.viam-works.ru (accessed: March 21, 2018). DOI: 10.18577/2307-6046-2015-0-2-2-2.
8. Kablov E.N., Evgenov A.G., Ospennikova O.G., Semenov B.I. i dr. Metalloporoshkovye kom-pozitsii zharoprochnogo splava EP648 proizvodstva FGUP «VIAM» GNTS RF v tekhnologiyah selektivnogo lazernogo splavleniya, lazernoj gazoporoshkovoj naplavki i vysokotochnogo litya polimerov, napolnennyh metallicheskimi poroshkami [Metalpowder compositions of EP648 hot strength alloy of production of VIAM Federal State Unitary Enterprise of GNTs Russian Federation in technologies of the selection laser fusing, laser gazoporoshkovy welding and high-precision molding of the polymers filled with metal powders] // Izvestiya vysshih uchebnyh zavedenij. Mashinostroenie. 2016. №9 (678). S. 62–80.
9. Evgenov A.G., Rogalev A.M., Karachevtsev F.N., Mazalov I.S. Vliyanie goryachego izostatiche-skogo pressovaniya i termicheskoj obrabotki na svojstva splava EP648, sintezirovannogo metodom selektivnogo lazernogo splavleniya [Influence of hot isostatic pressing and thermal processing on properties of alloy ЭП648 synthesized by method of the selection laser fusing] // Tekhnologiya mashinostroeniya. 2015. №9. S. 11–16.
10. Lomberg B.S., Moiseev S.A. Zharoprochnye i deformiruemye splavy dlya sovremennyh i perspektivnyh GTD [Heat resisting and deformable alloys for modern and perspective GTE] // Vse materialy. Entsiklopedicheskij spravochnik. 2007. №6. S. 2–5.
11. Solntsev S.S., Shvagireva V.V., Isaeva N.V., Soloveva G.A. Zharostojkoe pokrytie dlya zashhity vysokoprochnyh slozhnolegirovannyh nikelevyh splavov ot vysokotemperaturnoj gazovoj korrozii [High temperature coating for protection of high-strength complex alloyed of nickel alloys of high-temperature gas corrosion] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 04. Available at: http://www.viam-works.ru (accessed: March 21, 2018).DOI: 10.18577/2307-6046-2014-0-6-4-4.
12. Lomberg B.S., Kapitanenko D.V., Mazalov I.S., Bubnov M.V. Tekhnologicheskie parametry polucheniya detalej holodnoj shtampovkoj iz listovyh zagotovok zharoprochnyh splavov VZH159, VZH171 i vysokoprochnogo splava VZH172 [Technological parameters of receiving details cold forming from sheet preparations of hot strength alloys VZh159, VZh171 and VZh172 high-strength alloy] // Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem. 2015. №8. S. 14–19.
13. Mazalov I.S., Evgenov A.G., Prager S.M. Perspektivy primeneniya zharoprochnogo strukturnostabilnogo splava VZh159 dlya additivnogo proizvodstva vysokotemperaturnyh detalej GTD [Perspectives of heat resistant structurally stable alloy VZh159 application for additive production of high-temperature parts of GTE] // Aviacionnye materialy i tehnologii. 2016. №S1. S. 3–7. DOI: 10.18577/2071-9140-2016-0-S1-3-7.
14. Evgenov A.G., Gorbovec M.A., Prager S.M. Struktura i mehanicheskie svojstva zharoprochnyh splavov VZh159 i EP648, poluchennyh metodom selektivnogo lazernogo splavleniya [Structure and mechanical properties of heat resistant alloys VZh159 and EP648, prepared by selective laser fusing] // Aviacionnye materialy i tehnologii. 2016. №S1. S. 8–15. DOI: 10.18577/2071-9140-2016-0-S1-8-15.
15. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2.
УДК 669.293
Kolodyazhny M.Yu.1, Bondarenko Yu.A.1, Yechin A.B.1
FORMATION OF THE NATURAL-COMPOSITE STRUCTURE OF LARGE-SIZED BILLETS OF THE EUTECTIC ALLOY OF THE Nb–Si SYSTEM
A study of the directional crystallization process in a liquid metal cooler and also the features of the formation of a natural composite structure of a eutectic niobium-silicon alloy with respect to the production of large-sized gripping details for test machines are presented
Keywords: directional crystallization, heat-resistant eutectic alloy, structure of a eutectic composite, silicide niobium, solid solution of niobium, short-term strength, long-lasting strength.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Nauchnyj vklad v sozdanie aviatsionnyh dvigatelej [Scientific contribution to creation of aircraft engines] / pod obshch. red. V.A. Skibina, V.I. Solonina. M.: Mashinostroenie, 2000. 750 s.
3. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
4. Kablov E.N., Bondarenko Yu.A., Kablov D.E. Osobennosti struktury i zharoprochnyh svojstv monokristallov <001> vysokorenievogo nikelevogo zharoprochnogo splava, poluchennogo v usloviyah vysokogradientnoj napravlennoj kristallizacii [Features of structure and heat resisting properties of monocrystals of <001> high-rhenium nickel hot strength alloys received in the conditions of high-gradient directed crystallization] // Aviacionnye materialy i tehnologii. 2011. №4. S. 25–31.
5. Kablov E.N., Bondarenko Yu.A., Echin A.B., Surova V.A., Kablov D.E. Razvitie protsessa napravlennoj kristallizatsii lopatok GTD iz zharoprochnyh i intermetallidnyh splavov s monokristallicheskoj strukturoj [Development of process of the directed crystallization of blades of GTE from heat resisting and intermetallidny alloys with single-crystal structure] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. № SP2. S. 20–25.
6. Litye lopatki gazoturbinnyh dvigatelej: splavy, tekhnologii, pokrytiya [Cast blades of gas turbine engines: alloys, technologies, coverings] / pod obshch. red. E.N. Kablova. 2-e izd. M.: Nauka, 2006. 632 s.
7. Bondarenko Yu.A., Kablov E.N. Napravlennaya kristallizatsiya zharoprochnyh splavov s povyshennym temperaturnym gradientom [The directed crystallization of hot strength alloys with the raised temperature gradient] // Metallovedenie i termicheskaya obrabotka metallov. 2002. №7. S. 20–23.
8. Bondarenko Yu.A., Echin A.B., Kolodyazhnyj M.Yu. Osobennosti formirovaniya estestvenno-kompozitsionnoj struktury evtekticheskogo splava Nb–Si pri napravlennoj kristallizatsii v zhidkometallicheskom ohladitele [Features of forming of natural and composition structure of Nb–Si eutectic alloy at the directed crystallization in liquidly metal cooler] // Elektrometallurgiya. 2016. № 11. S. 2–8.
9. Ospennikova O.G., Podieiachev V.N., Stoliankov Yu.V. Tugoplavkie splavy dlia novoi tekhniki [Refractory alloys for innovative equipment] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №10. St. 05. Available at: http://www.viam-works.ru (accessed: June 13, 2018). DOI:10.18577/2307-6046-2016-0-10-5-5.
10. Bewlay B.P., Jackson M.R., Sutliffe J.A. et al. Solidification processing of high temperature intermetallic eutectic-based alloys // Material Science and Engineering. Part 2. 1995. 192/193. P. 534–543.
11. Bewlay B.P., Jackson M.R., Lipsitt H.A. The Balance of Mechanical and Environmental Properties of a Multielement Niobium-Niobium Silicide-Based In-Situ Composite // Metallurgical and Materials Transactions А. 1996. Vol. 27A. No. 12. P. 3801–3808.
12. Bewlay B.P., Jackson M.R., Subramanian P.R. Processing high temperature refractory metal-silicide in situ composites // Journal of Metals. 1999. Vol. 51. No. 4. P. 32–36.
13. Guo X.P., Guan P., Ding X. et al. Unidirectional Solidification of a Nbss/Nb5Si3 in-situ Composite // Materials Science Forum. 2005. Vol. 475–479. P. 745–748.
14. Chang K.M., Bewlay B.P., Sattley J.A., Jackson M.R. Cold-crusible directional solidification of refractory Metal-Silucide Eutectics // Journal of Metals. 1992. Vol. 44. No. 6. P. 59.
15. Bewlay B.P., Jackson M.R., Gigliotti M.F.X. Niobium silicide high temperature in situ composites // Intermetallic Compounds, Principles and Practice. 2002. Vol. 3. P. 541–560.
16. Tanaka R., Kasama A., Fujikura M. et al. Research and development of niobium-based superalloys for hot components of gas turbines // Proceeding of the International Gas Turbine Congress. 2003. P. 1–5.
17. Bewlay B.P., Jackson M.R., Zhao J.C. et al. Ultra high temperature Nb–Silicide-based composites // MRS Bulletin. 2003. Vol. 28. No. 9. P. 646–653.
18. Bondarenko YU.A., Kablov E.N., Pankratov V.A. Osobennosti polucheniya rabochih lopatok malogabaritnyh GTD iz splavov tipa VKLS-20 [Features of receiving working blades of small-size GTE from VKLS-20 type alloys] // Aviatsionnaya promyshlennost'. 1993. №2. S. 9–10.
19. Bondarenko YU.A., Echin A.B., Surova V.A., Narskij A.R. Vliyanie temperaturnogo gradienta na strukturu zharoprochnogo splava pri ego napravlennoj kristallizatsii [Influence of temperature gradient on hot strength alloy structure at its directed crystallization] // Litejshchik Rossii. 2014. №5. S. 24–28.
20. Echin A.B., Bondarenko YU.A., Bityutskaya O.N., Narskij A.R. Vliyanie peremennogo temperaturnogo gradienta na dispersnost struktury Re-soderzhashchego splava [Influence of variable temperature gradient on dispersion of structure of Re-containing alloy] // Litejnoe proizvodstvo. 2015. №10. S. 33–36.
21. Bondarenko YU.A. Perspektivy tekhnologii napravlennoj kristallizatsii krupnogabaritnyh rabochih lopatok nazemnyh gazovyh turbin [Perspectives of technology of the directed crystallization of large-size working blades of land gas turbines] // Materialovedenie. 1998. №7. S. 21–25.
22. Bondarenko YU.A., Kolodyazhnyj M.YU., Echin A.B., Narskij A.R. Napravlennaya kristallizatsiya, struktura i svojstva estestvennogo kompozita na osnove evtektiki Nb–Si na rabochie temperatury do 1350°S dlya lopatok GTD [Directional solidification, structure and properties of natural composite based on eutectic Nb–Si at working temperatures up to 1350°С degrees for the blades of gas turbine engines] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №1. St. 01. Available at: http://www.viam-works.ru (accessed: 13 June, 2018.). DOI: 10.18577/2307-6046-2018-0-1-1-1.
23. Kablov E.N., Bondarenko Ju.A., Echin A.B. Razvitie tehnologii napravlennoj kristallizacii litejnyh vysokozharoprochnyh splavov s peremennym upravljaemym temperaturnym gradientom [Development of technology of cast superalloys directional solidification with variable controlled temperature gradient] // Aviacionnye materialy i tehnologii. 2017. №S. S. 24–38. DOI: 10.18577/2071-9140-2017-0-S-24-38.
2. Nauchnyj vklad v sozdanie aviatsionnyh dvigatelej [Scientific contribution to creation of aircraft engines] / pod obshch. red. V.A. Skibina, V.I. Solonina. M.: Mashinostroenie, 2000. 750 s.
3. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
4. Kablov E.N., Bondarenko Yu.A., Kablov D.E. Osobennosti struktury i zharoprochnyh svojstv monokristallov <001> vysokorenievogo nikelevogo zharoprochnogo splava, poluchennogo v usloviyah vysokogradientnoj napravlennoj kristallizacii [Features of structure and heat resisting properties of monocrystals of <001> high-rhenium nickel hot strength alloys received in the conditions of high-gradient directed crystallization] // Aviacionnye materialy i tehnologii. 2011. №4. S. 25–31.
5. Kablov E.N., Bondarenko Yu.A., Echin A.B., Surova V.A., Kablov D.E. Razvitie protsessa napravlennoj kristallizatsii lopatok GTD iz zharoprochnyh i intermetallidnyh splavov s monokristallicheskoj strukturoj [Development of process of the directed crystallization of blades of GTE from heat resisting and intermetallidny alloys with single-crystal structure] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. № SP2. S. 20–25.
6. Litye lopatki gazoturbinnyh dvigatelej: splavy, tekhnologii, pokrytiya [Cast blades of gas turbine engines: alloys, technologies, coverings] / pod obshch. red. E.N. Kablova. 2-e izd. M.: Nauka, 2006. 632 s.
7. Bondarenko Yu.A., Kablov E.N. Napravlennaya kristallizatsiya zharoprochnyh splavov s povyshennym temperaturnym gradientom [The directed crystallization of hot strength alloys with the raised temperature gradient] // Metallovedenie i termicheskaya obrabotka metallov. 2002. №7. S. 20–23.
8. Bondarenko Yu.A., Echin A.B., Kolodyazhnyj M.Yu. Osobennosti formirovaniya estestvenno-kompozitsionnoj struktury evtekticheskogo splava Nb–Si pri napravlennoj kristallizatsii v zhidkometallicheskom ohladitele [Features of forming of natural and composition structure of Nb–Si eutectic alloy at the directed crystallization in liquidly metal cooler] // Elektrometallurgiya. 2016. № 11. S. 2–8.
9. Ospennikova O.G., Podieiachev V.N., Stoliankov Yu.V. Tugoplavkie splavy dlia novoi tekhniki [Refractory alloys for innovative equipment] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №10. St. 05. Available at: http://www.viam-works.ru (accessed: June 13, 2018). DOI:10.18577/2307-6046-2016-0-10-5-5.
10. Bewlay B.P., Jackson M.R., Sutliffe J.A. et al. Solidification processing of high temperature intermetallic eutectic-based alloys // Material Science and Engineering. Part 2. 1995. 192/193. P. 534–543.
11. Bewlay B.P., Jackson M.R., Lipsitt H.A. The Balance of Mechanical and Environmental Properties of a Multielement Niobium-Niobium Silicide-Based In-Situ Composite // Metallurgical and Materials Transactions А. 1996. Vol. 27A. No. 12. P. 3801–3808.
12. Bewlay B.P., Jackson M.R., Subramanian P.R. Processing high temperature refractory metal-silicide in situ composites // Journal of Metals. 1999. Vol. 51. No. 4. P. 32–36.
13. Guo X.P., Guan P., Ding X. et al. Unidirectional Solidification of a Nbss/Nb5Si3 in-situ Composite // Materials Science Forum. 2005. Vol. 475–479. P. 745–748.
14. Chang K.M., Bewlay B.P., Sattley J.A., Jackson M.R. Cold-crusible directional solidification of refractory Metal-Silucide Eutectics // Journal of Metals. 1992. Vol. 44. No. 6. P. 59.
15. Bewlay B.P., Jackson M.R., Gigliotti M.F.X. Niobium silicide high temperature in situ composites // Intermetallic Compounds, Principles and Practice. 2002. Vol. 3. P. 541–560.
16. Tanaka R., Kasama A., Fujikura M. et al. Research and development of niobium-based superalloys for hot components of gas turbines // Proceeding of the International Gas Turbine Congress. 2003. P. 1–5.
17. Bewlay B.P., Jackson M.R., Zhao J.C. et al. Ultra high temperature Nb–Silicide-based composites // MRS Bulletin. 2003. Vol. 28. No. 9. P. 646–653.
18. Bondarenko YU.A., Kablov E.N., Pankratov V.A. Osobennosti polucheniya rabochih lopatok malogabaritnyh GTD iz splavov tipa VKLS-20 [Features of receiving working blades of small-size GTE from VKLS-20 type alloys] // Aviatsionnaya promyshlennost'. 1993. №2. S. 9–10.
19. Bondarenko YU.A., Echin A.B., Surova V.A., Narskij A.R. Vliyanie temperaturnogo gradienta na strukturu zharoprochnogo splava pri ego napravlennoj kristallizatsii [Influence of temperature gradient on hot strength alloy structure at its directed crystallization] // Litejshchik Rossii. 2014. №5. S. 24–28.
20. Echin A.B., Bondarenko YU.A., Bityutskaya O.N., Narskij A.R. Vliyanie peremennogo temperaturnogo gradienta na dispersnost struktury Re-soderzhashchego splava [Influence of variable temperature gradient on dispersion of structure of Re-containing alloy] // Litejnoe proizvodstvo. 2015. №10. S. 33–36.
21. Bondarenko YU.A. Perspektivy tekhnologii napravlennoj kristallizatsii krupnogabaritnyh rabochih lopatok nazemnyh gazovyh turbin [Perspectives of technology of the directed crystallization of large-size working blades of land gas turbines] // Materialovedenie. 1998. №7. S. 21–25.
22. Bondarenko YU.A., Kolodyazhnyj M.YU., Echin A.B., Narskij A.R. Napravlennaya kristallizatsiya, struktura i svojstva estestvennogo kompozita na osnove evtektiki Nb–Si na rabochie temperatury do 1350°S dlya lopatok GTD [Directional solidification, structure and properties of natural composite based on eutectic Nb–Si at working temperatures up to 1350°С degrees for the blades of gas turbine engines] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №1. St. 01. Available at: http://www.viam-works.ru (accessed: 13 June, 2018.). DOI: 10.18577/2307-6046-2018-0-1-1-1.
23. Kablov E.N., Bondarenko Ju.A., Echin A.B. Razvitie tehnologii napravlennoj kristallizacii litejnyh vysokozharoprochnyh splavov s peremennym upravljaemym temperaturnym gradientom [Development of technology of cast superalloys directional solidification with variable controlled temperature gradient] // Aviacionnye materialy i tehnologii. 2017. №S. S. 24–38. DOI: 10.18577/2071-9140-2017-0-S-24-38.
3.
category: Composite materials
УДК 669.018.95
Bolshakova A.N.1, Efimochkin I.U.1, Dmitrieva V.V.1, Burkovskay N.P.1
DISPERSION-STRENGTHENED COMPOSITION MATERIALS BASED ON MOLYBDENUM (review)
The present review describes fabrication, applying and reinforced of refractory compounds of dispersion-strengthened composition materials based on molybdenum. The most effective method to obtain dispersion-strengthened composite materials is powder metallurgy. It is shown that improvement of mechanical properties and heat resistance of metal matrix composition materials based on molybdenum can be achieved by introduction of dopants to matrix material and by using of combination of strengthening particles of intermetallide compounds (silicides) and as well as oxides of refractory compounds.
Keywords: composition materials, dispersion strengthening, mechanical alloying, powder metallurgy.
Reference List
1. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their pro-cessing for the period till 2030] // Aviatsionnye materialy i tekhnologii. 2012. №S. S. 7–17.
2. Kablov E.N., Shchetanov B.V., Grashhenkov D.V., Shavnev A.A., Nyafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al–SiC [Metalmatrix composite materials on the basis of Al–SiC] // Aviacionnye materialy i tehnologii. 2012. №S. S. 373–380.
3. Kablov E.N., Tolorajya V.N. VIAM – osnovopolozhnik otechestvennoj tehnologii litya monokristallicheskih turbinnyh lopatok GTD i GTU [VIAM – the founder of domestic casting technology of single-crystal turbine blades of GTE and GTU] // Aviacionnye materialy i tehnologii. 2012. №S. S. 105–117.
4. Kablov E.N., Svetlov I.L., Petrushin N.V. Nikelevye zharoprochnye splavy dlja lopatok s napravlen-noj i monokristallicheskoj strukturoj (chast I) [Nickel hot strength alloys for blades with the directed and single-crystal structure (part I)] // Materialovedenie. 1997. №4. S. 32−39.
5. Kablov E.N., Sidorov V.V., Kablov D.E., Rigin V.E., Goryunov A.V. Sovremennye tehnologii polucheniya prutkovyh zagotovok iz litejnyh zharoprochnyh splavov novogo pokoleniya [Modern technologies of receiving the bar stock preparations from foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 97–105.
6. Bazyleva O.A., Arginbaeva E.G., Turenko E.Yu. Vysokotemperaturnye intermetallidnye splavy dlya detaley GTD [The high-temperature intermetallic alloys for parts of gas-turbine engines] // Aviacionnye materialy i tehnologii. 2013. №3. S. 26–31.
7. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: February 02, 2018).
8. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: February 02, 2018).
9. Kablov E.N., Shchetanov B.V., Shavnev A.A. i dr. Svojstva i primenenie vysokonapolnennogo metallomatrichnogo kompozitsionnogo materiala Al–SiC [Properties and application of the high-filled metalmatrix Al–SIC composite material] // Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. 2011. №3–1. S. 56–59.
10. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennykh zharoprochnykh materialov i tekhnologii ikh proizvodstva dlia aviatsionnogo dvigatelestroeniia [Creation of modern heat resisting materials and technologies of their production for aviation engine building] // Krylya Rodiny. 2012. №3–4. S. 34–38.
11. Babich B.N., Vershinina E.V., Glebov V.A. i dr. Metallicheskie poroshki i poroshkovye materialy: spravochnik [Metal powders and powder materials: directory]. M.: EKOMET, 2005. 520 s.
12. Ivanov D.A., Sitnikov A.I., Shlyapin S.D. Dispersnouprochnennye voloknistye i sloistye neorganicheskie kompozitsionnye materialy: ucheb. posobie [Dispersnouprochnennye fibrous and layered inorganic composite materials: manual]. M.: MGIU, 2010. 230 s.
13. Ilyushchenko A.F. 50 let poroshkovoj metallurgii Belarusi. Istoriya, dostizheniya, perspektivy [50 years of powder metallurgy of Belarus. History, achievements, perspectives]. Minsk, 2010. S. 127–150.
14. Novikov I.I. Teoriya termicheskoj obrabotki metallov: uchebnik [Theory of thermal processing of metals: textbook]. 3-e izd., ispr. i dop. M.: Metallurgiya, 1978. 392 s.
15. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
16. Estrin B.M. Proizvodstvo i primenenie kontroliruemyh atmosfer pri termicheskoj obrabotke stali [Production and application of the controlled atmospheres at thermal steel working]. 2-e izd. pererab. i dop. M.: Metallurgiya, 1973. 392 s.
17. In-situ compounding process of preparing silicon carbide particle reinforced molybdenum silicide based composite material: pat. 1344810 CN; publ. 17.04.02.
18. Perepezko J.H., Sakidja R., Kim S. Phase Stability in Processing and Microstructure Control in High Temperature Mo–Si–B Alloys // MRS Symposium Proceedings. 2001. Vol. 646. No. 4–5. P. 1–12.
19. Method for enhancing the oxidation resistance of a molybdenum alloy, and a method of making a molybdenum alloy: pat. 5595616 US; publ. 21.01.97.
20. Oxidation resistant molybdenum alloy: pat. 5693156 US; publ. 02.12.97.
21. Rosales I., Schneibel J.H. Stoichiometry and Mechanical Properties of Mo3Si // Intermetallics. 2000. Vol. 8. P. 885–889.
22. Oxidation resistant coatings for molybdenum silicide-based composite articles: pat. 6497968 US; publ. 24.12.02.
23. Oxidation resistant coatings for molybdenum silicide-based composite articles: pat. 7622150 US; publ. 24.11.09.
24. Manufacturing method of Mo–Si–B alloy with high oxidation resistance and product of Mo–Si–B alloy by using the same: pat. 20100106160 KR; publ. 08.05.12.
25. Drawin S. The European ULTMAT Project: Properties of New Mo and Nb Silicide Based Materials // MRS Symposium Proceedings. 2009. Vol. 1128. Paper 1128-U07-11. P. 1–6.
26. Mo–Si–B–W multi-phase composite material and preparation method thereof: pat. 102424928 CN; publ. 25.04.12.
27. Mo–Si–B-based alloy powder, raw metal material powder, and method for producing Mo–Si–B-based alloy powder: pat. 2013099791 WO; publ. 04.07.13
28. High temperature melting molybdenum-chromium-silicon alloys: pat. 5683524 US; publ. 04.11.97.
29. Ods Molybdenum-Silicon-Boron alloy: pat. 1664362 EP; publ. 01.02.12.
30. Process for the production of a molybdenum alloy: pat. 007187 U1 AT; publ. 25.11.04.
31. Molybden silicide material with high strength: pat. 9904170 SE; publ. 11.12.00.
32. Molybdenum silicide composite material: pat. 20110240911 US; publ. 06.10. 11.
33. Tretyakov V.I. Osnovy metallovedeniya i tekhnologiya proizvodstva spechennyh tverdyh splavov [Bases of metallurgical science and production technology of sintered hard alloys]. M.: Metallurgiya, 1976. 528 s.
34. Novikov I.I., Zolotorevskij V.S., Portnoj V.K. i dr. Metallovedenie: uchebnik v 2-h t. [Metallurgical science: the textbook in 2 vol.]. M.: Izd. dom MISiS, 2009. T. 1. 496 s.
35. ZHukov L.L., Plemyannikova I.M., Mironova M.N. Splavy dlya nagrevatelej [Alloys for heaters]. M.: Metallurgiya, 1985. 144 s.
36. Kablov E.N., Svetlov I.L., Petrushin N.V. Nikelevye zharoprochnye splavy dlya lit'ya lopatok s napravlennoj i monokristallicheskoj strukturoj. Ch. II [Nickel hot strength alloys for molding of blades with the directed and single-crystal structure. Р. II] // Materialovedenie. 1997. №5. S. 14–16.
37. Buntushkin V.P., Kablov E.N., Bazyleva O.A., Morozova G.I. Splavy na osnove alyuminidov nikelya [Alloys on the basis of nickel aluminides] // MiTOM. 1999. №1. S. 32–34.
2. Kablov E.N., Shchetanov B.V., Grashhenkov D.V., Shavnev A.A., Nyafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al–SiC [Metalmatrix composite materials on the basis of Al–SiC] // Aviacionnye materialy i tehnologii. 2012. №S. S. 373–380.
3. Kablov E.N., Tolorajya V.N. VIAM – osnovopolozhnik otechestvennoj tehnologii litya monokristallicheskih turbinnyh lopatok GTD i GTU [VIAM – the founder of domestic casting technology of single-crystal turbine blades of GTE and GTU] // Aviacionnye materialy i tehnologii. 2012. №S. S. 105–117.
4. Kablov E.N., Svetlov I.L., Petrushin N.V. Nikelevye zharoprochnye splavy dlja lopatok s napravlen-noj i monokristallicheskoj strukturoj (chast I) [Nickel hot strength alloys for blades with the directed and single-crystal structure (part I)] // Materialovedenie. 1997. №4. S. 32−39.
5. Kablov E.N., Sidorov V.V., Kablov D.E., Rigin V.E., Goryunov A.V. Sovremennye tehnologii polucheniya prutkovyh zagotovok iz litejnyh zharoprochnyh splavov novogo pokoleniya [Modern technologies of receiving the bar stock preparations from foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 97–105.
6. Bazyleva O.A., Arginbaeva E.G., Turenko E.Yu. Vysokotemperaturnye intermetallidnye splavy dlya detaley GTD [The high-temperature intermetallic alloys for parts of gas-turbine engines] // Aviacionnye materialy i tehnologii. 2013. №3. S. 26–31.
7. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: February 02, 2018).
8. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: February 02, 2018).
9. Kablov E.N., Shchetanov B.V., Shavnev A.A. i dr. Svojstva i primenenie vysokonapolnennogo metallomatrichnogo kompozitsionnogo materiala Al–SiC [Properties and application of the high-filled metalmatrix Al–SIC composite material] // Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. 2011. №3–1. S. 56–59.
10. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennykh zharoprochnykh materialov i tekhnologii ikh proizvodstva dlia aviatsionnogo dvigatelestroeniia [Creation of modern heat resisting materials and technologies of their production for aviation engine building] // Krylya Rodiny. 2012. №3–4. S. 34–38.
11. Babich B.N., Vershinina E.V., Glebov V.A. i dr. Metallicheskie poroshki i poroshkovye materialy: spravochnik [Metal powders and powder materials: directory]. M.: EKOMET, 2005. 520 s.
12. Ivanov D.A., Sitnikov A.I., Shlyapin S.D. Dispersnouprochnennye voloknistye i sloistye neorganicheskie kompozitsionnye materialy: ucheb. posobie [Dispersnouprochnennye fibrous and layered inorganic composite materials: manual]. M.: MGIU, 2010. 230 s.
13. Ilyushchenko A.F. 50 let poroshkovoj metallurgii Belarusi. Istoriya, dostizheniya, perspektivy [50 years of powder metallurgy of Belarus. History, achievements, perspectives]. Minsk, 2010. S. 127–150.
14. Novikov I.I. Teoriya termicheskoj obrabotki metallov: uchebnik [Theory of thermal processing of metals: textbook]. 3-e izd., ispr. i dop. M.: Metallurgiya, 1978. 392 s.
15. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
16. Estrin B.M. Proizvodstvo i primenenie kontroliruemyh atmosfer pri termicheskoj obrabotke stali [Production and application of the controlled atmospheres at thermal steel working]. 2-e izd. pererab. i dop. M.: Metallurgiya, 1973. 392 s.
17. In-situ compounding process of preparing silicon carbide particle reinforced molybdenum silicide based composite material: pat. 1344810 CN; publ. 17.04.02.
18. Perepezko J.H., Sakidja R., Kim S. Phase Stability in Processing and Microstructure Control in High Temperature Mo–Si–B Alloys // MRS Symposium Proceedings. 2001. Vol. 646. No. 4–5. P. 1–12.
19. Method for enhancing the oxidation resistance of a molybdenum alloy, and a method of making a molybdenum alloy: pat. 5595616 US; publ. 21.01.97.
20. Oxidation resistant molybdenum alloy: pat. 5693156 US; publ. 02.12.97.
21. Rosales I., Schneibel J.H. Stoichiometry and Mechanical Properties of Mo3Si // Intermetallics. 2000. Vol. 8. P. 885–889.
22. Oxidation resistant coatings for molybdenum silicide-based composite articles: pat. 6497968 US; publ. 24.12.02.
23. Oxidation resistant coatings for molybdenum silicide-based composite articles: pat. 7622150 US; publ. 24.11.09.
24. Manufacturing method of Mo–Si–B alloy with high oxidation resistance and product of Mo–Si–B alloy by using the same: pat. 20100106160 KR; publ. 08.05.12.
25. Drawin S. The European ULTMAT Project: Properties of New Mo and Nb Silicide Based Materials // MRS Symposium Proceedings. 2009. Vol. 1128. Paper 1128-U07-11. P. 1–6.
26. Mo–Si–B–W multi-phase composite material and preparation method thereof: pat. 102424928 CN; publ. 25.04.12.
27. Mo–Si–B-based alloy powder, raw metal material powder, and method for producing Mo–Si–B-based alloy powder: pat. 2013099791 WO; publ. 04.07.13
28. High temperature melting molybdenum-chromium-silicon alloys: pat. 5683524 US; publ. 04.11.97.
29. Ods Molybdenum-Silicon-Boron alloy: pat. 1664362 EP; publ. 01.02.12.
30. Process for the production of a molybdenum alloy: pat. 007187 U1 AT; publ. 25.11.04.
31. Molybden silicide material with high strength: pat. 9904170 SE; publ. 11.12.00.
32. Molybdenum silicide composite material: pat. 20110240911 US; publ. 06.10. 11.
33. Tretyakov V.I. Osnovy metallovedeniya i tekhnologiya proizvodstva spechennyh tverdyh splavov [Bases of metallurgical science and production technology of sintered hard alloys]. M.: Metallurgiya, 1976. 528 s.
34. Novikov I.I., Zolotorevskij V.S., Portnoj V.K. i dr. Metallovedenie: uchebnik v 2-h t. [Metallurgical science: the textbook in 2 vol.]. M.: Izd. dom MISiS, 2009. T. 1. 496 s.
35. ZHukov L.L., Plemyannikova I.M., Mironova M.N. Splavy dlya nagrevatelej [Alloys for heaters]. M.: Metallurgiya, 1985. 144 s.
36. Kablov E.N., Svetlov I.L., Petrushin N.V. Nikelevye zharoprochnye splavy dlya lit'ya lopatok s napravlennoj i monokristallicheskoj strukturoj. Ch. II [Nickel hot strength alloys for molding of blades with the directed and single-crystal structure. Р. II] // Materialovedenie. 1997. №5. S. 14–16.
37. Buntushkin V.P., Kablov E.N., Bazyleva O.A., Morozova G.I. Splavy na osnove alyuminidov nikelya [Alloys on the basis of nickel aluminides] // MiTOM. 1999. №1. S. 32–34.
4.
УДК 621.775.8
Zimichev A.M.1, Varrik N.M.1, Sumin V.A.1
TO A QUESTION OF FORMATION OF CONTINUOUS REFRACTORY ALUMINA-BASED FIBERS
High-temperature heat-insulating materials on the basis of heat-resistant fibers are one of priority objects of development of materials scientists now. The alumina continuous fibers used for manufacture of the flexible high-temperature sealing heat-insulating materials working at temperatures over 1500°C, such as fabrics, braidings and cords. Flexibility of the continuous fibers received by sol-gel method depends on a number of factors. Structure and composition of the ceramic fiber received by this multistage process are depend on the quality of the used precursors, conditions of process of evaporation of spinning solution, the form of orifices and conditions of extrusion of green fibers from solution and conditions of the subsequent heat treatment during of which there are chemical and phase transformations occuring. In this paper influence of characteristics of spinning solution and some conditions of formation of a fiber on structure and properties of the received alumina fibers w
Keywords: continuous ceramic fibers, sol-gel method, precursor, alumina, high temperature heat-insulating material.
Reference List
1. Kablov E.N. Materialy novogo pokolenija – osnova innovacij, tehnologicheskogo liderstva i nacionalnoj bezopasnosti Rossii [Materials of new generation – basis of innovations, technological leadership and national security of Russia] // Intellekt i tehnologii. 2016. №2 (14). S. 16–21.
2. Babashov V.G., Varrik N.M. Teploizolyatsionnye materialy dlya sovremennyh letatel'nyh apparatov [Thermal insulation materials for modern planes] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2016. №3 (21). St. 01. Available at: http://materialsnews.ru (accessed: June 4, 2018).
3. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: June 4, 2018).
4. Bunsell A.R. Oxide Fibers for High-Temperature Reinforcement and Insulation // J. Miner., Metalls and Mater. Sci. 2005. Vol. 57 (2). P. 48–51.
5. Non-frangible alumina-silica fibers: pat. US4047965; publ. 13.09.77.
6. Balinova Yu.A., Lyulyukina G.Yu., Kirienko T.A., Arakcheeva L.V. Svojstva promyshlennogo silikazolya i vozmozhnost' ego dorabotki dlya izgotovleniya alyumosilikatnyh materialov [Properties industrial silikazolya and possibility of its completion for manufacturing of silica-alumina materials] // Steklo i keramika. 2013. №12. S. 33–36.
7. Kirienko T.A., Balinova Yu.A. Fiziko-himicheskie svojstva mnogokomponentnyh rastvorov dlya keramicheskih materialov, soderzhashhih polivinilovyj spirt [Physical and chemical properties of multicomponent solutions for ceramic materials containing polyvinyl alcohol] // Aviacionnye materialy i tehnologii. 2014. №1. S. 34–38. DOI: 10.18577/2071-9140-2014-0-1-34-38.
8. Kirienko T.A., Balinova Yu.A. Vliyanie atmosfernoj vlazhnosti na reologiju tonkih sloev koncentrirovannyh vodnyh rastvorov sistemy «neorganicheskie soli–organicheskij polimer» [Influence of atmospheric humidity on a rheology of thin layers of the concentrated water solutions of system «inorganic salts–organic polymer»] // Aviacionnye materialy i tehnologii. 2014. №2. S. 56–58. DOI: 10.18577/2071-9140-2014-0-2-56-58.
9. Zimichev A.M., Varrik N.M., SHCHeglova T.M., Nikitina V.YU. Issledovanie prochnostnyh svojstv rovinga iz volokon sostava 85%Al2O3–15%SiO2 pri temperature 1000°S [Research of strength properties of roving from structure fibers 85%Al2O3–15%SiO2 at temperature 1000°С] // Vse materialy. Entsiklopedicheskij spravochnik s Prilozheniem «Kommentarii k standartam, TU, sertifikatam». 2015. №1. S. 30–35.
10. Zimichev A.M., Balinova Yu.A., Varrik N.M. K voprosu o module uprugosti volokon iz tugoplavkih oksidov [To a question of the elasticity module of refractory oxides fibers] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2014. №10. St. 06. Available at: http://www.viam-works.ru (accessed: June 4, 2018). DOI: 10.18577/2307-6046-2014-0-10-6-6.
11. Zimichev A.M., Varrik N.M., Sumin A.V., Lyulyukina G.YU. K voprosu o poluchenii nepreryvnyh oksidnyh volokon zol-gel metodom [To question of receiving continuous oksidny fibers sol-gel method] // Vse materialy. Entsiklopedicheskij spravochnik s Prilozheniem «Kommentarii k standartam, TU, sertifikatam». 2015. №12. C. 12–17.
12. Zimichev A.M., Varrik N.M., Sumin A.V. K voprosu polucheniya keramicheskih nitej na osnove tugoplavkih oksidov [To the question of receiving ceramic threads on the basis of high-melting oxides] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2016. №3 (21). St. 09. Available at: http://materialsnews.ru (accessed: June 4, 2018).
13. Zimichev A.M., Varrik N.M., Sumin A.V. Issledovanie protsessa ekstruzii nepreryvnyh tugoplavkih volokon [Research of the process of extrusion of continuous high-melting fibers] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №1 (49). Ct. 06. Available at: http://www.viam-works.ru (accessed: June 4, 2018). DOI: 10.18577/2307-6046-2017-0-1-6-6.
14. Kablov E.N. Konstruktsionnye i funktsionalnye materialy – osnova ekonomicheskogo i nauchno-tekhnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
15. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
2. Babashov V.G., Varrik N.M. Teploizolyatsionnye materialy dlya sovremennyh letatel'nyh apparatov [Thermal insulation materials for modern planes] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2016. №3 (21). St. 01. Available at: http://materialsnews.ru (accessed: June 4, 2018).
3. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: June 4, 2018).
4. Bunsell A.R. Oxide Fibers for High-Temperature Reinforcement and Insulation // J. Miner., Metalls and Mater. Sci. 2005. Vol. 57 (2). P. 48–51.
5. Non-frangible alumina-silica fibers: pat. US4047965; publ. 13.09.77.
6. Balinova Yu.A., Lyulyukina G.Yu., Kirienko T.A., Arakcheeva L.V. Svojstva promyshlennogo silikazolya i vozmozhnost' ego dorabotki dlya izgotovleniya alyumosilikatnyh materialov [Properties industrial silikazolya and possibility of its completion for manufacturing of silica-alumina materials] // Steklo i keramika. 2013. №12. S. 33–36.
7. Kirienko T.A., Balinova Yu.A. Fiziko-himicheskie svojstva mnogokomponentnyh rastvorov dlya keramicheskih materialov, soderzhashhih polivinilovyj spirt [Physical and chemical properties of multicomponent solutions for ceramic materials containing polyvinyl alcohol] // Aviacionnye materialy i tehnologii. 2014. №1. S. 34–38. DOI: 10.18577/2071-9140-2014-0-1-34-38.
8. Kirienko T.A., Balinova Yu.A. Vliyanie atmosfernoj vlazhnosti na reologiju tonkih sloev koncentrirovannyh vodnyh rastvorov sistemy «neorganicheskie soli–organicheskij polimer» [Influence of atmospheric humidity on a rheology of thin layers of the concentrated water solutions of system «inorganic salts–organic polymer»] // Aviacionnye materialy i tehnologii. 2014. №2. S. 56–58. DOI: 10.18577/2071-9140-2014-0-2-56-58.
9. Zimichev A.M., Varrik N.M., SHCHeglova T.M., Nikitina V.YU. Issledovanie prochnostnyh svojstv rovinga iz volokon sostava 85%Al2O3–15%SiO2 pri temperature 1000°S [Research of strength properties of roving from structure fibers 85%Al2O3–15%SiO2 at temperature 1000°С] // Vse materialy. Entsiklopedicheskij spravochnik s Prilozheniem «Kommentarii k standartam, TU, sertifikatam». 2015. №1. S. 30–35.
10. Zimichev A.M., Balinova Yu.A., Varrik N.M. K voprosu o module uprugosti volokon iz tugoplavkih oksidov [To a question of the elasticity module of refractory oxides fibers] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2014. №10. St. 06. Available at: http://www.viam-works.ru (accessed: June 4, 2018). DOI: 10.18577/2307-6046-2014-0-10-6-6.
11. Zimichev A.M., Varrik N.M., Sumin A.V., Lyulyukina G.YU. K voprosu o poluchenii nepreryvnyh oksidnyh volokon zol-gel metodom [To question of receiving continuous oksidny fibers sol-gel method] // Vse materialy. Entsiklopedicheskij spravochnik s Prilozheniem «Kommentarii k standartam, TU, sertifikatam». 2015. №12. C. 12–17.
12. Zimichev A.M., Varrik N.M., Sumin A.V. K voprosu polucheniya keramicheskih nitej na osnove tugoplavkih oksidov [To the question of receiving ceramic threads on the basis of high-melting oxides] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2016. №3 (21). St. 09. Available at: http://materialsnews.ru (accessed: June 4, 2018).
13. Zimichev A.M., Varrik N.M., Sumin A.V. Issledovanie protsessa ekstruzii nepreryvnyh tugoplavkih volokon [Research of the process of extrusion of continuous high-melting fibers] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №1 (49). Ct. 06. Available at: http://www.viam-works.ru (accessed: June 4, 2018). DOI: 10.18577/2307-6046-2017-0-1-6-6.
14. Kablov E.N. Konstruktsionnye i funktsionalnye materialy – osnova ekonomicheskogo i nauchno-tekhnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
15. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
5.
category: Composite materials
УДК 678.8
A.V. Hrulkov1, Timoshkov P.N.1, Yazvenko L.N.1, Usacheva M.N.1
COMPOSITE MATERIALS FOR MEDICAL AND BIOLOGICAL PURPOSES (review)
Restrictions due to sanctions imposed against the Russian Federation led to a certain shortage of raw materials and equipment, which forced to create its own production of PCM structures – in particular, for promising materials for medical and biological purposes.
In this review, the advantages of composite materials in comparison with metal and ceramic implants and prostheses are discussed, promising directions of using PCM for biomedical applications in prosthetics and implantation, material requirements, problems of biomedical composite materials.
Keywords: composite materials, biomaterial, implant, prosthesis, carbon fiber, medical equipment.
Reference List
1. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their pro-cessing for the period till 2030] // Aviatsionnye materialy i tekhnologii. 2012. №S. S. 7–17.
2. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Kablov E.N. Iz chego sdelat budushhee? Materialy novogo pokolenija, tehnologii ih sozdanija i pere-rabotki – osnova innovacij [Of what to make the future? Materials of new generation, technology of their creation and processing – basis of innovations] // Krylja Rodiny. 2016. №5. S. 8–18.
5. Daskovskij M.I., Doriomedov M.S., Sevastyanov D.V., Skripachev S.YU. Polimernye biokompozity – perspektivy primeneniya (obzor) [Polymer biocomposites – prospects of application (review)] // Aviatsionnye materialy i tekhnologii. 2017. №3. S. 74–80. DOI: 10.18577/2071-9140-2017-0-3-74-80.
6. Sevastyanov D.V., Sutubalov I.V., Daskovskij M.I., SHein E.A. Polimernye biokompozity na osnove biorazlagaemyh svyazuyushchih, armirovannyh naturalnymi voloknami (obzor) [Polymer biocomposites based on biodegradable binders reinforced by natural fibers (review)] // Aviatsionnye materialy i tekhnologii. 2017. №4. S. 42–50. DOI: 10.18577/2071-9140-2017-0-4-42-50.
7. Bebionic: [Elektronnyj resurs]. Germany, Duderstadt. URL: http://bebionic.com/ (accessed: March 27, 2018).
8. Rentgenovskie flyuorograficheskie apparaty: katalog kompanii «AMIKO rentgenotekhnika» [X-ray fluorographic devices: company catalog «AMIKO rentgenotekhnik»]. M.: GU RosNII IT i AP, 2011. 9 s.
9. Duppenbecker P.M., Wehner J., Renz W. et al. Gradient transparent RF housing for simultaneous PET/MRI using carbon fiber composites // Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) (Anaheim, CA, USA, October 27–November 3, 2012). 2012. P. 3478–3480.
10. Inspirit Medical Solutions: [Elektronnyj resurs]. URL: https://www.inspiritmed.com/ (accessed: March 27, 2018).
11. Shtilman M.I. Polimery mediko-biologicheskogo naznacheniya [Polymers of medicobiological assignment]. M.: Akademkniga, 2006. 400 s.
12. Uglerod-uglerodnyj kompozitsionnyj material [Carbon-carbon composite material]: pat. 2391118 Ros. Federatsiya. №2008137112/15; zayavl. 17.09.08; opubl. 10.06.10.
13. Andreeva A.V. Osnovy fizikohimii i tekhnologii kompozitov:. ucheb. posobie dlya vuzov [Bases of fizikokhimiya and technology of composites: the manual for higher education institutions]. M.: IPRZHR, 2001. 192 s.
14. Volova T.G. Materialy dlya meditsiny, kletochnoj i tkanevoj inzhenerii: elektron. ucheb. posobie [Materials for medicine, cellular and fabric engineering: electronic manual]. Krasnoyarsk: IPK SFU, 2009. 1 elektron. opt. disk.
15. Salernitano E., Migliaresi C. Composite materials for biomedical applications: a review // Journal of Applied Biomaterials & Biomechanics. 2003. Vol. 1. P. 3–18.
16. Ramakrishna S., Mayer J., Wintermantel E., Leong K.W. Biomedical applications of polymer-composite materials: a review // Composites Science and Technology. 2001. Vol. 61. P. 1189–1224.
17. De Santis R., Prisco D., Apicella A. et al. Carbon fiber post adhesion to resin luting cement in the restoration of endodontically treated teeth // Journal of Materials Science Materials in Medicine. 2000. Vol. 11. P. 201–206.
18. Petersen R. Carbon fiber biocompatibility for implants // Fibers. 2016. Vol. 4 (1). P. 1.
19. Ali M.S., French T.A., Hastings G.W. et al. Carbon fibre composite bone plates // The Journal of Bone and Joint Surgery. 1990. Vol. 72. P. 586–591.
20. Pimberton D.J., McKibbin B., Savage R. et al. Carbon-fibre reinforced plates for problem factures // The Journal of Bone and Joint Surgery. 1992. Vol. 74. P. 88–92.
21. Tarallo L., Mugnai R., Adani R. et al. A new volar plate made of carbon-fiber-reinforced polyetheretherketon for distal radius fracture: analysis of 40 cases // Journal of Orthopaedics and Traumatology. 2014. Vol. 15. P. 277–283.
22. Blazewicz M. Carbon materials in the treatment of soft and hard tissue injuries // European Cells & Materials. 2001. Vol. 2. P. 21–29.
23. Medes D.G., Angel D., Grishkan A., Boss J. Histological response to carbon fiber // The Journal of Bone and Joint Surgery. 1985. Vol. 67. P. 645–649.
24. Ratner B.D., Hoffman A.S., Schoen F.J. Composites // Biomaterials Science. 2nd ed. 2004. P. 183.
25. Pilliar R.M., Blackwell R., Mancnab I., Cameron H.U. Carbon fiber-reinforced bone cement in orthopedic surgery // Journal of Biomedical Materials Research. 1976. Vol. 10. P. 893–906.
26. Saha S., Pal S. Mechanical characterization of commercially made carbon-fiber-reinforced polymethylmethacrylate // Journal of Biomedical Materials Research. 1986. Vol. 20. P. 817–826.
27. Huang Z.-M., Fujihara K. Stiffness and strength design of composite bone plates // Composites Science and Technology. 2005. Vol. 65. P. 73–85.
28. Bagheri Z.S., Avval P.T., Bougherara H. et al. Biomechanical analysis of a new carbon fiber/flax/epoxy bone fracture plate shows less stress shielding compared to a standard clinical metal plate. Transactions of the ASME // Journal of Biomedical Engineering. 2014. Vol. 136. P. 136–139.
29. Tekhnologiya polimerov mediko-biologicheskogo naznacheniya. Polimery prirodnogo proiskhozhdeniya: ucheb. posobie [Technology of polymers of medicobiological assignment. Polymers of natural origin: manual] / pod red. M.I. Shtilmana. M.: BINOM. Laboratoriya znanij, 2015. 328 s.
2. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Kablov E.N. Iz chego sdelat budushhee? Materialy novogo pokolenija, tehnologii ih sozdanija i pere-rabotki – osnova innovacij [Of what to make the future? Materials of new generation, technology of their creation and processing – basis of innovations] // Krylja Rodiny. 2016. №5. S. 8–18.
5. Daskovskij M.I., Doriomedov M.S., Sevastyanov D.V., Skripachev S.YU. Polimernye biokompozity – perspektivy primeneniya (obzor) [Polymer biocomposites – prospects of application (review)] // Aviatsionnye materialy i tekhnologii. 2017. №3. S. 74–80. DOI: 10.18577/2071-9140-2017-0-3-74-80.
6. Sevastyanov D.V., Sutubalov I.V., Daskovskij M.I., SHein E.A. Polimernye biokompozity na osnove biorazlagaemyh svyazuyushchih, armirovannyh naturalnymi voloknami (obzor) [Polymer biocomposites based on biodegradable binders reinforced by natural fibers (review)] // Aviatsionnye materialy i tekhnologii. 2017. №4. S. 42–50. DOI: 10.18577/2071-9140-2017-0-4-42-50.
7. Bebionic: [Elektronnyj resurs]. Germany, Duderstadt. URL: http://bebionic.com/ (accessed: March 27, 2018).
8. Rentgenovskie flyuorograficheskie apparaty: katalog kompanii «AMIKO rentgenotekhnika» [X-ray fluorographic devices: company catalog «AMIKO rentgenotekhnik»]. M.: GU RosNII IT i AP, 2011. 9 s.
9. Duppenbecker P.M., Wehner J., Renz W. et al. Gradient transparent RF housing for simultaneous PET/MRI using carbon fiber composites // Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) (Anaheim, CA, USA, October 27–November 3, 2012). 2012. P. 3478–3480.
10. Inspirit Medical Solutions: [Elektronnyj resurs]. URL: https://www.inspiritmed.com/ (accessed: March 27, 2018).
11. Shtilman M.I. Polimery mediko-biologicheskogo naznacheniya [Polymers of medicobiological assignment]. M.: Akademkniga, 2006. 400 s.
12. Uglerod-uglerodnyj kompozitsionnyj material [Carbon-carbon composite material]: pat. 2391118 Ros. Federatsiya. №2008137112/15; zayavl. 17.09.08; opubl. 10.06.10.
13. Andreeva A.V. Osnovy fizikohimii i tekhnologii kompozitov:. ucheb. posobie dlya vuzov [Bases of fizikokhimiya and technology of composites: the manual for higher education institutions]. M.: IPRZHR, 2001. 192 s.
14. Volova T.G. Materialy dlya meditsiny, kletochnoj i tkanevoj inzhenerii: elektron. ucheb. posobie [Materials for medicine, cellular and fabric engineering: electronic manual]. Krasnoyarsk: IPK SFU, 2009. 1 elektron. opt. disk.
15. Salernitano E., Migliaresi C. Composite materials for biomedical applications: a review // Journal of Applied Biomaterials & Biomechanics. 2003. Vol. 1. P. 3–18.
16. Ramakrishna S., Mayer J., Wintermantel E., Leong K.W. Biomedical applications of polymer-composite materials: a review // Composites Science and Technology. 2001. Vol. 61. P. 1189–1224.
17. De Santis R., Prisco D., Apicella A. et al. Carbon fiber post adhesion to resin luting cement in the restoration of endodontically treated teeth // Journal of Materials Science Materials in Medicine. 2000. Vol. 11. P. 201–206.
18. Petersen R. Carbon fiber biocompatibility for implants // Fibers. 2016. Vol. 4 (1). P. 1.
19. Ali M.S., French T.A., Hastings G.W. et al. Carbon fibre composite bone plates // The Journal of Bone and Joint Surgery. 1990. Vol. 72. P. 586–591.
20. Pimberton D.J., McKibbin B., Savage R. et al. Carbon-fibre reinforced plates for problem factures // The Journal of Bone and Joint Surgery. 1992. Vol. 74. P. 88–92.
21. Tarallo L., Mugnai R., Adani R. et al. A new volar plate made of carbon-fiber-reinforced polyetheretherketon for distal radius fracture: analysis of 40 cases // Journal of Orthopaedics and Traumatology. 2014. Vol. 15. P. 277–283.
22. Blazewicz M. Carbon materials in the treatment of soft and hard tissue injuries // European Cells & Materials. 2001. Vol. 2. P. 21–29.
23. Medes D.G., Angel D., Grishkan A., Boss J. Histological response to carbon fiber // The Journal of Bone and Joint Surgery. 1985. Vol. 67. P. 645–649.
24. Ratner B.D., Hoffman A.S., Schoen F.J. Composites // Biomaterials Science. 2nd ed. 2004. P. 183.
25. Pilliar R.M., Blackwell R., Mancnab I., Cameron H.U. Carbon fiber-reinforced bone cement in orthopedic surgery // Journal of Biomedical Materials Research. 1976. Vol. 10. P. 893–906.
26. Saha S., Pal S. Mechanical characterization of commercially made carbon-fiber-reinforced polymethylmethacrylate // Journal of Biomedical Materials Research. 1986. Vol. 20. P. 817–826.
27. Huang Z.-M., Fujihara K. Stiffness and strength design of composite bone plates // Composites Science and Technology. 2005. Vol. 65. P. 73–85.
28. Bagheri Z.S., Avval P.T., Bougherara H. et al. Biomechanical analysis of a new carbon fiber/flax/epoxy bone fracture plate shows less stress shielding compared to a standard clinical metal plate. Transactions of the ASME // Journal of Biomedical Engineering. 2014. Vol. 136. P. 136–139.
29. Tekhnologiya polimerov mediko-biologicheskogo naznacheniya. Polimery prirodnogo proiskhozhdeniya: ucheb. posobie [Technology of polymers of medicobiological assignment. Polymers of natural origin: manual] / pod red. M.I. Shtilmana. M.: BINOM. Laboratoriya znanij, 2015. 328 s.
6.
category: Composite materials
УДК 667.621
Mukhametov R.R.1, Petrova A.P.1
PROPERTIES OF EPOXY BINDERS AND THEIR PROCESSING IN POLYMERS COMPOSITION MATERIALS
The article describes the properties of epoxy binders for processing in polymer composition materials using different technologies. The differences between solution and non-solution are shown. Adhesive binders are particularly highlighted. Influence type of filler on structure and water resistance of polymer composition materials is shown. The temperature range of the processing binders is established. The different technologies of receiving polymer composition materials are shown. The differences between properties of binders processed by different technology are shown.
Keywords: binder, solution binder, solvent-free binder, non-solution binder, adhesive binder, mechanical properties, rheological properties.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Materialy novogo pokolenija [Materials of new generation] // Zashhita i bezopasnost. 2014. №4. S. 28–29.
3. Kablov E.N. Iz chego sdelat budushhee? Materialy novogo pokolenija, tehnologii ih sozdanija i pere-rabotki – osnova innovacij [Of what to make the future? Materials of new generation, technology of their creation and processing – basis of innovations] // Krylja Rodiny. 2016. №5. S. 8–18.
4. Muhamedov R.R., Petrova A.P., Ponomarenko S.A., Ahmadieva K.R., Pavlyuk B.F. Vliyanie tkanyh voloknistyh napolnitelej razlichnyh tipov na svojstva otverzhdennogo svyazuyushchego VS-2526K [Influence of woven fibrous fillers of various types on properties of cured binder VS-2526K] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №3 (63). St. 04. Available at: http//www.viam-works.ru (accessed: April 13, 2018). DOI: 10.18577/2307-6046-2018-0-3-4-4.
5. Muhamedov R.R., Petrova A.P., Ponomarenko S.A., Dolgova E.V., Pavlyuk B.F. Svojstva svyazuyushchego EDT-69N i PKM na ego osnove [Properties of binder EDT-69N and polymer composites on its basis] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №4 (64). St. 04. Available at: http//www.viam-works.ru (accessed: April 13, 2018). DOI: 10.18577/2307-6046-2018-0-4-4-4.
6. Babin A. N. Svyazujushhie dlya polimernyh kompozicionnyh materialov novogo pokoleniya [Binding for polymeric composite materials of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 11. Available at: http://www.viam-works.ru (accessed: April 13, 2018).
7. Postnova M.V., Postnov V.I. Opyt razvitiya bezavtoklavnyh metodov formovaniya PKM [Development experience out-of-autoclave methods of formation PCM]// Trudy VIAM: ehlektron. nauch.-tekhnich. zhurn. 2014. №4. St. 06. Available at: http://www.viam-works.ru (accessed: April 13, 2018). DOI 10.18577/2307-6046-2014-0-4-6-6.
8. Panina N.N., Kim M.A., Gurevich YA.M., Grigorev M.M. i dr. Svyazuyushchie dlya bezavtoklavnogo formovaniya izdelij iz polimernyh kompozitsionnyh materialov [Binding for without avtoklavny formation of products from polymeric composite materials] // Klei. Germetiki. Tekhnologii. 2013. №10. S. 18–27.
9. Kablov E.N., Chursova L.V., Babin A.N., Muhametov R.R., Panina N.N. Razrabotki FGUP «VIAM» v oblasti rasplavnyh svyazuyushchih dlya polimernyh kompozitsionnyh materialov [Development of VIAM Federal State Unitary Enterprise in the field of molten binding for polymeric composite materials] // Polimernye materialy i tekhnologii. 2016. T. 2. №2. S. 37–42.
10. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svyazujushhie dlya perspektivnyh metodov izgotovleniya PKM novogo pokoleniya [Melt binding for perspective methods of production of PCM of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
11. Chursova L.V., Panina N.N., Grebeneva T.A., Terekhov I.V., Donetskij K.I. Termoreaktivnye svyazuyushchie i polimernye bindery dlya polimernyh kompozitsionnyh materialov, poluchaemyh metodom vakuumnoj infuzii [Thermosetting binding and polymeric Bendery for the polymeric composite materials received by method of vacuum infusion] // Plasticheskie massy. 2018. №1–2. S. 57–63.
12. Chursova L.V., Dushin M.I., Kogan D.I. i dr. Plenochnye svyazuyushchie dlya RFI-tekhnologii [Film binding for RFI technology] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 63–66.
13. Kogan D.I., Chursova L.V., Petrova A.P. Tekhnologiya izgotovleniya PKM sposobom propitki plenochnym svyazuyushchim [PKM manufacturing techniques in the way of impregnation by the film binding] // Klei. Germetiki. Tekhnologii. 2011. №6. S. 25–29.
14. Kogan D.I., CHursova L.V., Petrova A.P. Polimernye kompozitsionnye materialy, poluchennye putem propitki plenochnym svyazuyushchim [The polymeric composite materials received by impregnation by the film binding] // Vse materialy. Entsiklopedicheskij spravochnik. 2011. №11. S. 2–6.
15. Lukina N.F., Dementeva L.A., Petrova A.P. i dr. Kleevye svyazuyushchie dlya detalej iz PKM sotovoj konstruktsii [Glue binding for details from PKM of cellular design] // Klei. Germetiki. Tekhnologii. 2016. №5. S. 12–16.
16. Petrovа A.P., Dementyevа L.A., Lukina N.F., Chursova L.V. Kleevye svjazujushhie dlja polimernyh kompozicionnyh materialov na ugle- i steklonapolniteljah [Adhesive binders for polymer composite materials based on carbon- and glass fillers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 11. Available at: http://www.viam-works.ru (accessed: April 13, 2018). DOI: 10.18577/2307-6046-2015-0-9-11-11.
17. Petrova A.P., Lukina N.F., Melnikov D.A., Besednov K.L., Pavlyuk B.F. Issledovanie svojstv otverzhdennyh kleevyh svyazuyushchih [Research of properties of cured adhesive binders] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №10 (58). St. 06. Available at:http//www.viam-works.ru (accessed: April 13, 2018). DOI: 10.18577/2307-6046-2017-0-10-6-6.
18. Petrova A.P., Lukina N.F., Mel'nikov D.A., Besednov K.L., Pavlyuk B.F. Mekhanicheskie svojstva otverzhdennyh kleevyh svyazuyushchih [Mechanical properties of the otverzhdenny glue binding] // Klei. Germetiki. Tekhnologii. 2018. №3. S. 14–17.
19. Petrova A.P., Malysheva T.V. Klei, kleevye svyazuyushchie i kleevye prepregi: uchebnoe posobie [Glues, glue binding and glue prepregs: manual] / pod obshch. red. E.N. Kablova. M.: VIAM, 2017. 472 s.
2. Kablov E.N. Materialy novogo pokolenija [Materials of new generation] // Zashhita i bezopasnost. 2014. №4. S. 28–29.
3. Kablov E.N. Iz chego sdelat budushhee? Materialy novogo pokolenija, tehnologii ih sozdanija i pere-rabotki – osnova innovacij [Of what to make the future? Materials of new generation, technology of their creation and processing – basis of innovations] // Krylja Rodiny. 2016. №5. S. 8–18.
4. Muhamedov R.R., Petrova A.P., Ponomarenko S.A., Ahmadieva K.R., Pavlyuk B.F. Vliyanie tkanyh voloknistyh napolnitelej razlichnyh tipov na svojstva otverzhdennogo svyazuyushchego VS-2526K [Influence of woven fibrous fillers of various types on properties of cured binder VS-2526K] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №3 (63). St. 04. Available at: http//www.viam-works.ru (accessed: April 13, 2018). DOI: 10.18577/2307-6046-2018-0-3-4-4.
5. Muhamedov R.R., Petrova A.P., Ponomarenko S.A., Dolgova E.V., Pavlyuk B.F. Svojstva svyazuyushchego EDT-69N i PKM na ego osnove [Properties of binder EDT-69N and polymer composites on its basis] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №4 (64). St. 04. Available at: http//www.viam-works.ru (accessed: April 13, 2018). DOI: 10.18577/2307-6046-2018-0-4-4-4.
6. Babin A. N. Svyazujushhie dlya polimernyh kompozicionnyh materialov novogo pokoleniya [Binding for polymeric composite materials of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 11. Available at: http://www.viam-works.ru (accessed: April 13, 2018).
7. Postnova M.V., Postnov V.I. Opyt razvitiya bezavtoklavnyh metodov formovaniya PKM [Development experience out-of-autoclave methods of formation PCM]// Trudy VIAM: ehlektron. nauch.-tekhnich. zhurn. 2014. №4. St. 06. Available at: http://www.viam-works.ru (accessed: April 13, 2018). DOI 10.18577/2307-6046-2014-0-4-6-6.
8. Panina N.N., Kim M.A., Gurevich YA.M., Grigorev M.M. i dr. Svyazuyushchie dlya bezavtoklavnogo formovaniya izdelij iz polimernyh kompozitsionnyh materialov [Binding for without avtoklavny formation of products from polymeric composite materials] // Klei. Germetiki. Tekhnologii. 2013. №10. S. 18–27.
9. Kablov E.N., Chursova L.V., Babin A.N., Muhametov R.R., Panina N.N. Razrabotki FGUP «VIAM» v oblasti rasplavnyh svyazuyushchih dlya polimernyh kompozitsionnyh materialov [Development of VIAM Federal State Unitary Enterprise in the field of molten binding for polymeric composite materials] // Polimernye materialy i tekhnologii. 2016. T. 2. №2. S. 37–42.
10. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svyazujushhie dlya perspektivnyh metodov izgotovleniya PKM novogo pokoleniya [Melt binding for perspective methods of production of PCM of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
11. Chursova L.V., Panina N.N., Grebeneva T.A., Terekhov I.V., Donetskij K.I. Termoreaktivnye svyazuyushchie i polimernye bindery dlya polimernyh kompozitsionnyh materialov, poluchaemyh metodom vakuumnoj infuzii [Thermosetting binding and polymeric Bendery for the polymeric composite materials received by method of vacuum infusion] // Plasticheskie massy. 2018. №1–2. S. 57–63.
12. Chursova L.V., Dushin M.I., Kogan D.I. i dr. Plenochnye svyazuyushchie dlya RFI-tekhnologii [Film binding for RFI technology] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 63–66.
13. Kogan D.I., Chursova L.V., Petrova A.P. Tekhnologiya izgotovleniya PKM sposobom propitki plenochnym svyazuyushchim [PKM manufacturing techniques in the way of impregnation by the film binding] // Klei. Germetiki. Tekhnologii. 2011. №6. S. 25–29.
14. Kogan D.I., CHursova L.V., Petrova A.P. Polimernye kompozitsionnye materialy, poluchennye putem propitki plenochnym svyazuyushchim [The polymeric composite materials received by impregnation by the film binding] // Vse materialy. Entsiklopedicheskij spravochnik. 2011. №11. S. 2–6.
15. Lukina N.F., Dementeva L.A., Petrova A.P. i dr. Kleevye svyazuyushchie dlya detalej iz PKM sotovoj konstruktsii [Glue binding for details from PKM of cellular design] // Klei. Germetiki. Tekhnologii. 2016. №5. S. 12–16.
16. Petrovа A.P., Dementyevа L.A., Lukina N.F., Chursova L.V. Kleevye svjazujushhie dlja polimernyh kompozicionnyh materialov na ugle- i steklonapolniteljah [Adhesive binders for polymer composite materials based on carbon- and glass fillers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 11. Available at: http://www.viam-works.ru (accessed: April 13, 2018). DOI: 10.18577/2307-6046-2015-0-9-11-11.
17. Petrova A.P., Lukina N.F., Melnikov D.A., Besednov K.L., Pavlyuk B.F. Issledovanie svojstv otverzhdennyh kleevyh svyazuyushchih [Research of properties of cured adhesive binders] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №10 (58). St. 06. Available at:http//www.viam-works.ru (accessed: April 13, 2018). DOI: 10.18577/2307-6046-2017-0-10-6-6.
18. Petrova A.P., Lukina N.F., Mel'nikov D.A., Besednov K.L., Pavlyuk B.F. Mekhanicheskie svojstva otverzhdennyh kleevyh svyazuyushchih [Mechanical properties of the otverzhdenny glue binding] // Klei. Germetiki. Tekhnologii. 2018. №3. S. 14–17.
19. Petrova A.P., Malysheva T.V. Klei, kleevye svyazuyushchie i kleevye prepregi: uchebnoe posobie [Glues, glue binding and glue prepregs: manual] / pod obshch. red. E.N. Kablova. M.: VIAM, 2017. 472 s.
7.
УДК 678.4
Chaykun A.M.1, Alifanov E.V.1, Naumov I.S.1
ELASTOMERIC MATERIALS FOR USE IN FUEL AND OIL SYSTEMS (review)
The main types of fuel and oil resistant rubbers and feature of their application are described. Features of selection of elastomer for fuel and oil resistance sealants are shown. Characteristics of fuel and oil resistance rubbers of different types are given. The main types of fuel and oil resistant rubbers and raw rubbers, features of their application are described. Comparative characteristics of domestic fuel and oil resistant rubbers of mass application are provided. The processes occurring in the contact of rubbers with liquid aggressive working environment are described. Information on the last development in the field of creation of fuel and oil resistant materials is supplied.
Keywords: rubbers, raw rubbers, fuel, oil.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Rol himii v sozdanii materialov novogo pokoleniya dlya slozhnyh tekhnicheskih sistem [Chemistry role in creation of materials of new generation for complex technical systems] // HKH Mendeleevskij sezd po obshchej i prikladnoj himii: tez. dokl. v 5 t. Ekaterinburg: UrO RAN, 2016. S. 25–26.
3. Kablov E.N. Shestoy tekhnologicheskiy uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
4. Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi [History of aviation materials science. VIAM – 80 years: years and people] / pod obshh. red. E.N. Kablova. M.: VIAM, 2012. S. 346–348.
5. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Entsiklopedicheskiy spravochnik. 2008. №3. S. 2–14.
6. Bolshoy spravochnik rezinshchika v 2 ch [The big reference book for specialist in rubbers in 2 p.]. M.: Tekhinform, 2012. 1385 s.
7. Tekhnologiia reziny: retsepturostroenie i ispytaniia. Per. s angl. [Technology of rubber: retsep-turostroyeniye and tests. Trans. from Engl.] / pod red. Dzh.S. Dika. SPb.: Nauchnye osnovy i tekhnologii, 2010. 620 s.
8. Fediukin D.P., Makhlis F.A. Tekhnicheskie i tekhnologicheskie svoistva rezin [Engineering and technological properties of rubbers]. M.: Khimiia. 1985. 240 s.
9. Makhlis F.A., Fediukin D.L. Terminologicheskii spravochnik po rezine [Terminological directory on rubber]. M.: Khimiia, 1989. 400 s.
10. Kornev A.E., Bukanov A.M., Sheverdiaev O.N. Tekhnologiia elastomernykh materialov [Tech-nology of elastomeric materials]. M.: Istek, 2009. 502 s.
11. Agaiants I.M. Piat stoletii kauchuka i reziny [Five centuries of rubber and rubber]. M.: Modern-A. 2002. 432 s.
12. Koshelev F.F., Kornev A.E., Bukanov A.M. Obshchaia tekhnologiia reziny [General technology of rubber]. 4-e izd. M.: Khimiia, 1978. 528 s.
13. Ososhnik I.A., Shutilin Iu.F., Karmanova O.V. Proizvodstvo rezinovykh tekhnicheskikh izdelii [Production of rubber technical products] / pod obshch. red. Iu.F. Shutilina. Voronezh: Voronezh. gos. tekhnol. akad., 2007. 972 s.
14. Grishin B.S. Materialy rezinovoj promyshlennosti: informatsionno-analiticheskaya baza dannyh v 2 t.[Materials of rubber industry: information and analytical database in 2 vol.]. Kazan: Izd-vo KGTU, 2010. 1084 s.
15. Kauchuk i rezina. Nauka i tekhnologiia [Rubber and rubber. Science and technology] / pod red. Dzh. Marka, B. Ermana, F. Eiricha; per. s angl. / pod red. A.A. Berlina, Iu.L. Morozova. – Dolgo-prudnyi: Intellekt, 2011. 768 s.
16. Nudelman Z.N. Ftorkauchuki: osnovy, pererabotka, primenenie [Fluoroelastomers: bases, pro-cessing, application]. M.: PIF RIAS, 2007. 383 s.
17. Dik Dzh. S. Kak uluchshit rezinovye smesi. 1800 prakticheskikh rekomendatsii dlia resheniia problem. 2-e izd. Per. s angl. [How to improve rubber mixes. 1800 practical recommendations for the solution of problems. 2nd prod. Trans. from Engl.] / pod red. B.L. Smirnova. SPb.: Professiia, 2016. 352 s.
18. Chajkun A.M., Venediktova M.A., Eliseev O.A., Naumov I.S. Issledovanie toplivostojkih rezin na osnove butadien-nitrilnyh kauchukov, izgotovlennyh s primeneniem emulgatorov razlichnyh tipov [Research of oil resistance from basis butadiyen-nitrile rubbers made using emulsifiers of different types] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2014. №8. St. 09. URL: http://www.viam-works.ru (data obrashcheniya: 09.06.2018). DOI: 10.18577/2307-6046-2014-0-8-9-9.
19. Rumyantseva A.V. Morozo-, maslo-, benzostojkie kompozitsionnye materialy na osnove oksidnyh kauchukov: avtoref. dis. … kand. tekhn. Nauk [Cold-resistant, oilproof, petrolresistant composite materials on the basis of oksidny rubbers: thesis, cand. Sc. (Tech.)]]. SPb., 2018. 21s.
20. Chajkun A.M., Naumov I.S., Eliseeev O.A. Ftorsiloksanovye reziny: nekotorye aspekty primeneniya [Fluoro-silicone rubbers: some aspects of application] // Aviatsionnye materialy i tekhnologii. 2013. №2. S. 35–36.
21. Venediktova M.A., Naumov I.S., Chajkun A.M., Eliseev O.A. Sovremennye tendencii v oblasti ftorsiloksanovyh i siloksanovyh kauchukov i rezin na ih osnove (obzor) [Current trends in fluorosiloxane and siloxane rubbers and rubber compounds based thereon (review)] // Aviacionnye materialy i tehnologii. 2014. №S3. S. 17–24. DOI: 10.18577/2071-9140-2014-0-S3-17-24.
22. Chajkun A.M., Eliseev O.A. Sozdanie ftor-rezin uplotnitelnogo naznacheniya, rabotosposobnyh v srede topliv i masel v shirokom temperaturnom diapazone [Create of fluorine sealing rubbers working in the environment of fuels and oils in a wide temperature range] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2017. №1. St. 06. Available at: http://www.materialsnews.ru (accessed: June 09, 2018).
23. Chajkun A.M., Venediktova M.A., Eliseev O.A., Naumov I.S. Issledovanie izmeneniya svojstv serijnyh rezin na osnove razlichnyh kauchukov v standartizovannyh rabochih zhidkostyah [Investigation of properties changing of serial rubber compounds on the base of different rubbers in standardized working fluids] // Aviatsionnye materialy i tekhnologii. 2014. №S3. S. 35–41. DOI: 10.18577/2071-9140-2014-0-s3-35-41.
24. Chaykun A.M., Eliseev O.A., Naumov I.S., Venediktova M.A. Osobennosti postroeniya receptur dlya morozostojkih rezin [Compounding principles in the field of frost resistant rubbers] // Aviacionnye materialy i tehnologii. 2013. №3. S. 53–55.
25. Alifanov E.V., Chajkun A.M., Naumov I.S., Eliseev O.A. Elastomernye materialy povyshennoj teplostojkosti (obzor) [Elastomeric materials with high heat resistance (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №2 (50). St. 06. Available at: http://www.viam-works.ru (accessed: June 09, 2018). DOI: 10.18577/2307-6046-2017-0-2-6-6.
2. Kablov E.N. Rol himii v sozdanii materialov novogo pokoleniya dlya slozhnyh tekhnicheskih sistem [Chemistry role in creation of materials of new generation for complex technical systems] // HKH Mendeleevskij sezd po obshchej i prikladnoj himii: tez. dokl. v 5 t. Ekaterinburg: UrO RAN, 2016. S. 25–26.
3. Kablov E.N. Shestoy tekhnologicheskiy uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
4. Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi [History of aviation materials science. VIAM – 80 years: years and people] / pod obshh. red. E.N. Kablova. M.: VIAM, 2012. S. 346–348.
5. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Entsiklopedicheskiy spravochnik. 2008. №3. S. 2–14.
6. Bolshoy spravochnik rezinshchika v 2 ch [The big reference book for specialist in rubbers in 2 p.]. M.: Tekhinform, 2012. 1385 s.
7. Tekhnologiia reziny: retsepturostroenie i ispytaniia. Per. s angl. [Technology of rubber: retsep-turostroyeniye and tests. Trans. from Engl.] / pod red. Dzh.S. Dika. SPb.: Nauchnye osnovy i tekhnologii, 2010. 620 s.
8. Fediukin D.P., Makhlis F.A. Tekhnicheskie i tekhnologicheskie svoistva rezin [Engineering and technological properties of rubbers]. M.: Khimiia. 1985. 240 s.
9. Makhlis F.A., Fediukin D.L. Terminologicheskii spravochnik po rezine [Terminological directory on rubber]. M.: Khimiia, 1989. 400 s.
10. Kornev A.E., Bukanov A.M., Sheverdiaev O.N. Tekhnologiia elastomernykh materialov [Tech-nology of elastomeric materials]. M.: Istek, 2009. 502 s.
11. Agaiants I.M. Piat stoletii kauchuka i reziny [Five centuries of rubber and rubber]. M.: Modern-A. 2002. 432 s.
12. Koshelev F.F., Kornev A.E., Bukanov A.M. Obshchaia tekhnologiia reziny [General technology of rubber]. 4-e izd. M.: Khimiia, 1978. 528 s.
13. Ososhnik I.A., Shutilin Iu.F., Karmanova O.V. Proizvodstvo rezinovykh tekhnicheskikh izdelii [Production of rubber technical products] / pod obshch. red. Iu.F. Shutilina. Voronezh: Voronezh. gos. tekhnol. akad., 2007. 972 s.
14. Grishin B.S. Materialy rezinovoj promyshlennosti: informatsionno-analiticheskaya baza dannyh v 2 t.[Materials of rubber industry: information and analytical database in 2 vol.]. Kazan: Izd-vo KGTU, 2010. 1084 s.
15. Kauchuk i rezina. Nauka i tekhnologiia [Rubber and rubber. Science and technology] / pod red. Dzh. Marka, B. Ermana, F. Eiricha; per. s angl. / pod red. A.A. Berlina, Iu.L. Morozova. – Dolgo-prudnyi: Intellekt, 2011. 768 s.
16. Nudelman Z.N. Ftorkauchuki: osnovy, pererabotka, primenenie [Fluoroelastomers: bases, pro-cessing, application]. M.: PIF RIAS, 2007. 383 s.
17. Dik Dzh. S. Kak uluchshit rezinovye smesi. 1800 prakticheskikh rekomendatsii dlia resheniia problem. 2-e izd. Per. s angl. [How to improve rubber mixes. 1800 practical recommendations for the solution of problems. 2nd prod. Trans. from Engl.] / pod red. B.L. Smirnova. SPb.: Professiia, 2016. 352 s.
18. Chajkun A.M., Venediktova M.A., Eliseev O.A., Naumov I.S. Issledovanie toplivostojkih rezin na osnove butadien-nitrilnyh kauchukov, izgotovlennyh s primeneniem emulgatorov razlichnyh tipov [Research of oil resistance from basis butadiyen-nitrile rubbers made using emulsifiers of different types] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2014. №8. St. 09. URL: http://www.viam-works.ru (data obrashcheniya: 09.06.2018). DOI: 10.18577/2307-6046-2014-0-8-9-9.
19. Rumyantseva A.V. Morozo-, maslo-, benzostojkie kompozitsionnye materialy na osnove oksidnyh kauchukov: avtoref. dis. … kand. tekhn. Nauk [Cold-resistant, oilproof, petrolresistant composite materials on the basis of oksidny rubbers: thesis, cand. Sc. (Tech.)]]. SPb., 2018. 21s.
20. Chajkun A.M., Naumov I.S., Eliseeev O.A. Ftorsiloksanovye reziny: nekotorye aspekty primeneniya [Fluoro-silicone rubbers: some aspects of application] // Aviatsionnye materialy i tekhnologii. 2013. №2. S. 35–36.
21. Venediktova M.A., Naumov I.S., Chajkun A.M., Eliseev O.A. Sovremennye tendencii v oblasti ftorsiloksanovyh i siloksanovyh kauchukov i rezin na ih osnove (obzor) [Current trends in fluorosiloxane and siloxane rubbers and rubber compounds based thereon (review)] // Aviacionnye materialy i tehnologii. 2014. №S3. S. 17–24. DOI: 10.18577/2071-9140-2014-0-S3-17-24.
22. Chajkun A.M., Eliseev O.A. Sozdanie ftor-rezin uplotnitelnogo naznacheniya, rabotosposobnyh v srede topliv i masel v shirokom temperaturnom diapazone [Create of fluorine sealing rubbers working in the environment of fuels and oils in a wide temperature range] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2017. №1. St. 06. Available at: http://www.materialsnews.ru (accessed: June 09, 2018).
23. Chajkun A.M., Venediktova M.A., Eliseev O.A., Naumov I.S. Issledovanie izmeneniya svojstv serijnyh rezin na osnove razlichnyh kauchukov v standartizovannyh rabochih zhidkostyah [Investigation of properties changing of serial rubber compounds on the base of different rubbers in standardized working fluids] // Aviatsionnye materialy i tekhnologii. 2014. №S3. S. 35–41. DOI: 10.18577/2071-9140-2014-0-s3-35-41.
24. Chaykun A.M., Eliseev O.A., Naumov I.S., Venediktova M.A. Osobennosti postroeniya receptur dlya morozostojkih rezin [Compounding principles in the field of frost resistant rubbers] // Aviacionnye materialy i tehnologii. 2013. №3. S. 53–55.
25. Alifanov E.V., Chajkun A.M., Naumov I.S., Eliseev O.A. Elastomernye materialy povyshennoj teplostojkosti (obzor) [Elastomeric materials with high heat resistance (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №2 (50). St. 06. Available at: http://www.viam-works.ru (accessed: June 09, 2018). DOI: 10.18577/2307-6046-2017-0-2-6-6.
8.
category: Testing of materials and structures
УДК 620.1:678.8
Nikolaev E.V.1, Pavlov M.R.1, Andreeva N.P.1, Slavin A.V.1, Skirta A.A.1
INVESTIGATION OF THE AGING PROCESSES OF POLYMERIC COMPOSITE MATERIALS IN NATURAL CONDITIONS OF TROPICAL CLIMATE OF NORTH AMERICA
On the example of polymer composite materials of three types: carbonic fiber, fibreglasses and organic fiber, for aviation purposes, a study was made of the influence of the combination of climatic factors in the weathering of the tropical climate of North America on the firmness of their strength characteristics at normal and higher temperatures, and structural effects climatic effects is carried out.
The paper presents the results of Arizona-test (tropical dry climate) and Florida-test (tropical wet climate).
Keywords: polymeric composite materials, climatic factors, aging, structural transformations, strength characteristics of polymer composite materials.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Gurtovnik I.G., Sportsmen V.N. Stekloplastiki radiotekhnicheskogo naznacheniya [Fibreglasses of radio engineering assignment]. M.: Himiya, 1987. 160 s.
3. Kablov E.N. Materialy novogo pokolenija – osnova innovacij, tehnologicheskogo liderstva i nacionalnoj bezopasnosti Rossii [Materials of new generation – basis of innovations, technological leadership and national security of Russia] // Intellekt i tehnologii. 2016. №2 (14). S. 16–21.
4. Kablov E.N. Materialy i khimicheskie tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
5. Kablov E.N., Startsev O.V. Fundamentalnye i prikladnye issledovaniya korrozii i stareniya materialov v klimaticheskih usloviyah (obzor) [The basic and applied research in the field of corrosion and ageing of materials in natural environments (review)] // Aviatsionnye materialy i tekhnologii. 2015. №4 (37). S. 38–52. DOI: 10/18577/2071-9140-2015-0-4-38-52.
6. Klimaticheskie ispytaniya // Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi [Climatic tests // History of aviation materials science. VIAM – 80 years: years and people] / pod obshh. red. E.N. Kablova. M.: VIAM, 2012. S. 429–438.
7. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R. Kompleksnoe issledovanie vozdejstviya klimaticheskih i ekspluatacionnyh faktorov na novoe pokolenie epoksidnogo svyazuyushhego i polimernyh kompozicionnyh materialov na ego osnove. Chast 2. Obosnovanie vybora rezhimov i provedenie teplovogo stareniya polimernyh kompozicionnyh materialov na osnove epoksidnoj matricy [Comprehensive research of the influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis Part 2. Substantiation of the choice of modes and conducting heat aging of polymeric composite materials based on epoxy matrix] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №1. St. 10. Available at: http://www.viam-works.ru (accessed: June 16, 2018). DOI: 10.18577/2307-6046-2016-0-1-80-89.
8. Valevin E.O., Andreeva N.P., Pavlov M.R. Kompleksnyj podhod k issledovaniyu protsessov stareniya polimernyh kompozitsionnyh materialov pri vozdejstvii klimaticheskih faktorov [Integrated approach to research of processes of aging of polymeric composite materials at influence of climatic factors] // Problemy otsenki klimaticheskoj stojkosti materialov i slozhnyh tekhnicheskih sistem: sb. dokl. II Vseros. nauch.-tekhnich. konfe. «Klimat-2017» (Gelendzhik, 3–4 avg. 2017 g.). M.: VIAM, 2017. S. 8–20 (CD).
9. Gurtovnik I.G., Sokolov V.I., Trofimov N.N., Shalgunov S.I. Radioprozrachnye izdeliya iz stekloplastikov [Radio transparent products from fibreglasses]. M.: Mir, 2002. 368 s.
10. Andreeva N.P., Pavlov M.R., Nikolaev E.V., Slavin A.V. Vliyanie klimaticheskih faktorov tropicheskogo i umerennogo klimata na svojstva lakokrasochnyh pokrytij na uretanovoj osnove [Influence of climatic factors of tropical and temperate climate on properties of paint coatings on urethane basis] // Lakokrasochnye materialy i ih primenenie. 2018. №4. S. 24–28.
11. Emanuel N.M., Buchachenko A.L. Himicheskaya fizika molekulyarnogo razrusheniya i stabilizatsii polimerov [Chemical physics of molecular destruction and stabilization of polymers]. M.: Nauka, 1988. 365 s.
12. Pavlov N.N. Starenie plastmass v estestvennyh i iskusstvennyh usloviyah [Aging of plastic in natural and simulated conditions]. M.: Himiya, 1982. 224 s.
13. Filatov I.S. Prognozirovanie klimaticheskoj ustojchivosti polimernyh i kompozitsionnyh materialov na ih osnove: avtoref. dis. … dokt. Tekhn [Forecasting of climatic stability of polymeric and composite materials on their basis: thesis, Dr. Sc. (Tech.)]. nauk. Yakutsk, 1984. 489 s.
14. Nikolaev E.V., Pavlov M.R., Laptev A.B., Ponomarenko S.A. K voprosu opredeleniya sorbirovannoj vlagi v polimernyh kompozitsionnyh materialah [To the problem of determining the moisture sorbed in polymeric composite materials] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №8 (56). St. 07. Available at: http://www.viam-works.ru (accessed: June 16, 2018). DOI: 10.18577/2307-6046-2017-0-8-7-7.
15. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R., Grash-chenkov D.V. Kompleksnoe issledovanie vozdeystviya klimaticheskikh i ekspluatatsionnykh faktorov na novoe pokolenie epoksidnogo svyazuyushchego i polimernykh kompozitsionnykh materialov na ego osnove. Chast 4. Naturnye klimaticheskie ispytaniya polimernykh kompozitsionnykh materialov na osnove epoksidnoy matritsy [Complex research of influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis. Part 4. Natural climatic tests of polymeric composite materials on the basis of epoxy matrix] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №6. St. 11. Available at: http://www.viam-works.ru (accessed: June 16, 2018). DOI: 10.18577/2307-6046-2016-0-6-11-11.
16. Silverstejn R., Bassler G., Morril T. Spektrometricheskaya identifikatsiya organicheskih soedinenij [Spectrometer identification of organic connections]. M.: Mir, 1977. 580 s.
17. Prech E., Byulmann F., Affolter K. Opredelenie stroeniya organicheskih soedinenij. Tablitsy spektralnyh dannyh [Definition of structure of organic connections. Tables of spectral data]. M.: Mir; BINOM. Laboratoriya znanij, 2006. 438 s.
2. Gurtovnik I.G., Sportsmen V.N. Stekloplastiki radiotekhnicheskogo naznacheniya [Fibreglasses of radio engineering assignment]. M.: Himiya, 1987. 160 s.
3. Kablov E.N. Materialy novogo pokolenija – osnova innovacij, tehnologicheskogo liderstva i nacionalnoj bezopasnosti Rossii [Materials of new generation – basis of innovations, technological leadership and national security of Russia] // Intellekt i tehnologii. 2016. №2 (14). S. 16–21.
4. Kablov E.N. Materialy i khimicheskie tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
5. Kablov E.N., Startsev O.V. Fundamentalnye i prikladnye issledovaniya korrozii i stareniya materialov v klimaticheskih usloviyah (obzor) [The basic and applied research in the field of corrosion and ageing of materials in natural environments (review)] // Aviatsionnye materialy i tekhnologii. 2015. №4 (37). S. 38–52. DOI: 10/18577/2071-9140-2015-0-4-38-52.
6. Klimaticheskie ispytaniya // Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi [Climatic tests // History of aviation materials science. VIAM – 80 years: years and people] / pod obshh. red. E.N. Kablova. M.: VIAM, 2012. S. 429–438.
7. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R. Kompleksnoe issledovanie vozdejstviya klimaticheskih i ekspluatacionnyh faktorov na novoe pokolenie epoksidnogo svyazuyushhego i polimernyh kompozicionnyh materialov na ego osnove. Chast 2. Obosnovanie vybora rezhimov i provedenie teplovogo stareniya polimernyh kompozicionnyh materialov na osnove epoksidnoj matricy [Comprehensive research of the influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis Part 2. Substantiation of the choice of modes and conducting heat aging of polymeric composite materials based on epoxy matrix] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №1. St. 10. Available at: http://www.viam-works.ru (accessed: June 16, 2018). DOI: 10.18577/2307-6046-2016-0-1-80-89.
8. Valevin E.O., Andreeva N.P., Pavlov M.R. Kompleksnyj podhod k issledovaniyu protsessov stareniya polimernyh kompozitsionnyh materialov pri vozdejstvii klimaticheskih faktorov [Integrated approach to research of processes of aging of polymeric composite materials at influence of climatic factors] // Problemy otsenki klimaticheskoj stojkosti materialov i slozhnyh tekhnicheskih sistem: sb. dokl. II Vseros. nauch.-tekhnich. konfe. «Klimat-2017» (Gelendzhik, 3–4 avg. 2017 g.). M.: VIAM, 2017. S. 8–20 (CD).
9. Gurtovnik I.G., Sokolov V.I., Trofimov N.N., Shalgunov S.I. Radioprozrachnye izdeliya iz stekloplastikov [Radio transparent products from fibreglasses]. M.: Mir, 2002. 368 s.
10. Andreeva N.P., Pavlov M.R., Nikolaev E.V., Slavin A.V. Vliyanie klimaticheskih faktorov tropicheskogo i umerennogo klimata na svojstva lakokrasochnyh pokrytij na uretanovoj osnove [Influence of climatic factors of tropical and temperate climate on properties of paint coatings on urethane basis] // Lakokrasochnye materialy i ih primenenie. 2018. №4. S. 24–28.
11. Emanuel N.M., Buchachenko A.L. Himicheskaya fizika molekulyarnogo razrusheniya i stabilizatsii polimerov [Chemical physics of molecular destruction and stabilization of polymers]. M.: Nauka, 1988. 365 s.
12. Pavlov N.N. Starenie plastmass v estestvennyh i iskusstvennyh usloviyah [Aging of plastic in natural and simulated conditions]. M.: Himiya, 1982. 224 s.
13. Filatov I.S. Prognozirovanie klimaticheskoj ustojchivosti polimernyh i kompozitsionnyh materialov na ih osnove: avtoref. dis. … dokt. Tekhn [Forecasting of climatic stability of polymeric and composite materials on their basis: thesis, Dr. Sc. (Tech.)]. nauk. Yakutsk, 1984. 489 s.
14. Nikolaev E.V., Pavlov M.R., Laptev A.B., Ponomarenko S.A. K voprosu opredeleniya sorbirovannoj vlagi v polimernyh kompozitsionnyh materialah [To the problem of determining the moisture sorbed in polymeric composite materials] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №8 (56). St. 07. Available at: http://www.viam-works.ru (accessed: June 16, 2018). DOI: 10.18577/2307-6046-2017-0-8-7-7.
15. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R., Grash-chenkov D.V. Kompleksnoe issledovanie vozdeystviya klimaticheskikh i ekspluatatsionnykh faktorov na novoe pokolenie epoksidnogo svyazuyushchego i polimernykh kompozitsionnykh materialov na ego osnove. Chast 4. Naturnye klimaticheskie ispytaniya polimernykh kompozitsionnykh materialov na osnove epoksidnoy matritsy [Complex research of influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis. Part 4. Natural climatic tests of polymeric composite materials on the basis of epoxy matrix] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №6. St. 11. Available at: http://www.viam-works.ru (accessed: June 16, 2018). DOI: 10.18577/2307-6046-2016-0-6-11-11.
16. Silverstejn R., Bassler G., Morril T. Spektrometricheskaya identifikatsiya organicheskih soedinenij [Spectrometer identification of organic connections]. M.: Mir, 1977. 580 s.
17. Prech E., Byulmann F., Affolter K. Opredelenie stroeniya organicheskih soedinenij. Tablitsy spektralnyh dannyh [Definition of structure of organic connections. Tables of spectral data]. M.: Mir; BINOM. Laboratoriya znanij, 2006. 438 s.
9.
category: Testing of materials and structures
УДК 66.017
Kochubey A.Ya.1, Treninkov I.A.1
THE CONTINUOUS ROENTGEN SPECTRUM APPLICATION FOR CONSTRUCTION OF DIRECT POLAR FIGURES OF CRYSTALS
Physical principles of construction of direct polar figures are stated at roentgen radiation of crystals in a continuous roentgen spectrum. Basic differences of such construction from construction of direct polar figures with application of a monochromatic х-radiation are specified.
Communication of parametres of х-ray experiment with quantity of poles on a direct polar figure is shown. Conditions of reception of direct polar figures with demanded quantity of families of poles are defined. Possibility of application of the most widespread х-ray diffractometers is shown at the solution of the observed problems.
Keywords: continuous roentgen spectrum, white х-radiation, х-ray crystal analysis, crystal structure, metal research.
Reference List
1. Arginbaeva E.G., Bazyleva O.A., Kolodochkina V.G., Khvatskij K.K. Vliyanie kristallograficheskoj orientacii na strukturu i fiziko-mehanicheskie svojstva intermetallidnogo splava na osnove Ni3Al [The influence of crystallographic oriental on structure, physical and mechanical properties of intermetallic alloys based on Ni3Al] // Aviacionnye materialy i tehnologii. 2013. №2. S. 3–7.
2. Kelli A., Grovs G. Kristallografiya i defekty v kristallah [Crystallography and defects in crystals]. Per s angl. M.: Mir, 1974. 504 s.
3. Van Byuren. Defekty v kristallah [Defects in crystals]. Per s angl. M.: Inostr. lit., 1962. 584 s.
4. Novikov I.I., Rozin K.M. Kristallografiya i defekty kristallicheskoj reshetki: ucheb. dlya vuzov [Crystallography and defects of crystal lattice: the textbook for higher education institutions]. M.: Metallurgiya, 1990. 336 s.
5. Nazarkin R.M. Rentgenodifrakcionnye metodiki precizionnogo opredeleniya parametrov kristallicheskih reshetok nikelevyh zharoprochnyh splavov (kratkij obzor) [X-ray diffraction techniques for precise determination of lattice constants in Ni-based superalloys: a brief review] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 41–48.
6. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlya issledovaniya strukturno-fazovogo sostoyaniya materialov [Application of methods of analytical microscopy and x-ray of the structural analysis for research of structural and phase condition of materials] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №5. St. 06. Available at: http://www.viam-works.ru (accessed: 23 May, 2018).
7. Barret Ch.S., Massalskij T.B. Struktura metallov v 2 ch [Structure of metals in 2 parts]. Per. s angl. M.: Metallurgiya, 1984. Ch. 1. 352 s.
8. Bouen D.K., Tanner B.K. Vysokorazreshayushchaya rentgenovskaya difraktometriya i topografiya [High-allowing x-ray diffractometry and topography] / Per. s angl. I.L. Shulpinoj i T.S. Argunovoj. SPb.: Nauka, 2002. 274 s.
9. Brandon D., Kaplan U. Mikrostruktura materialov. Metody issledovaniya i kontrolya [Microstructure of materials. Research and control methods]. M.: Tekhnosfera, 2004. 384 s.
10. Umanskij YA.S., Skakov Yu.A., Novikov A.N., Rastorguev L.N. Kristallografiya, rentgenografiya i elektronnaya mikroskopiya [Crystallography, roentgenography and electron microscopy]. M.: Metallurgiya, 1982. 632 s.
11. Gine A. Rentgenografiya kristallov. Teoriya i praktika [Roentgenography of crystals. Theory and practice]. Per. s fr. M.: Gos. izd. fiz-mat. lit., 1961. 604 s.
12. Gorelik S.S., Skakov YU.A., Rastorguev L.N. Rentgenograficheskij i elektronno-opticheskij analiz: ucheb. posobie dlya vuzov. 4-e izd., dop. i pererab. [Radiographic and electron-optical analysis: the manual for higher education institutions. 4th edition. Added and processed]. M.: MISIS, 2002. 360 s.
13. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii [Tendencies and reference points of innovative development of Russia]. M.: VIAM, 2015. 720 s.
15. Kablov E.N. Additivnye tehnologii – dominanta nacionalnoj tehnologicheskoj iniciativy [The addi-tive technologies – dominant of national technological initiative] // Intellekt i tehnologii. 2015. №2 (11). S. 52–55.
16. Treninkov I.A. Razrabotka rentgenovskih difraktsionnyh metodov kompleksnoj otsenki strukturnogo stroeniya monokristallov zharoprochnyh nikelevyh splavov: avtoref. dis. ... kand. tekhn. Nauk [Development of x-ray diffraction methods of complex assessment of structural structure of monocrystals of heat resisting nickel alloys: thesis, cand. Sc. (Tech.)]. M., 2013. 25 s.
17. Kochubej A.Ya., Treninkov I.A. Opredelenie parametrov orientirovki monokristallov difraktometricheskim metodom [Definition Single crystals orientation parametres of nickel-base superalloys by diffractometer method] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2017. №2 (26). St. 08. Available at: http://www.mterialsnews.ru (accessed: 23 May, 2018).
18. Kochubej A.Ya., Treninkov I.A. Primenenie belogo rentgenovskogo izlucheniya v strukturnom analize kristallicheskih materialov [Application of the white x-radiation in the structural analysis of crystal materials] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2018. №1–2 (29). St. 04. Available at: http://www.mterialsnews.ru (accessed: 23 May, 2018).
2. Kelli A., Grovs G. Kristallografiya i defekty v kristallah [Crystallography and defects in crystals]. Per s angl. M.: Mir, 1974. 504 s.
3. Van Byuren. Defekty v kristallah [Defects in crystals]. Per s angl. M.: Inostr. lit., 1962. 584 s.
4. Novikov I.I., Rozin K.M. Kristallografiya i defekty kristallicheskoj reshetki: ucheb. dlya vuzov [Crystallography and defects of crystal lattice: the textbook for higher education institutions]. M.: Metallurgiya, 1990. 336 s.
5. Nazarkin R.M. Rentgenodifrakcionnye metodiki precizionnogo opredeleniya parametrov kristallicheskih reshetok nikelevyh zharoprochnyh splavov (kratkij obzor) [X-ray diffraction techniques for precise determination of lattice constants in Ni-based superalloys: a brief review] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 41–48.
6. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlya issledovaniya strukturno-fazovogo sostoyaniya materialov [Application of methods of analytical microscopy and x-ray of the structural analysis for research of structural and phase condition of materials] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №5. St. 06. Available at: http://www.viam-works.ru (accessed: 23 May, 2018).
7. Barret Ch.S., Massalskij T.B. Struktura metallov v 2 ch [Structure of metals in 2 parts]. Per. s angl. M.: Metallurgiya, 1984. Ch. 1. 352 s.
8. Bouen D.K., Tanner B.K. Vysokorazreshayushchaya rentgenovskaya difraktometriya i topografiya [High-allowing x-ray diffractometry and topography] / Per. s angl. I.L. Shulpinoj i T.S. Argunovoj. SPb.: Nauka, 2002. 274 s.
9. Brandon D., Kaplan U. Mikrostruktura materialov. Metody issledovaniya i kontrolya [Microstructure of materials. Research and control methods]. M.: Tekhnosfera, 2004. 384 s.
10. Umanskij YA.S., Skakov Yu.A., Novikov A.N., Rastorguev L.N. Kristallografiya, rentgenografiya i elektronnaya mikroskopiya [Crystallography, roentgenography and electron microscopy]. M.: Metallurgiya, 1982. 632 s.
11. Gine A. Rentgenografiya kristallov. Teoriya i praktika [Roentgenography of crystals. Theory and practice]. Per. s fr. M.: Gos. izd. fiz-mat. lit., 1961. 604 s.
12. Gorelik S.S., Skakov YU.A., Rastorguev L.N. Rentgenograficheskij i elektronno-opticheskij analiz: ucheb. posobie dlya vuzov. 4-e izd., dop. i pererab. [Radiographic and electron-optical analysis: the manual for higher education institutions. 4th edition. Added and processed]. M.: MISIS, 2002. 360 s.
13. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii [Tendencies and reference points of innovative development of Russia]. M.: VIAM, 2015. 720 s.
15. Kablov E.N. Additivnye tehnologii – dominanta nacionalnoj tehnologicheskoj iniciativy [The addi-tive technologies – dominant of national technological initiative] // Intellekt i tehnologii. 2015. №2 (11). S. 52–55.
16. Treninkov I.A. Razrabotka rentgenovskih difraktsionnyh metodov kompleksnoj otsenki strukturnogo stroeniya monokristallov zharoprochnyh nikelevyh splavov: avtoref. dis. ... kand. tekhn. Nauk [Development of x-ray diffraction methods of complex assessment of structural structure of monocrystals of heat resisting nickel alloys: thesis, cand. Sc. (Tech.)]. M., 2013. 25 s.
17. Kochubej A.Ya., Treninkov I.A. Opredelenie parametrov orientirovki monokristallov difraktometricheskim metodom [Definition Single crystals orientation parametres of nickel-base superalloys by diffractometer method] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2017. №2 (26). St. 08. Available at: http://www.mterialsnews.ru (accessed: 23 May, 2018).
18. Kochubej A.Ya., Treninkov I.A. Primenenie belogo rentgenovskogo izlucheniya v strukturnom analize kristallicheskih materialov [Application of the white x-radiation in the structural analysis of crystal materials] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2018. №1–2 (29). St. 04. Available at: http://www.mterialsnews.ru (accessed: 23 May, 2018).