Last Number
№5-6 2018

1.
УДК 669.017:669.018.44
Toloraya V.N.1, Nekrasov S.N.1, Ostroukhova G.A.1
COMPARATIVE ANALYSIS OF STRUCTURE AND PROPERTIES OF CASTINGS FROM SUPERALLOYS PRODUCED ON UVNK AND PMP TYPE UNITS
The article presents a review of data showing the influence of technology of the high-gradient directional solidification with cooling of casting mold in molten low-melting metal (aluminum or tin) on structure and properties of single-crystals of nickel-base superalloys in comparison with the directional solidification method with radiant cooling of the mold.
Keywords: technology of the high-gradient directional solidification (HGDS), directional solidification method (DS), nickel-base superalloys, directional and single-crystal structures.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Mclean M. Directionally solidified materials for high temperature service. London: Metal Society, 1983. P. 118.
3. Mclean M. Directionally solidified materials for high temperature service. London: Metal Society, 1983. P. 122.
4. Shalin R.E., Svetlov I.L., Tolorayya V.N. Monokristally nikelevykh zharoprochnykh splavov [Monocrystals of nickel hot strength alloys]. M.: Mashinostroenie, 1997. S. 122.
5. Mclean M. Directionally solidified materials for high temperature service. London: Metal Society, 1983. P. 123.
6. Kablov E.N., Bondarenko Yu.A., Echin A.B. Razvitiye tekhnologii napravlennoy kristallizatsii liteynykh vysokozharoprochnykh splavov s peremennym upravlyayemym temperaturnym gradiyentom [Development of technology of cast superalloys directional solidification with variable controlled temperature gradient] // Aviacionnyye materialy i tehnologii. 2017. №S. S. 24–38. DOI: 10.18577/2071-9140-2017-0-S-24-38.
7. Litye lopatki gazoturbinnyh dvigatelej: splavy, tehnologii, pokrytija [Cast blades of gas turbine en-gines: alloys, technologies, coverings] / pod obshh. red. E.N. Kablova. 2-e izd. M.: Nauka, 2006. S. 318.
8. Litye lopatki gazoturbinnyh dvigatelej: splavy, tehnologii, pokrytija [Cast blades of gas turbine en-gines: alloys, technologies, coverings] / pod obshh. red. E.N. Kablova. 2-e izd. M.: Nauka, 2006. S. 321.
9. Petrushin N.V., Ospennikova O.G., Svetlov I.L. Monokristallicheskie zharoprochnye nikelevye splavy dlya turbinnyh lopatok perspektivnyh GTD [Single-crystal Ni-based superalloys for turbine blades of advanced gas turbine engines] // Aviacionnye materialy i tehnologii. 2017. №S. S. 72−103. DOI: 10.18577/2071-9140-2017-0-S-72-103.
10. Petrushin N.V., Ospennikova O.G., Elyutin E.S. Renij v monokristallicheskih zharoprochnyh nikelevyh splavah dlya lopatok gazoturbinnyh dvigatelej [Rhenium in single crystal nickel-based superalloys for gas turbine engine blades] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 5–16. DOI: 10.18577/2071-9140-2014-0-s5-5-16.
11. Tolorayya V.N., Kablov E.N., Chabina E.B. Vliyanie rezhimov rosta na strukturu i likvatsionnuyu neodnorodnost' monokristallov nikelevogo zharoprochnogo splava ZHS36 [Influence of modes of growth on structure and likvatsionny heterogenity of monocrystals of nickel ZhS36 hot strength alloy] // Gornyy informatsionno-analiticheskiy byulleten. 2005. №S5. S. 204.
12. Sahm P.R., Lorenz M. Strongly coupled growth in faceted-nonfaceted eutectics of the monovariant type // Journal of Materials Science. 1972. Vol. 7. P. 793–806.
13. Apparatus for casting of directionally solidified articles: pat. 3763926 US; publ. 15.09.71.
14. Giamei A.F., Kear B.H. On the nature of freckles in nickel base superalloys // Metallurgical Transactions. 1970. Vol. 1. P. 2185–2192.
15. Copley S.M., Giamei A.F., Johnson S.M., Hornbecker M.F. The origin of freckles in unidirectionally solidified castings // Metallurgical Transactions. 1970. Vol. 1. P. 2193–2204.
16. Ma D., Zhou B., Buhrig-Polaczek A. Investigation of freckle formation under various solidification conditions // Advanced Materials Research. 2011. Vol. 278. P. 428–433.
17. 17 Ma D., Mathes M., Zhou B., Buhrig-Polaczek A. Influence of crystal orientation on the freckle formation in directionally solidified superalloys // Advanced Materials Research. 2011. Vol. 278. P. 114–119.
18. Zharoprochnyy liteynyy splav na osnove nikelya i izdelie, vypolnennoe iz nego: pat. 2256715 Ros. Federatsiya [Heat resisting cast alloy on the basis of nickel and the product which has been executed of it: pat. 2256715 Rus. Federation]; opubl. 20.07.05.
19. Tolorayya V.N., Demonis I.M., Ostroukhova G.A. Korrektirovki sostava zharoprochnogo kor-rozionnostoykogo splava ZhSKS2 dlya litya krupnogabaritnykh turbinnykh lopatok GTD i GTU s polnost'yu monokristallicheskoy strukturoy v ustanovkakh vysokogradientnoy napravlennoy kris-tallizatsii [Corrections of composition of heat resisting ZhSKS2 corrosion-resistant alloy for molding of large-size turbine blades of GTE and GTU with completely single-crystal structure in installations of the high-gradient directed crystallization] // Entsiklopedicheskiy spravochnik. Vse materialy. 2010. №3. S. 2.
20. Chalmers B. Protsessy rosta i vyrashchivaniya monokristallov [Processes of growth and cultivation of monocrystals]. M.: Inostr. liter., 1963. S. 356.
21. Tolorayya V.N., Demonis I.M., Ostroukhova G.A. Formirovanie monokristallicheskoy struktury litykh krupnogabaritnykh turbinnykh lopatok GTD i GTU na ustanovkakh vysokogradientnoy napravlennoy kristallizatsii [Forming of single-crystal structure of cast large-size turbine blades of GTE and GTU on installations of the high-gradient directed crystallization] // Metallovedenie i termicheskaya obrabotka metallov. 2011. №1. S. 25.
22. Pollock T.M., Murphy W.H. The Breakdown of Single-Crystal Solidification in High Refractory Nickel-Base Alloys // Metallurgical and Materials Transactions A. 1996. Vol. 27A. P. 1081.
23. Shalin R.E., Svetlov I.L., Tolorayya V.N. Monokristally nikelevykh zharoprochnykh splavov [Monocrystals of nickel hot strength alloys]. M.: Mashinostroenie, 1997. S. 321.
24. Elliot R. Upravlenie evtekticheskim zatverdevaniem [Management of evtektichesky hardening]. M.: Metallurgiya, 1987. S. 180.
25. Kablov E.N., Tolorayya V.N., Ostroukhova G.A., Aleshin I.N. Issledovanie rostovykh defektov tipa poloschatost v monokristalnykh otlivkakh iz bezuglerodistykh zharoprochnykh splavov [Research of growing defects of type banding in monocrystal casting from carbon-free hot strength alloys] // Dvigatel'. 2010. №6. S. 36–38.
26. Tolorayya V.N., Kablov E.N., Chabina E.B. Vliyanie rezhimov rosta na strukturu i likvatsionnuyu neodnorodnost monokristallov nikelevogo zharoprochnogo splava ZHS36 [Influence of modes of growth on structure and likvatsionny heterogenity of monocrystals of nickel ZhS36 hot strength alloy] // Gornyy informatsionno-analiticheskiy byulleten. №S5. 2005. S. 214.
27. Anton D.L., Giamei A.F. Porosity Distribution and Growth During Homogenization in Single Crystals of a Nickel-base Superalloy // Materials Science and Engineering. 1985. Vol. 76. P. 173–180.
28. Tolorayya V.N., Zuev A.G., Svetlov I.L. Vliyanie rezhimov napravlennoy kristallizatsii i termoobrabotki na poristost' v monokristallakh nikelevykh zharoprochnykh splavov [Influence of modes of the directed crystallization and heat treatment on porosity in monocrystals of nickel hot strength alloys] // Metally. 1991. №5. S. 70–76.
29. Tolorajya V.N., Filonova E.V., Chubarova E.N. i dr. Issledovanie vliyaniya GIP na mikroporistost' v monokristallicheskih otlivkah bezuglerodistyh zharoprochnyh splavov [Research of influence of GIP on microporosity in single-crystal otlivka of carbon-free hot strength alloys ] // Aviacionnye materialy i tehnologii. 2011. №1. S. 21.
30. Svetlov I.L., Khvatskiy K.K., Gorbovets M.A., Belyaev M.S. Vliyanie goryachego izostaticheskogo pressovaniya na mehanicheskie svojstva litejnyh nikelevyh zharoprochnyh splavov [An effect of Hot Isostatic Pressing (HIP) on mechanical properties of casting Ni-based superalloys] //Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 10–14. DOI: 10.18577/2071-9140-2015-0-3-10-14.
31. Tolorayya V.N., Filonova E.V., Chubarova E.N. i dr. Issledovanie vliyaniya GIP na mikroporis-tost v monokristallicheskikh otlivkakh bezuglerodistykh zharoprochnykh splavov [Research of influence of HIP on microporosity in single-crystal casting of carbon-free hot strength alloys] // Aviatsionnye materialy i tekhnologii. 2011. №1. S. 20–26.
2. Mclean M. Directionally solidified materials for high temperature service. London: Metal Society, 1983. P. 118.
3. Mclean M. Directionally solidified materials for high temperature service. London: Metal Society, 1983. P. 122.
4. Shalin R.E., Svetlov I.L., Tolorayya V.N. Monokristally nikelevykh zharoprochnykh splavov [Monocrystals of nickel hot strength alloys]. M.: Mashinostroenie, 1997. S. 122.
5. Mclean M. Directionally solidified materials for high temperature service. London: Metal Society, 1983. P. 123.
6. Kablov E.N., Bondarenko Yu.A., Echin A.B. Razvitiye tekhnologii napravlennoy kristallizatsii liteynykh vysokozharoprochnykh splavov s peremennym upravlyayemym temperaturnym gradiyentom [Development of technology of cast superalloys directional solidification with variable controlled temperature gradient] // Aviacionnyye materialy i tehnologii. 2017. №S. S. 24–38. DOI: 10.18577/2071-9140-2017-0-S-24-38.
7. Litye lopatki gazoturbinnyh dvigatelej: splavy, tehnologii, pokrytija [Cast blades of gas turbine en-gines: alloys, technologies, coverings] / pod obshh. red. E.N. Kablova. 2-e izd. M.: Nauka, 2006. S. 318.
8. Litye lopatki gazoturbinnyh dvigatelej: splavy, tehnologii, pokrytija [Cast blades of gas turbine en-gines: alloys, technologies, coverings] / pod obshh. red. E.N. Kablova. 2-e izd. M.: Nauka, 2006. S. 321.
9. Petrushin N.V., Ospennikova O.G., Svetlov I.L. Monokristallicheskie zharoprochnye nikelevye splavy dlya turbinnyh lopatok perspektivnyh GTD [Single-crystal Ni-based superalloys for turbine blades of advanced gas turbine engines] // Aviacionnye materialy i tehnologii. 2017. №S. S. 72−103. DOI: 10.18577/2071-9140-2017-0-S-72-103.
10. Petrushin N.V., Ospennikova O.G., Elyutin E.S. Renij v monokristallicheskih zharoprochnyh nikelevyh splavah dlya lopatok gazoturbinnyh dvigatelej [Rhenium in single crystal nickel-based superalloys for gas turbine engine blades] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 5–16. DOI: 10.18577/2071-9140-2014-0-s5-5-16.
11. Tolorayya V.N., Kablov E.N., Chabina E.B. Vliyanie rezhimov rosta na strukturu i likvatsionnuyu neodnorodnost' monokristallov nikelevogo zharoprochnogo splava ZHS36 [Influence of modes of growth on structure and likvatsionny heterogenity of monocrystals of nickel ZhS36 hot strength alloy] // Gornyy informatsionno-analiticheskiy byulleten. 2005. №S5. S. 204.
12. Sahm P.R., Lorenz M. Strongly coupled growth in faceted-nonfaceted eutectics of the monovariant type // Journal of Materials Science. 1972. Vol. 7. P. 793–806.
13. Apparatus for casting of directionally solidified articles: pat. 3763926 US; publ. 15.09.71.
14. Giamei A.F., Kear B.H. On the nature of freckles in nickel base superalloys // Metallurgical Transactions. 1970. Vol. 1. P. 2185–2192.
15. Copley S.M., Giamei A.F., Johnson S.M., Hornbecker M.F. The origin of freckles in unidirectionally solidified castings // Metallurgical Transactions. 1970. Vol. 1. P. 2193–2204.
16. Ma D., Zhou B., Buhrig-Polaczek A. Investigation of freckle formation under various solidification conditions // Advanced Materials Research. 2011. Vol. 278. P. 428–433.
17. 17 Ma D., Mathes M., Zhou B., Buhrig-Polaczek A. Influence of crystal orientation on the freckle formation in directionally solidified superalloys // Advanced Materials Research. 2011. Vol. 278. P. 114–119.
18. Zharoprochnyy liteynyy splav na osnove nikelya i izdelie, vypolnennoe iz nego: pat. 2256715 Ros. Federatsiya [Heat resisting cast alloy on the basis of nickel and the product which has been executed of it: pat. 2256715 Rus. Federation]; opubl. 20.07.05.
19. Tolorayya V.N., Demonis I.M., Ostroukhova G.A. Korrektirovki sostava zharoprochnogo kor-rozionnostoykogo splava ZhSKS2 dlya litya krupnogabaritnykh turbinnykh lopatok GTD i GTU s polnost'yu monokristallicheskoy strukturoy v ustanovkakh vysokogradientnoy napravlennoy kris-tallizatsii [Corrections of composition of heat resisting ZhSKS2 corrosion-resistant alloy for molding of large-size turbine blades of GTE and GTU with completely single-crystal structure in installations of the high-gradient directed crystallization] // Entsiklopedicheskiy spravochnik. Vse materialy. 2010. №3. S. 2.
20. Chalmers B. Protsessy rosta i vyrashchivaniya monokristallov [Processes of growth and cultivation of monocrystals]. M.: Inostr. liter., 1963. S. 356.
21. Tolorayya V.N., Demonis I.M., Ostroukhova G.A. Formirovanie monokristallicheskoy struktury litykh krupnogabaritnykh turbinnykh lopatok GTD i GTU na ustanovkakh vysokogradientnoy napravlennoy kristallizatsii [Forming of single-crystal structure of cast large-size turbine blades of GTE and GTU on installations of the high-gradient directed crystallization] // Metallovedenie i termicheskaya obrabotka metallov. 2011. №1. S. 25.
22. Pollock T.M., Murphy W.H. The Breakdown of Single-Crystal Solidification in High Refractory Nickel-Base Alloys // Metallurgical and Materials Transactions A. 1996. Vol. 27A. P. 1081.
23. Shalin R.E., Svetlov I.L., Tolorayya V.N. Monokristally nikelevykh zharoprochnykh splavov [Monocrystals of nickel hot strength alloys]. M.: Mashinostroenie, 1997. S. 321.
24. Elliot R. Upravlenie evtekticheskim zatverdevaniem [Management of evtektichesky hardening]. M.: Metallurgiya, 1987. S. 180.
25. Kablov E.N., Tolorayya V.N., Ostroukhova G.A., Aleshin I.N. Issledovanie rostovykh defektov tipa poloschatost v monokristalnykh otlivkakh iz bezuglerodistykh zharoprochnykh splavov [Research of growing defects of type banding in monocrystal casting from carbon-free hot strength alloys] // Dvigatel'. 2010. №6. S. 36–38.
26. Tolorayya V.N., Kablov E.N., Chabina E.B. Vliyanie rezhimov rosta na strukturu i likvatsionnuyu neodnorodnost monokristallov nikelevogo zharoprochnogo splava ZHS36 [Influence of modes of growth on structure and likvatsionny heterogenity of monocrystals of nickel ZhS36 hot strength alloy] // Gornyy informatsionno-analiticheskiy byulleten. №S5. 2005. S. 214.
27. Anton D.L., Giamei A.F. Porosity Distribution and Growth During Homogenization in Single Crystals of a Nickel-base Superalloy // Materials Science and Engineering. 1985. Vol. 76. P. 173–180.
28. Tolorayya V.N., Zuev A.G., Svetlov I.L. Vliyanie rezhimov napravlennoy kristallizatsii i termoobrabotki na poristost' v monokristallakh nikelevykh zharoprochnykh splavov [Influence of modes of the directed crystallization and heat treatment on porosity in monocrystals of nickel hot strength alloys] // Metally. 1991. №5. S. 70–76.
29. Tolorajya V.N., Filonova E.V., Chubarova E.N. i dr. Issledovanie vliyaniya GIP na mikroporistost' v monokristallicheskih otlivkah bezuglerodistyh zharoprochnyh splavov [Research of influence of GIP on microporosity in single-crystal otlivka of carbon-free hot strength alloys ] // Aviacionnye materialy i tehnologii. 2011. №1. S. 21.
30. Svetlov I.L., Khvatskiy K.K., Gorbovets M.A., Belyaev M.S. Vliyanie goryachego izostaticheskogo pressovaniya na mehanicheskie svojstva litejnyh nikelevyh zharoprochnyh splavov [An effect of Hot Isostatic Pressing (HIP) on mechanical properties of casting Ni-based superalloys] //Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 10–14. DOI: 10.18577/2071-9140-2015-0-3-10-14.
31. Tolorayya V.N., Filonova E.V., Chubarova E.N. i dr. Issledovanie vliyaniya GIP na mikroporis-tost v monokristallicheskikh otlivkakh bezuglerodistykh zharoprochnykh splavov [Research of influence of HIP on microporosity in single-crystal casting of carbon-free hot strength alloys] // Aviatsionnye materialy i tekhnologii. 2011. №1. S. 20–26.
2.
category: Functional and smart materials
УДК 669-15:669.85
Davydova E.A.1, Rezchikova I.I.1, Nazarkin R.M.1, Chabina E.B.1
HEAT TREATMENT EFFECT ON TEMPERATURE STABLE HARD MAGNETIC MATERIALS OF REM–Fe–Co–B SYSTEM STRUCTURE AND PHASE COMPOSITION
Temperature stable hard magnetic materials of REM–Fe–Co–B system (Pr–Dy–Fe–Co–B and Pr–Dy–Се–Fe–Co–B) structure and phase composition were investigated in initial condition and after heat treatment.
Keywords: х-ray microanalysis, phase composition, microstructure, hard magnetic materials.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
3. Kablov E.N., Piskorskij V.P., Burkhanov G.S., Valeev R.A., Moiseeva N.S., Stepanova S.V., Petrakov A.F., Tereshina I.S., Repina M.V. Termostabilnye koltsevye magnity s radialnoj teksturoj na osnove Nd(Рr)–Dу–Fе–Со–В [Thermostable ring magnets with radial structure on the basis of Nd(Рr)–Dу–Fе–Со–В] // Fizika i khimiya obrabotki materialov. 2011. №3. S. 43–47.
4. Melnikov S.A., Piskorskij V.P., Belyaev I.V., Valeev R.A., Verklov M.M., Ivanov S.I., Ospennikova O.G., Parshin A.P. Temperaturnye zavisimosti magnitnykh svojstv spechennykh splavov Nd–Re–В, legirovannykh splavami RZM s perekhodnymi metallami [Temperature dependences of magnetic properties of sintered alloys Nd–Re–В, RZM alloyed by alloys with transition metals] // Perspektivnye materialy. 2011. №11. S. 201–207.
5. Piskorskij V.P., Burkhanov G.S., Ospennikova O.G., Valeev R.A., Tereshina I.S., Davydova E.A. Raschet temperaturnogo koeffitsienta induktsii nanostrukturirovannykh magnitotverdykh materialov Рr–Dу–Gd–Fе–Со–В metodom molekulyarnogo polya [Calculation of temperature coefficient of induction of the nanostructured magnitotverdy materials Рr–Dу–Gd–Fе–Со–В method of molecular field] // Metally. 2010. №1. S. 64–67.
6. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: August 6, 2018).
7. Kablov E.N., Ospennikova O.G., Piskorskij V.P., Rezchikova I.I., Valeev R.A., Davydova E.A. Fazovyj sostav spechennyh materialov sistemy Рr–Dу–Fе–Со–В [Phase composition of the Рr–Dу–Fе–Со–В sintered materials] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 5–10. DOI: 10.18577/2071-9140-2015-0-S2-5-10.
8. Petrakov A.F., Piskorskij V.P., Burkhanov G.S., Repina M.V., Ivanov S.I. Osobennosti spekaniya magnitov Nd(Рr)–Dу–Fе–Со–В s vysokim soderzhaniem Co [Features of agglomeration of magnets of Nd(Рr)–Dу–Fе–Со–В with the high contents Co] // Metallovedenie i termicheskaya obrabotka metallov. 2012. №7. S. 3–9.
9. Kablov E.N., Petrakov A.F., Piskorskij V.P., Valeev R.A., Chabina E.B. Vliyanie prazeodima na magnitnye svojstva i fazovyj sostav materiala sistemy Nd–Рr–Dу–Fе–Со–В [Influence prazeodima on magnetic properties and phase structure of material of system Nd–Рr–Dу–Fе–Со–В] // Metallovedenie i termicheskaya obrabotka metallov. 2005. №6 (600). S. 12–16.
10. Davydova E.A., Piskorskij V.P., Moiseeva N.S., Chabina E.B. Vliyanie temperatury i dlitelnosti spekaniya na strukturu i fazovyj sostav termostabilnykh magnitotverdykh materialov sistemy RZM–Fe–Co–B [Influence of temperature and длительности agglomeration on structure and phase structure thermostable magnitotverdy материалов systems RZM–Fe–Co–B] // Metally. 2015. №6. S. 47–51.
11. Chen Y., Liang J., Lin Q. et al. The ternary system neodymium–cobalt–boron // Journal Alloys Compd. 1999. Vol. 288. No. 1–2. P. 170–172.
12. Kablov E.N., Ospennikova O.G., Davydova E.A., Buzenkov A.V., Valeev R.A., Morgunov R.B., Piskorskij V.P. Vliyanie otzhiga splava Рr–Dу–Fе–Со–В na ego fazovyj sostav i svojstva spechennykh magnitov, izgotovlennykh iz nego [Influence of annealing of alloy Рr–Dу–Fе–Со–В on its phase structure and properties of the sintered magnets made of it] // Metally. 2018. №2. S. 28–32.
13. Davydova E.A. Fazovyj sostav i magnitnye svojstva magnitotverdykh materialov sistemy Rr–Du(Gd)–Fe–So–B: avtoref. dis. ... kand. tekhn. Nauk [Phase structure and magnetic properties of magneto hard materials of Rr–Du system (Gd)–Fe–So–B: thesis, cand. Sc. (Tech.)]. M., 2012. 25 s.
14. Cook B.A., Harringa J.L., Laabs F.C. et al. Diffusion of Fe, Co, Nd, and Dy in R2(Fe1-xCox)14B, where R=Nd or Dy // Journal of Magnetism and Magnetic Materials. 2001. Vol. 233. P. L136–L141.
15. Kablov E.N., Petrakov A.F., Piskorskij V.P., Valeev R.A., Chabina E.B. Vliyanie tseriya i ittriya na magnitnye svojstva i fazovyj sostav materiala sistemy Nd–Dу–Fе–Со–В [Influence of cerium and yttrium on magnetic properties and phase structure of material of system Nd–Dу–Fе–Со–В] // Metallovedenie i termicheskaya obrabotka metallov. 2005. №10. S. 25–29.
16. Kablov E.N., Piskorskij V.P., Valeev R.A., Davydova E.A. Vliyanie tseriya na temperaturnuyu stabilnost magnitov Nd–Dу–Fе–Со–В [Cerium influence on temperature stability of magnets Nd–Dу–Fе–Со–В] // Metally. 2014. №6. S. 51–53.
17. Kablov E.N., Ospennikova O.G., Rezchikova I.I., Piskorskij V.P., Valeev R.A., Korolev D.V. Zavisimost svojstv spechennykh materialov sistemy Nd–Dу–Fе–Со–В ot tekhnologicheskikh parametrov [Dependence of properties of the sintered materials of system Nd–Dу–Fе–Со–В from technological parameters] // Aviatsionnye materialy i tekhnologii. 2015. №S2. S. 24–29. DOI: 10.18577/2071-9140-2015-0-S2-24-29.
18. Herbst J.F. R2Fe14B materials: intrinsic properties and technological properties and technological aspects // Rev. Modern Physics. 1991. V. 63. No. 6. P. 819–898.
19. Menushenkov V.P., Savchenko A.G. Termoobrabotka, mikrostruktura i koertsitivnaya sila spechennykh magnitov na osnove (Nd, Dу)–Fе–В [Heat treatment, microstructure and coercive force of the sintered magnets on basis (Nd, Dу)–Fе–В] // Materialovedenie i metallurgiya. Perspektivnye tekhnologii i oborudovanie: materialy seminara. M.: MGIU, 2003. S. 158–185.
20. Lileev A.S., Arinicheva O.A., Lukin A.A. i dr. Issledovanie magnitnykh svojstv i struk-tury magnitov tipa (Nd, Рr)–(Тb, Dу, Gd)–(Fе, Со, Аl, Сu, Rе)–В posle termicheskoj obrabotki [Research of magnetic properties and structure of magnets of type (Nd, Рr)–(Тb, Dу, Gd)–(Fе, Со, Аl, Сu, Rе)–В – after thermal processing] // Metallovedenie i termicheskaya obrabotka metallov. 2013. №2. S. 4–7.
21. Matsuura M., Goto R., Tezuka N., Sugimoto S. Influence of microstructural change of the interface between Nd2Fe14B and Nd–O phases on coercivity of Nd–Fe–B films by oxidation and subsequent low-temperature annealing // Journal of Physics: Conference Series. 2011. Vol. 266. P. 12–39.
22. Piskorskij V.P., Burkhanov G.S., Ospennikova O.G., Valeev R.A., Tereshina I.S., Davydova E.A. Vliyanie termicheskoj obrabotki na svojstva nanostrukturirovannykh magnitotverdykh materialov Рr–Dу–Fе–Со–В [Influence of thermal processing on properties of the nanostructured magnitotverdy materials Рr–Dу–Fе–Со–В] // Metally. 2010. №3. S. 84–91.
23. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Kvalifikatsionnye ispytaniya i issledovaniya prochnosti aviatsionnyh materialov [Qualification tests and researches of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
24. Turchenkov V.A., Baranov D.E., Gagarin M.V., Shishkin M.D. Metodicheskij podhod k provedeniju jekspertizy materialov [Methodical approach to carrying out examination of materials] // Aviacionnye materialy i tehnologii. 2012. №1. S. 47–53.
25. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlya issledovaniya strukturno-fazovogo sostoyaniya materialov [Application of methods of analytical microscopy and x-ray of the structural analysis for research of structural and phase condition of materials] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №5. St. 06. Available at: http://www.viam-works.ru (accessed: August 6, 2018).
2. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
3. Kablov E.N., Piskorskij V.P., Burkhanov G.S., Valeev R.A., Moiseeva N.S., Stepanova S.V., Petrakov A.F., Tereshina I.S., Repina M.V. Termostabilnye koltsevye magnity s radialnoj teksturoj na osnove Nd(Рr)–Dу–Fе–Со–В [Thermostable ring magnets with radial structure on the basis of Nd(Рr)–Dу–Fе–Со–В] // Fizika i khimiya obrabotki materialov. 2011. №3. S. 43–47.
4. Melnikov S.A., Piskorskij V.P., Belyaev I.V., Valeev R.A., Verklov M.M., Ivanov S.I., Ospennikova O.G., Parshin A.P. Temperaturnye zavisimosti magnitnykh svojstv spechennykh splavov Nd–Re–В, legirovannykh splavami RZM s perekhodnymi metallami [Temperature dependences of magnetic properties of sintered alloys Nd–Re–В, RZM alloyed by alloys with transition metals] // Perspektivnye materialy. 2011. №11. S. 201–207.
5. Piskorskij V.P., Burkhanov G.S., Ospennikova O.G., Valeev R.A., Tereshina I.S., Davydova E.A. Raschet temperaturnogo koeffitsienta induktsii nanostrukturirovannykh magnitotverdykh materialov Рr–Dу–Gd–Fе–Со–В metodom molekulyarnogo polya [Calculation of temperature coefficient of induction of the nanostructured magnitotverdy materials Рr–Dу–Gd–Fе–Со–В method of molecular field] // Metally. 2010. №1. S. 64–67.
6. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: August 6, 2018).
7. Kablov E.N., Ospennikova O.G., Piskorskij V.P., Rezchikova I.I., Valeev R.A., Davydova E.A. Fazovyj sostav spechennyh materialov sistemy Рr–Dу–Fе–Со–В [Phase composition of the Рr–Dу–Fе–Со–В sintered materials] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 5–10. DOI: 10.18577/2071-9140-2015-0-S2-5-10.
8. Petrakov A.F., Piskorskij V.P., Burkhanov G.S., Repina M.V., Ivanov S.I. Osobennosti spekaniya magnitov Nd(Рr)–Dу–Fе–Со–В s vysokim soderzhaniem Co [Features of agglomeration of magnets of Nd(Рr)–Dу–Fе–Со–В with the high contents Co] // Metallovedenie i termicheskaya obrabotka metallov. 2012. №7. S. 3–9.
9. Kablov E.N., Petrakov A.F., Piskorskij V.P., Valeev R.A., Chabina E.B. Vliyanie prazeodima na magnitnye svojstva i fazovyj sostav materiala sistemy Nd–Рr–Dу–Fе–Со–В [Influence prazeodima on magnetic properties and phase structure of material of system Nd–Рr–Dу–Fе–Со–В] // Metallovedenie i termicheskaya obrabotka metallov. 2005. №6 (600). S. 12–16.
10. Davydova E.A., Piskorskij V.P., Moiseeva N.S., Chabina E.B. Vliyanie temperatury i dlitelnosti spekaniya na strukturu i fazovyj sostav termostabilnykh magnitotverdykh materialov sistemy RZM–Fe–Co–B [Influence of temperature and длительности agglomeration on structure and phase structure thermostable magnitotverdy материалов systems RZM–Fe–Co–B] // Metally. 2015. №6. S. 47–51.
11. Chen Y., Liang J., Lin Q. et al. The ternary system neodymium–cobalt–boron // Journal Alloys Compd. 1999. Vol. 288. No. 1–2. P. 170–172.
12. Kablov E.N., Ospennikova O.G., Davydova E.A., Buzenkov A.V., Valeev R.A., Morgunov R.B., Piskorskij V.P. Vliyanie otzhiga splava Рr–Dу–Fе–Со–В na ego fazovyj sostav i svojstva spechennykh magnitov, izgotovlennykh iz nego [Influence of annealing of alloy Рr–Dу–Fе–Со–В on its phase structure and properties of the sintered magnets made of it] // Metally. 2018. №2. S. 28–32.
13. Davydova E.A. Fazovyj sostav i magnitnye svojstva magnitotverdykh materialov sistemy Rr–Du(Gd)–Fe–So–B: avtoref. dis. ... kand. tekhn. Nauk [Phase structure and magnetic properties of magneto hard materials of Rr–Du system (Gd)–Fe–So–B: thesis, cand. Sc. (Tech.)]. M., 2012. 25 s.
14. Cook B.A., Harringa J.L., Laabs F.C. et al. Diffusion of Fe, Co, Nd, and Dy in R2(Fe1-xCox)14B, where R=Nd or Dy // Journal of Magnetism and Magnetic Materials. 2001. Vol. 233. P. L136–L141.
15. Kablov E.N., Petrakov A.F., Piskorskij V.P., Valeev R.A., Chabina E.B. Vliyanie tseriya i ittriya na magnitnye svojstva i fazovyj sostav materiala sistemy Nd–Dу–Fе–Со–В [Influence of cerium and yttrium on magnetic properties and phase structure of material of system Nd–Dу–Fе–Со–В] // Metallovedenie i termicheskaya obrabotka metallov. 2005. №10. S. 25–29.
16. Kablov E.N., Piskorskij V.P., Valeev R.A., Davydova E.A. Vliyanie tseriya na temperaturnuyu stabilnost magnitov Nd–Dу–Fе–Со–В [Cerium influence on temperature stability of magnets Nd–Dу–Fе–Со–В] // Metally. 2014. №6. S. 51–53.
17. Kablov E.N., Ospennikova O.G., Rezchikova I.I., Piskorskij V.P., Valeev R.A., Korolev D.V. Zavisimost svojstv spechennykh materialov sistemy Nd–Dу–Fе–Со–В ot tekhnologicheskikh parametrov [Dependence of properties of the sintered materials of system Nd–Dу–Fе–Со–В from technological parameters] // Aviatsionnye materialy i tekhnologii. 2015. №S2. S. 24–29. DOI: 10.18577/2071-9140-2015-0-S2-24-29.
18. Herbst J.F. R2Fe14B materials: intrinsic properties and technological properties and technological aspects // Rev. Modern Physics. 1991. V. 63. No. 6. P. 819–898.
19. Menushenkov V.P., Savchenko A.G. Termoobrabotka, mikrostruktura i koertsitivnaya sila spechennykh magnitov na osnove (Nd, Dу)–Fе–В [Heat treatment, microstructure and coercive force of the sintered magnets on basis (Nd, Dу)–Fе–В] // Materialovedenie i metallurgiya. Perspektivnye tekhnologii i oborudovanie: materialy seminara. M.: MGIU, 2003. S. 158–185.
20. Lileev A.S., Arinicheva O.A., Lukin A.A. i dr. Issledovanie magnitnykh svojstv i struk-tury magnitov tipa (Nd, Рr)–(Тb, Dу, Gd)–(Fе, Со, Аl, Сu, Rе)–В posle termicheskoj obrabotki [Research of magnetic properties and structure of magnets of type (Nd, Рr)–(Тb, Dу, Gd)–(Fе, Со, Аl, Сu, Rе)–В – after thermal processing] // Metallovedenie i termicheskaya obrabotka metallov. 2013. №2. S. 4–7.
21. Matsuura M., Goto R., Tezuka N., Sugimoto S. Influence of microstructural change of the interface between Nd2Fe14B and Nd–O phases on coercivity of Nd–Fe–B films by oxidation and subsequent low-temperature annealing // Journal of Physics: Conference Series. 2011. Vol. 266. P. 12–39.
22. Piskorskij V.P., Burkhanov G.S., Ospennikova O.G., Valeev R.A., Tereshina I.S., Davydova E.A. Vliyanie termicheskoj obrabotki na svojstva nanostrukturirovannykh magnitotverdykh materialov Рr–Dу–Fе–Со–В [Influence of thermal processing on properties of the nanostructured magnitotverdy materials Рr–Dу–Fе–Со–В] // Metally. 2010. №3. S. 84–91.
23. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Kvalifikatsionnye ispytaniya i issledovaniya prochnosti aviatsionnyh materialov [Qualification tests and researches of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
24. Turchenkov V.A., Baranov D.E., Gagarin M.V., Shishkin M.D. Metodicheskij podhod k provedeniju jekspertizy materialov [Methodical approach to carrying out examination of materials] // Aviacionnye materialy i tehnologii. 2012. №1. S. 47–53.
25. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlya issledovaniya strukturno-fazovogo sostoyaniya materialov [Application of methods of analytical microscopy and x-ray of the structural analysis for research of structural and phase condition of materials] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №5. St. 06. Available at: http://www.viam-works.ru (accessed: August 6, 2018).
3.
category: Functional and smart materials
УДК 621.318.2
Davydova E.A.1, Piskorskiy V.P.1, Nazarkin R.M.1
THE PHASE COMPOSITION AND MAGNETIC PROPERTIES OF SINTERED THERMOSTABLE HARD-MAGNETIC MATERIALS OF THE Pr–Dy(Gd)–Fe–Co–B SYSTEM (review)
The review of literature on the problem of phase composition and magnetic properties of thermostable hard-magnetic materials for the PrDy(Gd)FeCoB system are prepared. The influence of alloying by heavy and light rare-earth metals and cobalt on the magnetic properties of NdFeB magnets is analyzed. The influence of manufacturing process conditions and heat treatment together with alloying by copper and gadolinium on the magnetic properties of the Pr–Dy–Fe–Co–B materials are showed.
Keywords: phase composition, hard-magnetic materials, rare-earth metals, heat treatment, magnetic properties.
Reference List
1. Savchenko A.G., Menushenkov V.P. Redkozemelnye postoyannye magnity: printsipialnye osnovy razrabotki i tekhnologiya proizvodstva [Rare-earth constant magnets: basic bases of development and production technology] // Materialovedenie i metallurgiya. Perspektivnye tekhnologii i oborudovanie: materialy seminara. M.: MGIU, 2003. S. 125–157.
2. Davydova E.A. Fazovyj sostav i magnitnye svojstva magnitotverdykh materialov sistemy Rr–Du(Gd)–Fe–So–B: dis. ... kand. tekhn. nauk [Phase structure and magnetic properties of magneto hard materials of Rr–Du system (Gd)–Fe–So–B: thesis, cand. Sc. (Tech.)]. M., 2012. 179 s.
3. Valeev R.A. Termostabilnye magnitotverdye materialy na osnove sistemy Nd–Dy–Fe–Co–B, legirovannye nekotorymi legkimi redkozemelnymi metallami: dis. … kand. tekhn. nauk [Thermostable magneto hard materials on the basis of the Nd–Dy–Fe–Co–B system, alloyed by some light rare earth metals: thesis, cand. Sc. (Tech.)]. M., 2005. 137 s.
4. Arai S., Shibata T. Highly heat-resistant Nd–Fe–Co–B system permanent magnets // IEEE Transactions on Magnetics. 1985. Vol. MAG-21. No. 5. P. 1952–1954.
5. Teylor K. Intermetallicheskie soedineniya redkozemelnyh metallov [Intermetallic compounds of rare earth metals]. M.: Mir, 1974. 221 s.
6. Lukin A.A., Dormidontov A.G., Egorov S.M. Perspektivnye materialy dlya postoyannyh magnitov. Obzor [Perspective materials for constant magnets. Review]. Seriya VIII. M.: Poisk, 1990. 158 s.
7. Savchenko A.G., Menushenkov V.P. High-energy-product rare-earth permanent magnets: Fundamental principles of development and manufacturing // The Physics of Metals and Metallography. 2001. Vol. 91. Suppl. 1. P. S242–S248.
8. Piskorskiy V.P., Valeev R.A., Tereshina I.S., Bronfin M.B., Chabina E.B., Davydova E.A., Buzenkov A.V. Magnitnye svoystva i fazovyy sostav materialov sistemy Pr–Dy–Fe–Co–B [Magnetic properties and phase structure of materials of Pr–Dy–Fe–Co–B system] // Perspektivnye materialy. 2007. №3. C. 16–19.
9. Fritz K., Guth J., Grieb B., Henig E., Petzow G. Magnetic properties of sintered Dy substituted Nd–Fe–B magnets // Zeitschrift für Metallkunde. 1992. Vol. 83. No. 11. P. 791–793.
10. Piskorskiy V.P., Valeev R.A., Buzenkov A.V., Davydova E.A., Zolotareva M.V. Vliyanie vysokih kontsentratsiy kobalta na svoystva magnitov Pr–Dy–Fe–Co–B [Influence of high concentration of cobalt on properties of magnets of Pr–Dy–Fe–Co–B] // Perspektivnye materialy. 2008. Spets. vyp. S. 268–271.
11. Menushenkov V.P., Savchenko A.G. Termoobrabotka, mikrostruktura i koertsitivnaya sila spechennyh magnitov na osnove (Nd, Dy)–Fe–B [Heat treatment, microstructure and coercive force of the sintered magnets on basis (Nd, Dy)–Fe–B] // Materialovedenie i metallurgiya. Perspektivnye tekhnologii i oborudovanie: materialy seminara. M.: MGIU, 2003. S. 158–185.
12. Tokareva N.V. Temperaturnoe povedenie namagnichennosti i fazovyy sostav magnitotverdyh materialov sistemy (Nd, Dy, R)–(Fe, Co)–B (R=Er, Gd, Sm, Pr): dis. … kand. tekhn. nauk [Temperature behavior of magnetization and phase structure of magneto hard materials of system (Nd, Dy, R)–(Fe, Co)–B (R=Er, Gd, Sm, Pr): thesis, cand. Sc. (Tech.)]. M., 2007. 142 s.
13. Kablov E.N., Petrakov A.F., Piskorskiy V.P. Magnity Nd–Fe–B s vysokoy temperaturnoy stabilnostyu [Nd–Fe–B magnets with high temperature stability] // Sb. tez. dokl. 13-y Mezhdunar. konf. po postoyannym magnitam. Suzdal, 2000. S. 64.
14. Nazarova N.V., Valeev R.A., Piskorskiy V.P., Stepanova S.V. Vliyanie gadoliniya i erbiya na magnitnye svoystva materialov sistemy R–(Fe, Co)–B [Influence of gadolinium and erbiya on magnetic properties of materials of R-system (Fe, Co)–B] // Aktualnye voprosy aviatsionnogo materialovedeniya: sb. tez. dokl. M.: VIAM, 2007. S. 163.
15. Buschow K.H.J. New development in hard magnetic materials // Reports on Progress in Physics. 1991. Vol. 54. P. 1123–1213.
16. Smart D. Effektivnoe pole v teorii magnetizma [Effective field in the magnetism theory]. M.: Mir, 1968. 271 s.
17. Piskorskiy V.P., Valeev R.A., Davydova V.A. Raschet temperaturnogo koeffitsienta induktsii materialov Pr–Dy–Fe–Co–B v priblizhenii molekulyarnogo polya [Calculation of temperature coefficient of induction of the materials Pr–Dy–Fe–Co–B in approach of molecular field] // Perspektivnye materialy. 2008. Spets. vyp. S. 329–331.
18. Kablov E.N., Piskorskiy V.P., Bruk L.A. Postoyannye magnity iz splavov Nd–Fe–B [Constant magnets from Nd–Fe–B alloys] // Aviatsionnye materialy. Izbrannye trudy «VIAM» 1932–2002: yubil. nauch.-tekhnich. sb. M.: MISIS–VIAM, 2002. S. 191–197.
19. Chen Y., Liang J., Chen X., Liu Q. Phase relation in the Gd–Co–B // Journal of Alloys and Compounds. 2000. Vol. 296. P. L1–L3.
20. 20. Zhoy S.Z., Guo C., Hu Q. Magnetic properties and microstruture of iron-based rare-earth magnets with low-temperature coefficients // Journal of Applied Phisics. 1988. Vol. 63. No. 8. P. 3327–3329.
21. Kablov E.N., Ospennikova O.G., Piskorskij V.P., Valeev R.A. i dr. Fazovyj sostav spechennyh materialov sistemy Nd–Dy–Fe–Co–B [Phase composition of Nd–Dy–Fe–Co–B sintered materials] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 95–100. DOI: 10.18577/2071-9140-2014-0-s5-95-100.
22. Kablov E.N., Petrakov A.F., Piskorskij V.P., Valeev R.A., Chabina E.B. Vliyanie tseriya i ittriya na magnitnye svojstva i fazovyj sostav materiala sistemy Nd–Dу–Fе–Со–В [Influence of cerium and yttrium on magnetic properties and phase structure of material of system Nd–Dу–Fе–Со–В] // Metallovedenie i termicheskaya obrabotka metallov. 2005. №10. S. 25–29.
23. Kablov E.N., Ospennikova O.G., Piskorskij V.P., Rezchikova I.I., Valeev R.A., Davydova E.A. Fazovyj sostav spechennyh materialov sistemy Рr–Dу–Fе–Со–В [Phase composition of the Рr–Dу–Fе–Со–В sintered materials] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 5–10. DOI: 10.18577/2071-9140-2015-0-S2-5-10.
24. Bogacz B.F., Pedziwiatr A.T. Mossbauer Investigation of spin arrangements in Er2-xCexFe14B // Acta Physica Polonica A. 2008. Vol. 114. No. 6. P. 1509–1516.
25. Abache C., Oesterreicher J. Magnetic anisotropies and spin reorientations of R2Fe14B-type com-pounds // Journal of Applied Phisics. 1986. Vol. 60. No. 10. P. 3671–3679.
26. Kablov E.N., Ospennikova O.G., Cherednichenko I.V., Rezchikova I.I., Valeev R.A., Piskorskij V.P. Vliyanie soderzhaniya medi na fazovyj sostav i magnitnye svojstva termostabil'nyh spechennyh magnitov sistem Nd–Dy–Fe–Co–B i Pr–Dy–Fe–Co–B [Influence of Cu content to phase structure and magnetic properties of thermostable sintered magnets of Nd–Dy–Fe–Co–B and Pr–Dy–Fe–Co–B systems] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 11–19. DOI: 10.18577/2071-9140-2015-0-S2-11-19.
27. Shimoda T., Akioka K., Kobayashi O., Yamagami T. High-energy cast Pr–Fe–B magnets // Journal of Applied Phisics. 1988. Vol. 64. No. 10. P. 5990–5992.
28. Kablov E.N., Ospennikova O.G., Rezchikova I.I., Valeev R.A. i dr. Sravnenie temperaturnoj stabilnosti magnitov na osnove SmCo i PrDy–FeCo–B [Comparison of the temperature stability of SmCo and PrDy–FeCo–B magnets] // Aviacionnye materialy i tehnologii. 2015. №S2. S. 42–46. DOI: 10.18577/2071-9140-2015-0-S2-42-46.
29. Tang W., Zhoy S., Wang R. Preparation and microstructure of La-containing R–Fe–B permanent magnets // Journal of Applied Phisics. 1989. Vol. 65. No. 8. P. 3142–3145.
30. Herbst J.F. R2Fe14B materials: intrinsic properties and technological aspects // Reviews of modern physics. 1991. Vol. 63. No. 4. P. 819–898.
31. Oreshkin M.A., Savchenko A.G., Vekshin B.S. i dr. Sovmestimost protsessov proizvodstva magnitov iz splavov Sm–Co i Nd–Fe–B [Compatibility of processes of production of magnets from Sm–Co and Nd–Fe–B alloys] // Metally. 1996. №4. S. 111–116.
32. Piskorskiy V.P. Termostabilnye magnitotverdye materialy na osnove redkozemelnyh intermetallidov s tetragonalnoy strukturoy: avtoref. dis. … dokt. tekhn. nauk [Thermostable magnitotverdy materials on the basis of rare-earth intermetallic compound with tetragonal structure: thesis abstract, Dr. Sc. (Tech.)]. M., 2014. S. 25.
33. Wu L., Zhan W., Chen X., Chen X. The effect of boron on Tb0,27Dy0,73Fe2 compounds // Journal of Magnetism and Magnetic. Materials. 1995. Vol. 139. P. 335–338.
34. Piskorskij V.P., Burkhanov G.S., Ospennikova O.G., Valeev R.A., Tereshina I.S., Davydova E.A. Vliyanie termicheskoj obrabotki na svojstva nanostrukturirovannykh magnitotverdykh materialov Рr–Dу–Fе–Со–В [Influence of thermal processing on properties of the nanostructured magnitotverdy materials Рr–Dу–Fе–Со–В] // Metally. 2010. №3. S. 84–91.
35. Kuzma Yu.B., Chaban N.F. Dvoynye i troynye sistemy, soderzhashchie bor [The double and threefold systems containing boron]. M.: Metallurgiya, 1990. 317 s.
36. Petrakov A.F., Piskorskij V.P., Burkhanov G.S., Repina M.V., Ivanov S.I. Osobennosti spekaniya magnitov Nd(Рr)–Dу–Fе–Со–В s vysokim soderzhaniem Co [Features of agglomeration of magnets of Nd(Рr)–Dу–Fе–Со–В with the high contents Co] // Metallovedenie i termicheskaya obrabotka metallov. 2012. №7. S. 3–9.
37. Glebov V.A., Lukin A.A. Nanokristallicheskie redkozemelnye magnitotverdye materialy [Nanocrystal rare-earth magnitotverdy materials]. M.: VNIINM, 2007. 179 c.
38. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
39. Kablov E.N., Petrakov A.F., Piskorskij V.P., Valeev R.A., Chabina E.B. Vliyanie tseriya i ittriya na magnitnye svojstva i fazovyj sostav materiala sistemy Nd–Dу–Fе–Со–В [Influence of cerium and yttrium on magnetic properties and phase structure of material of system Nd–Dу–Fе–Со–В] // Metallovedenie i termicheskaya obrabotka metallov. 2005. №10. S. 25–29.
40. Herbst J.F., Croat J.J. Neodymium-iron-boron permanent magnets // Journal of Magnetism and Magnetic. Materials. 1991. Vol. 100. P. 57–78.
41. Kablov E.N., Petrakov A.F., Piskorskiy V.P., Valeev R.A., Nazarova N.V. Vliyanie disproziya i kobalta na temperaturnuyu zavisimost' namagnichennosti i fazovyy sostav materiala sistemy Nd–Dy–Fe–Co–B [Influence disproziya and cobalt on temperature dependence of magnetization and phase structure of material of Nd–Dy–Fe–Co–B system] // MiTOM. 2007. №4. S. 3–10.
42. Rodewall W., Wall B., Ratter M., Uestuener K. Topology оf Nd–Fe–B magnets with a high energy density // IEEE Transactions on Magnetic. 2003. Vol. 39. No. 5. P. 2932–2934.
2. Davydova E.A. Fazovyj sostav i magnitnye svojstva magnitotverdykh materialov sistemy Rr–Du(Gd)–Fe–So–B: dis. ... kand. tekhn. nauk [Phase structure and magnetic properties of magneto hard materials of Rr–Du system (Gd)–Fe–So–B: thesis, cand. Sc. (Tech.)]. M., 2012. 179 s.
3. Valeev R.A. Termostabilnye magnitotverdye materialy na osnove sistemy Nd–Dy–Fe–Co–B, legirovannye nekotorymi legkimi redkozemelnymi metallami: dis. … kand. tekhn. nauk [Thermostable magneto hard materials on the basis of the Nd–Dy–Fe–Co–B system, alloyed by some light rare earth metals: thesis, cand. Sc. (Tech.)]. M., 2005. 137 s.
4. Arai S., Shibata T. Highly heat-resistant Nd–Fe–Co–B system permanent magnets // IEEE Transactions on Magnetics. 1985. Vol. MAG-21. No. 5. P. 1952–1954.
5. Teylor K. Intermetallicheskie soedineniya redkozemelnyh metallov [Intermetallic compounds of rare earth metals]. M.: Mir, 1974. 221 s.
6. Lukin A.A., Dormidontov A.G., Egorov S.M. Perspektivnye materialy dlya postoyannyh magnitov. Obzor [Perspective materials for constant magnets. Review]. Seriya VIII. M.: Poisk, 1990. 158 s.
7. Savchenko A.G., Menushenkov V.P. High-energy-product rare-earth permanent magnets: Fundamental principles of development and manufacturing // The Physics of Metals and Metallography. 2001. Vol. 91. Suppl. 1. P. S242–S248.
8. Piskorskiy V.P., Valeev R.A., Tereshina I.S., Bronfin M.B., Chabina E.B., Davydova E.A., Buzenkov A.V. Magnitnye svoystva i fazovyy sostav materialov sistemy Pr–Dy–Fe–Co–B [Magnetic properties and phase structure of materials of Pr–Dy–Fe–Co–B system] // Perspektivnye materialy. 2007. №3. C. 16–19.
9. Fritz K., Guth J., Grieb B., Henig E., Petzow G. Magnetic properties of sintered Dy substituted Nd–Fe–B magnets // Zeitschrift für Metallkunde. 1992. Vol. 83. No. 11. P. 791–793.
10. Piskorskiy V.P., Valeev R.A., Buzenkov A.V., Davydova E.A., Zolotareva M.V. Vliyanie vysokih kontsentratsiy kobalta na svoystva magnitov Pr–Dy–Fe–Co–B [Influence of high concentration of cobalt on properties of magnets of Pr–Dy–Fe–Co–B] // Perspektivnye materialy. 2008. Spets. vyp. S. 268–271.
11. Menushenkov V.P., Savchenko A.G. Termoobrabotka, mikrostruktura i koertsitivnaya sila spechennyh magnitov na osnove (Nd, Dy)–Fe–B [Heat treatment, microstructure and coercive force of the sintered magnets on basis (Nd, Dy)–Fe–B] // Materialovedenie i metallurgiya. Perspektivnye tekhnologii i oborudovanie: materialy seminara. M.: MGIU, 2003. S. 158–185.
12. Tokareva N.V. Temperaturnoe povedenie namagnichennosti i fazovyy sostav magnitotverdyh materialov sistemy (Nd, Dy, R)–(Fe, Co)–B (R=Er, Gd, Sm, Pr): dis. … kand. tekhn. nauk [Temperature behavior of magnetization and phase structure of magneto hard materials of system (Nd, Dy, R)–(Fe, Co)–B (R=Er, Gd, Sm, Pr): thesis, cand. Sc. (Tech.)]. M., 2007. 142 s.
13. Kablov E.N., Petrakov A.F., Piskorskiy V.P. Magnity Nd–Fe–B s vysokoy temperaturnoy stabilnostyu [Nd–Fe–B magnets with high temperature stability] // Sb. tez. dokl. 13-y Mezhdunar. konf. po postoyannym magnitam. Suzdal, 2000. S. 64.
14. Nazarova N.V., Valeev R.A., Piskorskiy V.P., Stepanova S.V. Vliyanie gadoliniya i erbiya na magnitnye svoystva materialov sistemy R–(Fe, Co)–B [Influence of gadolinium and erbiya on magnetic properties of materials of R-system (Fe, Co)–B] // Aktualnye voprosy aviatsionnogo materialovedeniya: sb. tez. dokl. M.: VIAM, 2007. S. 163.
15. Buschow K.H.J. New development in hard magnetic materials // Reports on Progress in Physics. 1991. Vol. 54. P. 1123–1213.
16. Smart D. Effektivnoe pole v teorii magnetizma [Effective field in the magnetism theory]. M.: Mir, 1968. 271 s.
17. Piskorskiy V.P., Valeev R.A., Davydova V.A. Raschet temperaturnogo koeffitsienta induktsii materialov Pr–Dy–Fe–Co–B v priblizhenii molekulyarnogo polya [Calculation of temperature coefficient of induction of the materials Pr–Dy–Fe–Co–B in approach of molecular field] // Perspektivnye materialy. 2008. Spets. vyp. S. 329–331.
18. Kablov E.N., Piskorskiy V.P., Bruk L.A. Postoyannye magnity iz splavov Nd–Fe–B [Constant magnets from Nd–Fe–B alloys] // Aviatsionnye materialy. Izbrannye trudy «VIAM» 1932–2002: yubil. nauch.-tekhnich. sb. M.: MISIS–VIAM, 2002. S. 191–197.
19. Chen Y., Liang J., Chen X., Liu Q. Phase relation in the Gd–Co–B // Journal of Alloys and Compounds. 2000. Vol. 296. P. L1–L3.
20. 20. Zhoy S.Z., Guo C., Hu Q. Magnetic properties and microstruture of iron-based rare-earth magnets with low-temperature coefficients // Journal of Applied Phisics. 1988. Vol. 63. No. 8. P. 3327–3329.
21. Kablov E.N., Ospennikova O.G., Piskorskij V.P., Valeev R.A. i dr. Fazovyj sostav spechennyh materialov sistemy Nd–Dy–Fe–Co–B [Phase composition of Nd–Dy–Fe–Co–B sintered materials] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 95–100. DOI: 10.18577/2071-9140-2014-0-s5-95-100.
22. Kablov E.N., Petrakov A.F., Piskorskij V.P., Valeev R.A., Chabina E.B. Vliyanie tseriya i ittriya na magnitnye svojstva i fazovyj sostav materiala sistemy Nd–Dу–Fе–Со–В [Influence of cerium and yttrium on magnetic properties and phase structure of material of system Nd–Dу–Fе–Со–В] // Metallovedenie i termicheskaya obrabotka metallov. 2005. №10. S. 25–29.
23. Kablov E.N., Ospennikova O.G., Piskorskij V.P., Rezchikova I.I., Valeev R.A., Davydova E.A. Fazovyj sostav spechennyh materialov sistemy Рr–Dу–Fе–Со–В [Phase composition of the Рr–Dу–Fе–Со–В sintered materials] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 5–10. DOI: 10.18577/2071-9140-2015-0-S2-5-10.
24. Bogacz B.F., Pedziwiatr A.T. Mossbauer Investigation of spin arrangements in Er2-xCexFe14B // Acta Physica Polonica A. 2008. Vol. 114. No. 6. P. 1509–1516.
25. Abache C., Oesterreicher J. Magnetic anisotropies and spin reorientations of R2Fe14B-type com-pounds // Journal of Applied Phisics. 1986. Vol. 60. No. 10. P. 3671–3679.
26. Kablov E.N., Ospennikova O.G., Cherednichenko I.V., Rezchikova I.I., Valeev R.A., Piskorskij V.P. Vliyanie soderzhaniya medi na fazovyj sostav i magnitnye svojstva termostabil'nyh spechennyh magnitov sistem Nd–Dy–Fe–Co–B i Pr–Dy–Fe–Co–B [Influence of Cu content to phase structure and magnetic properties of thermostable sintered magnets of Nd–Dy–Fe–Co–B and Pr–Dy–Fe–Co–B systems] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 11–19. DOI: 10.18577/2071-9140-2015-0-S2-11-19.
27. Shimoda T., Akioka K., Kobayashi O., Yamagami T. High-energy cast Pr–Fe–B magnets // Journal of Applied Phisics. 1988. Vol. 64. No. 10. P. 5990–5992.
28. Kablov E.N., Ospennikova O.G., Rezchikova I.I., Valeev R.A. i dr. Sravnenie temperaturnoj stabilnosti magnitov na osnove SmCo i PrDy–FeCo–B [Comparison of the temperature stability of SmCo and PrDy–FeCo–B magnets] // Aviacionnye materialy i tehnologii. 2015. №S2. S. 42–46. DOI: 10.18577/2071-9140-2015-0-S2-42-46.
29. Tang W., Zhoy S., Wang R. Preparation and microstructure of La-containing R–Fe–B permanent magnets // Journal of Applied Phisics. 1989. Vol. 65. No. 8. P. 3142–3145.
30. Herbst J.F. R2Fe14B materials: intrinsic properties and technological aspects // Reviews of modern physics. 1991. Vol. 63. No. 4. P. 819–898.
31. Oreshkin M.A., Savchenko A.G., Vekshin B.S. i dr. Sovmestimost protsessov proizvodstva magnitov iz splavov Sm–Co i Nd–Fe–B [Compatibility of processes of production of magnets from Sm–Co and Nd–Fe–B alloys] // Metally. 1996. №4. S. 111–116.
32. Piskorskiy V.P. Termostabilnye magnitotverdye materialy na osnove redkozemelnyh intermetallidov s tetragonalnoy strukturoy: avtoref. dis. … dokt. tekhn. nauk [Thermostable magnitotverdy materials on the basis of rare-earth intermetallic compound with tetragonal structure: thesis abstract, Dr. Sc. (Tech.)]. M., 2014. S. 25.
33. Wu L., Zhan W., Chen X., Chen X. The effect of boron on Tb0,27Dy0,73Fe2 compounds // Journal of Magnetism and Magnetic. Materials. 1995. Vol. 139. P. 335–338.
34. Piskorskij V.P., Burkhanov G.S., Ospennikova O.G., Valeev R.A., Tereshina I.S., Davydova E.A. Vliyanie termicheskoj obrabotki na svojstva nanostrukturirovannykh magnitotverdykh materialov Рr–Dу–Fе–Со–В [Influence of thermal processing on properties of the nanostructured magnitotverdy materials Рr–Dу–Fе–Со–В] // Metally. 2010. №3. S. 84–91.
35. Kuzma Yu.B., Chaban N.F. Dvoynye i troynye sistemy, soderzhashchie bor [The double and threefold systems containing boron]. M.: Metallurgiya, 1990. 317 s.
36. Petrakov A.F., Piskorskij V.P., Burkhanov G.S., Repina M.V., Ivanov S.I. Osobennosti spekaniya magnitov Nd(Рr)–Dу–Fе–Со–В s vysokim soderzhaniem Co [Features of agglomeration of magnets of Nd(Рr)–Dу–Fе–Со–В with the high contents Co] // Metallovedenie i termicheskaya obrabotka metallov. 2012. №7. S. 3–9.
37. Glebov V.A., Lukin A.A. Nanokristallicheskie redkozemelnye magnitotverdye materialy [Nanocrystal rare-earth magnitotverdy materials]. M.: VNIINM, 2007. 179 c.
38. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
39. Kablov E.N., Petrakov A.F., Piskorskij V.P., Valeev R.A., Chabina E.B. Vliyanie tseriya i ittriya na magnitnye svojstva i fazovyj sostav materiala sistemy Nd–Dу–Fе–Со–В [Influence of cerium and yttrium on magnetic properties and phase structure of material of system Nd–Dу–Fе–Со–В] // Metallovedenie i termicheskaya obrabotka metallov. 2005. №10. S. 25–29.
40. Herbst J.F., Croat J.J. Neodymium-iron-boron permanent magnets // Journal of Magnetism and Magnetic. Materials. 1991. Vol. 100. P. 57–78.
41. Kablov E.N., Petrakov A.F., Piskorskiy V.P., Valeev R.A., Nazarova N.V. Vliyanie disproziya i kobalta na temperaturnuyu zavisimost' namagnichennosti i fazovyy sostav materiala sistemy Nd–Dy–Fe–Co–B [Influence disproziya and cobalt on temperature dependence of magnetization and phase structure of material of Nd–Dy–Fe–Co–B system] // MiTOM. 2007. №4. S. 3–10.
42. Rodewall W., Wall B., Ratter M., Uestuener K. Topology оf Nd–Fe–B magnets with a high energy density // IEEE Transactions on Magnetic. 2003. Vol. 39. No. 5. P. 2932–2934.
4.
УДК 665.939.5
Petrova A.P.1, Lukina N.Ph.1
HISTORY OF DEVELOPMENT AND ACHIEVEMENTS IN THE FIELD OF ADHESIVE MATERIALS
The article describe development history of scientific direction at creation adhesive materials: adhesives, adhesive binders and adhesive prepregs. The properties and nomenclature of phenol-formaldehyde, epoxy, phenol-rubber, polyurethane, organosilicone, inorganic and elastomeric adhesives and materials with a sticky layer are presented. The properties of adhesive binders and adhesive prepregs are presented. Information on the application anodizing of aluminum alloys as an preparation their surface for bonding is described.
Keywords: adhesive, adhesive film, adhesive binder, adhesive prepreg, adhesive bonded-joint, glued construction, honeycomb construction, glued multi-layer construction.
Reference List
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] // Aviatsionnye materialy i tekhnologii. 2012. №S. S. 7–17.
3. Petrova A.P., Lukina N.F., Starodubtseva O.A., Dementeva L.A. 50 let laboratorii «Klei i kleevye prepregi» [50 years of laboratory «Glues and glue prepregs»]. M.: VIAM, 2008. 26 s.
4. Lukina N.F., Dementeva L.A., Petrova A.P., Anihovskaya L.I. Kleyashhie materialy v konstrukcii lopastej vertoletov [Gluing materials in the design of blades of helicopters] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №7. St. 07. Available at: http://www.viam-works.ru (accessed: July 2, 2018). DOI: 10.18577/2307-6046-2016-0-7-7-7.
5. Lukina N.F., Dementeva L.A., Petrova A.P., Serezhenkov A.A. Konstrukcionnye i termostojkie klei [Constructional and heat-resistant glues] // Aviacionnye materialy i tehnologii. 2012. №S. S. 328–335.
6. Anihovskaya L.I., Batizat D.V., Petrova A.P. Vysokoelastichnyj konstruktsionnyj plenochnyj klej VK-50 [Highly elastic constructional film VK-50 glue] // Klei. Germetiki. Tekhnologii. 2016. №3. S. 16–20.
7. Dementeva L.A., Petrova A.P., Lukina N.F. Primenenie i naznachenie epoksidnogo plenochnogo kleya VK-31 [Application and assignment of epoxy film VK-31 glue] // Vse materialy. Entsiklopedicheskij spravochnik. 2015. №1. S. 25–29.
8. Dementeva L.A., Bocharova L.I., Lukina N.F., Petrova A.P. Vysokoprochnye plenochnye klei VK-51 i VK-51A [High-strength film adhesives VK-51 and VK-51A] // Klei. Germetiki. Tekhnologii. 2015. №4. S. 17–19.
9. Kablov E.N., Chursova L.V., Lukina N.F., Petrova A.P. Issledovanie jepoksidno-polisulfonovyh polimernyh sistem kak osnovy vysokoprochnyh kleev aviacionnogo naznachenija [Research of epoxy and polysulfonic polymeric systems as bases of high-strength adhesives of aviation assignment] // Klei. Germetiki. Tehnologii. 2017. №3. S. 7–12.
10. Lukina N.F., Dement'eva L.A., Petrova A.P., Kirienko T.A., Chursova L.V. Kleevye svyazuyushchie dlya detalej iz PKM sotovoj konstruktsii [Glue binding for details from PCM of cellular design] // Klei. Germetiki. Tekhnologii. 2016. №5. S. 12–16.
11. Petrovа A.P., Dementyevа L.A., Lukina N.F., Chursova L.V. Kleevye svjazujushhie dlja polimernyh kompozicionnyh materialov na ugle- i steklonapolniteljah [Adhesive binders for polymer composite materials based on carbon- and glass fillers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 11. Available at: http://www.viam-works.ru (accessed: July 2, 2018). DOI: 10.18577/2307-6046-2015-0-9-11-11.
12. Petrova A.P. Vspenivayushchiesya klei i ikh primenenie v aviastroenii [Foaming glues and their application in aircraft industry] // Klei. Germetiki. Tekhnologii. 2015. №1. S. 2–5.
13. Lukina N.F., Petrova A.P., Muhametov R.R., Kogtjonkov A.S. Novye razrabotki v oblasti kleyashhih materialov aviacionnogo naznacheniya [New developments in the field of adhesive aviation materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 452–459. DOI: 10.18577/2071-9140-2017-0-S-452-459.
14. Sharova I.A., Lukina N.F. Zazorozapolnyayushchij epoksidnyj klej VK-67M holodnogo otverzhdeniya [Gap filling epoxy VK-67M glue of cold curing] // Klei. Germetiki. Tekhnologii. 2012. №3. S. 10–12.
15. Avdonina I.A., Lukina N.F. Bystrootverzhdayushchijsya epoksidnyj klej VK-93 holodnogo otverzhdeniya [Quick-hardening epoxy VK-93 glue of cold curing] // Klei. Germetiki. Tekhnologii. 2009. №3. S. 14–17.
16. Petrova A.P., Lukina N.F., Pavlyuk B.F., Isaev A.YU., Besednov K.L. Napolniteli dlya tokoprovodyashchih kleev (obzor literatury) [Fillers for conducting glues (literature review)] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2017. №5–6 (28). St. 06. Available at: http://materialsnews.ru (accessed: July 2, 2018).
17. Petrova A.P., Malysheva G.V. Klei, kleevye svyazuyushchie i kleevye prepregi [Glues, glue binding and glue prepregs]. Pod obshchej redaktsiej E.N. Kablova. M.: VIAM, 2017. 472 s.
18. Lukina N.F., Petrova A.P., Kotova E.V. Termostojkie klei dlya izdelij aviakosmicheskoj tekhniki [Heat-resistent adhesives used in aviation and space technique] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2014. №3. St. 06. Available at: http://www.viam-works.ru (accessed: July 2, 2018). DOI: 10.18577/2307-6046-2014-0-3-6-6.
19. Petrova A.P. Kak nakleivali plitku s pokrytiem [As pasted tile with covering] // Dospekhi dlya «Burana». Materialy i tekhnologii VIAM dlya MKS «Energiya–Buran» / pod obshch. red. E.N. Kablova. M.: Nauka i zhizn', 2013. S. 64–69.
20. Petrova A.P., Lukina N.F. Prikleivanie teplozashchitnyh elementov v izdelii «Buran» [Gluing of heat-protective elements in the product «Buran»] // Klei. Germetiki. Tekhnologii. 2014. №6. S. 37–41.
21. Tyumeneva T.YU., Lukina N.F., Petrova A.P. Povyshenie adgezii elastomernyh kleev k rezinam pri ispol'zovanii adgezionnogo podsloya [Increase of adhesion of elastomeric glues to rubbers when using adhesive intermediate layer] // Klei. Germetiki. Tekhnologii. 2015. №11. S. 7–10.
22. Zhadova N.S., Tyumeneva T.Yu., Sharova I.A., Lukina N.F. Perspektivnye tehnologii dlya vremennogo operativnogo remonta aviacionnoj tehniki [Perspective technologies for field repair if aviation engineering] // Aviacionnye materialy i tehnologii. 2013. №2. S. 67–70.
23. Karimova S.A., Pavlovskaya T.G., Petrova A.P. Podgotovka poverhnosti alyuminievyh splavov s primeneniem anodnogo oksidirovaniya [Surface preparation of aluminum alloys using anodic oxidation] // Klei. Germetiki. Tekhnologii. 2014. №1. S. 34–38.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] // Aviatsionnye materialy i tekhnologii. 2012. №S. S. 7–17.
3. Petrova A.P., Lukina N.F., Starodubtseva O.A., Dementeva L.A. 50 let laboratorii «Klei i kleevye prepregi» [50 years of laboratory «Glues and glue prepregs»]. M.: VIAM, 2008. 26 s.
4. Lukina N.F., Dementeva L.A., Petrova A.P., Anihovskaya L.I. Kleyashhie materialy v konstrukcii lopastej vertoletov [Gluing materials in the design of blades of helicopters] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №7. St. 07. Available at: http://www.viam-works.ru (accessed: July 2, 2018). DOI: 10.18577/2307-6046-2016-0-7-7-7.
5. Lukina N.F., Dementeva L.A., Petrova A.P., Serezhenkov A.A. Konstrukcionnye i termostojkie klei [Constructional and heat-resistant glues] // Aviacionnye materialy i tehnologii. 2012. №S. S. 328–335.
6. Anihovskaya L.I., Batizat D.V., Petrova A.P. Vysokoelastichnyj konstruktsionnyj plenochnyj klej VK-50 [Highly elastic constructional film VK-50 glue] // Klei. Germetiki. Tekhnologii. 2016. №3. S. 16–20.
7. Dementeva L.A., Petrova A.P., Lukina N.F. Primenenie i naznachenie epoksidnogo plenochnogo kleya VK-31 [Application and assignment of epoxy film VK-31 glue] // Vse materialy. Entsiklopedicheskij spravochnik. 2015. №1. S. 25–29.
8. Dementeva L.A., Bocharova L.I., Lukina N.F., Petrova A.P. Vysokoprochnye plenochnye klei VK-51 i VK-51A [High-strength film adhesives VK-51 and VK-51A] // Klei. Germetiki. Tekhnologii. 2015. №4. S. 17–19.
9. Kablov E.N., Chursova L.V., Lukina N.F., Petrova A.P. Issledovanie jepoksidno-polisulfonovyh polimernyh sistem kak osnovy vysokoprochnyh kleev aviacionnogo naznachenija [Research of epoxy and polysulfonic polymeric systems as bases of high-strength adhesives of aviation assignment] // Klei. Germetiki. Tehnologii. 2017. №3. S. 7–12.
10. Lukina N.F., Dement'eva L.A., Petrova A.P., Kirienko T.A., Chursova L.V. Kleevye svyazuyushchie dlya detalej iz PKM sotovoj konstruktsii [Glue binding for details from PCM of cellular design] // Klei. Germetiki. Tekhnologii. 2016. №5. S. 12–16.
11. Petrovа A.P., Dementyevа L.A., Lukina N.F., Chursova L.V. Kleevye svjazujushhie dlja polimernyh kompozicionnyh materialov na ugle- i steklonapolniteljah [Adhesive binders for polymer composite materials based on carbon- and glass fillers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 11. Available at: http://www.viam-works.ru (accessed: July 2, 2018). DOI: 10.18577/2307-6046-2015-0-9-11-11.
12. Petrova A.P. Vspenivayushchiesya klei i ikh primenenie v aviastroenii [Foaming glues and their application in aircraft industry] // Klei. Germetiki. Tekhnologii. 2015. №1. S. 2–5.
13. Lukina N.F., Petrova A.P., Muhametov R.R., Kogtjonkov A.S. Novye razrabotki v oblasti kleyashhih materialov aviacionnogo naznacheniya [New developments in the field of adhesive aviation materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 452–459. DOI: 10.18577/2071-9140-2017-0-S-452-459.
14. Sharova I.A., Lukina N.F. Zazorozapolnyayushchij epoksidnyj klej VK-67M holodnogo otverzhdeniya [Gap filling epoxy VK-67M glue of cold curing] // Klei. Germetiki. Tekhnologii. 2012. №3. S. 10–12.
15. Avdonina I.A., Lukina N.F. Bystrootverzhdayushchijsya epoksidnyj klej VK-93 holodnogo otverzhdeniya [Quick-hardening epoxy VK-93 glue of cold curing] // Klei. Germetiki. Tekhnologii. 2009. №3. S. 14–17.
16. Petrova A.P., Lukina N.F., Pavlyuk B.F., Isaev A.YU., Besednov K.L. Napolniteli dlya tokoprovodyashchih kleev (obzor literatury) [Fillers for conducting glues (literature review)] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2017. №5–6 (28). St. 06. Available at: http://materialsnews.ru (accessed: July 2, 2018).
17. Petrova A.P., Malysheva G.V. Klei, kleevye svyazuyushchie i kleevye prepregi [Glues, glue binding and glue prepregs]. Pod obshchej redaktsiej E.N. Kablova. M.: VIAM, 2017. 472 s.
18. Lukina N.F., Petrova A.P., Kotova E.V. Termostojkie klei dlya izdelij aviakosmicheskoj tekhniki [Heat-resistent adhesives used in aviation and space technique] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2014. №3. St. 06. Available at: http://www.viam-works.ru (accessed: July 2, 2018). DOI: 10.18577/2307-6046-2014-0-3-6-6.
19. Petrova A.P. Kak nakleivali plitku s pokrytiem [As pasted tile with covering] // Dospekhi dlya «Burana». Materialy i tekhnologii VIAM dlya MKS «Energiya–Buran» / pod obshch. red. E.N. Kablova. M.: Nauka i zhizn', 2013. S. 64–69.
20. Petrova A.P., Lukina N.F. Prikleivanie teplozashchitnyh elementov v izdelii «Buran» [Gluing of heat-protective elements in the product «Buran»] // Klei. Germetiki. Tekhnologii. 2014. №6. S. 37–41.
21. Tyumeneva T.YU., Lukina N.F., Petrova A.P. Povyshenie adgezii elastomernyh kleev k rezinam pri ispol'zovanii adgezionnogo podsloya [Increase of adhesion of elastomeric glues to rubbers when using adhesive intermediate layer] // Klei. Germetiki. Tekhnologii. 2015. №11. S. 7–10.
22. Zhadova N.S., Tyumeneva T.Yu., Sharova I.A., Lukina N.F. Perspektivnye tehnologii dlya vremennogo operativnogo remonta aviacionnoj tehniki [Perspective technologies for field repair if aviation engineering] // Aviacionnye materialy i tehnologii. 2013. №2. S. 67–70.
23. Karimova S.A., Pavlovskaya T.G., Petrova A.P. Podgotovka poverhnosti alyuminievyh splavov s primeneniem anodnogo oksidirovaniya [Surface preparation of aluminum alloys using anodic oxidation] // Klei. Germetiki. Tekhnologii. 2014. №1. S. 34–38.
5.
УДК 665.939.5
Dementyeva L.A.1, Lukina N.Ph.1, Petrova A.P.1, Isaev A.Yu.1
PROPERTIES AND ASSIGNMENT SELF-FADING GLUES VK-11S and VK-46B
Properties and assignment of polyurethane glue of the VK-11S and high-strength epoxy film adhesive of the VK-46B, which are characterized by the lowered combustibility are provided. VK-11S glue is characterized for gluing of decorative and facing materials to units and devices of the household equipment of passenger planes, helicopters, and also different devices. VK-46B glue is characterized for pasting of designs, including cellular, from polymeric composite materials and aluminum alloys. The materials can be maintained in all-weather conditions.
Keywords: polyurethane glue, the epoxy film glue, the lowered combustibility, smoke allocation, glued joint, mechanical characteristics.
Reference List
1. Chaykun A.M., Eliseev O.A., Naumov I.S., Venediktova M.A. Osobennosti postroeniya receptur dlya morozostojkih rezin [Compounding principles in the field of frost resistant rubbers] // Aviacionnye materialy i tehnologii. 2013. №3. S. 53–55.
2. Naumov I.S., Petrova A.P., Barbotko S.L., Guliaev A.I. Reziny s ponizhennoi goriuchestiu na osnove etilenpropilen-dienovogo kauchuka [Rubbers with the lowered combustibility on basis of ethylenepropylene-diene rubber] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №2. St. 09. Available at: http://www.viam-works.ru (accessed: July 25, 2017). DOI: 10.18577/2307-6046-2016-0-2-9-9.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] // Aviatsionnye materialy i tekhnologii. 2012. №S. S. 7–17.
5. Petrova A.P., Malysheva G.V. Klei, kleevye svyazuyushchie i kleevye prepregi [Glues, glue binding and glue prepregs]. Pod obshchej redaktsiej E.N. Kablova. M.: VIAM, 2017. 472 s.
6. Dementeva L.A., Bocharova L.I., Lukina N.F., Petrova A.P. Mnogofunktsionalnye epoksidnye klei dlya aviatsionnoj tekhniki [Multifunction epoxy glues for aviation engineering] // Klei. Germetiki. Tekhnologii. 2006. №7. S. 18–20.
7. Lukina N.F., Dementeva L.A., Petrova A.P., Serezhenkov A.A. Konstrukcionnye i termostojkie klei [Constructional and heat-resistant glues] // Aviacionnye materialy i tehnologii. 2012. №S. S. 328–335.
8. Petrova A.P., Lukina N.F., Sharova I.A. Otsenka prochnosti kleevykh soedinenij, vypolnennykh epoksidnymi kleyami, pri vozdejstvii razlichnykh faktorov [Assessment of durability of the glued joints executed by epoxy glues, at influence of different factors] // Vse materialy. Entsiklopedicheskij spravochnik. 2013. №8. S. 28–34.
9. Dementeva L.A., Petrova A.P., Lukina N.F. Primenenie i naznachenie epoksidnogo plenochnogo kleya VK-31 [Application and assignment of epoxy film VK-31 glue] // Vse materialy. Entsiklopedicheskij spravochnik. 2015. №1. S. 25–29.
10. Dementeva L.A., Bocharova L.I., Lukina N.F., Petrova A.P. Vysokoprochnye plenochnye klei VK-51 i VK-51A [High-strength film adhesives VK-51 and VK-51A] // Klei. Germetiki. Tekhnologii. 2015. №4. S. 17–19.
11. Kablov E.N., Chursova L.V., Lukina N.F., Petrova A.P. Issledovanie jepoksidno-polisulfonovyh polimernyh sistem kak osnovy vysokoprochnyh kleev aviacionnogo naznachenija [Research of epoxy and polysulfonic polymeric systems as bases of high-strength adhesives of aviation assignment] // Klei. Germetiki. Tehnologii. 2017. №3. S. 7–12.
12. Petrovа A.P., Dementyevа L.A., Lukina N.F., Chursova L.V. Kleevye svjazujushhie dlja polimernyh kompozicionnyh materialov na ugle- i steklonapolniteljah [Adhesive binders for polymer composite materials based on carbon- and glass fillers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 11. Available at: http://www.viam-works.ru (accessed: July 25, 2018). DOI: 10.18577/2307-6046-2015-0-9-11-11.
13. Petrova A.P. Vspenivayushchiesya klei i ikh primenenie v aviastroenii [Foaming glues and their application in aircraft industry] // Klei. Germetiki. Tekhnologii. 2015. №1. S. 2–5.
14. Lukina N.F., Petrova A.P., Muhametov R.R., Kogtjonkov A.S. Novye razrabotki v oblasti kleyashhih materialov aviacionnogo naznacheniya [New developments in the field of adhesive aviation materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 452–459. DOI: 10.18577/2071-9140-2017-0-S-452-459.
15. Sharova I.A., Lukina N.F. Zazorozapolnyayushchij epoksidnyj klej VK-67M kholodnogo otverzhdeniya [Gap filling epoxy VK-67M glue of cold curing] // Klei. Germetiki. Tekhnologii. 2012. №3. S. 10–12.
16. Dementeva L.A., Tyumeneva T.Yu., Sharova I.A. Klei s ponizhennoj goryuchestyu dlya aviatsionnoj tekhniki [Glues with the lowered combustibility for aviation engineering] // Tr. VI Mezhdunar. konf. «Polimernye materialy ponizhennoj goryuchesti». Vologda, 2011. S. 102–104.
17. Avdonina I.A., Lukina N.F. Bystrootverzhdayushchijsya epoksidnyj klej VK-93 kholodnogo otverzhdeniya [Quick-hardening epoxy VK-93 glue of cold curing] // Klei. Germetiki. Tekhnologii. 2009. №3. S. 14–17.
18. Zhadova N.S., Tyumeneva T.Yu., Sharova I.A., Lukina N.F. Perspektivnye tehnologii dlya vremennogo operativnogo remonta aviacionnoj tehniki [Perspective technologies for field repair if aviation engineering] // Aviacionnye materialy i tehnologii. 2013. №2. S. 67–70.
19. Karimova S.A., Pavlovskaya T.G., Petrova A.P. Podgotovka poverkhnosti alyuminievykh splavov s primeneniem anodnogo oksidirovaniya [Surface preparation of aluminum alloys using anodic oxidation] // Klei. Germetiki. Tekhnologii. 2014. №1. S. 34–38.
2. Naumov I.S., Petrova A.P., Barbotko S.L., Guliaev A.I. Reziny s ponizhennoi goriuchestiu na osnove etilenpropilen-dienovogo kauchuka [Rubbers with the lowered combustibility on basis of ethylenepropylene-diene rubber] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №2. St. 09. Available at: http://www.viam-works.ru (accessed: July 25, 2017). DOI: 10.18577/2307-6046-2016-0-2-9-9.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] // Aviatsionnye materialy i tekhnologii. 2012. №S. S. 7–17.
5. Petrova A.P., Malysheva G.V. Klei, kleevye svyazuyushchie i kleevye prepregi [Glues, glue binding and glue prepregs]. Pod obshchej redaktsiej E.N. Kablova. M.: VIAM, 2017. 472 s.
6. Dementeva L.A., Bocharova L.I., Lukina N.F., Petrova A.P. Mnogofunktsionalnye epoksidnye klei dlya aviatsionnoj tekhniki [Multifunction epoxy glues for aviation engineering] // Klei. Germetiki. Tekhnologii. 2006. №7. S. 18–20.
7. Lukina N.F., Dementeva L.A., Petrova A.P., Serezhenkov A.A. Konstrukcionnye i termostojkie klei [Constructional and heat-resistant glues] // Aviacionnye materialy i tehnologii. 2012. №S. S. 328–335.
8. Petrova A.P., Lukina N.F., Sharova I.A. Otsenka prochnosti kleevykh soedinenij, vypolnennykh epoksidnymi kleyami, pri vozdejstvii razlichnykh faktorov [Assessment of durability of the glued joints executed by epoxy glues, at influence of different factors] // Vse materialy. Entsiklopedicheskij spravochnik. 2013. №8. S. 28–34.
9. Dementeva L.A., Petrova A.P., Lukina N.F. Primenenie i naznachenie epoksidnogo plenochnogo kleya VK-31 [Application and assignment of epoxy film VK-31 glue] // Vse materialy. Entsiklopedicheskij spravochnik. 2015. №1. S. 25–29.
10. Dementeva L.A., Bocharova L.I., Lukina N.F., Petrova A.P. Vysokoprochnye plenochnye klei VK-51 i VK-51A [High-strength film adhesives VK-51 and VK-51A] // Klei. Germetiki. Tekhnologii. 2015. №4. S. 17–19.
11. Kablov E.N., Chursova L.V., Lukina N.F., Petrova A.P. Issledovanie jepoksidno-polisulfonovyh polimernyh sistem kak osnovy vysokoprochnyh kleev aviacionnogo naznachenija [Research of epoxy and polysulfonic polymeric systems as bases of high-strength adhesives of aviation assignment] // Klei. Germetiki. Tehnologii. 2017. №3. S. 7–12.
12. Petrovа A.P., Dementyevа L.A., Lukina N.F., Chursova L.V. Kleevye svjazujushhie dlja polimernyh kompozicionnyh materialov na ugle- i steklonapolniteljah [Adhesive binders for polymer composite materials based on carbon- and glass fillers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 11. Available at: http://www.viam-works.ru (accessed: July 25, 2018). DOI: 10.18577/2307-6046-2015-0-9-11-11.
13. Petrova A.P. Vspenivayushchiesya klei i ikh primenenie v aviastroenii [Foaming glues and their application in aircraft industry] // Klei. Germetiki. Tekhnologii. 2015. №1. S. 2–5.
14. Lukina N.F., Petrova A.P., Muhametov R.R., Kogtjonkov A.S. Novye razrabotki v oblasti kleyashhih materialov aviacionnogo naznacheniya [New developments in the field of adhesive aviation materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 452–459. DOI: 10.18577/2071-9140-2017-0-S-452-459.
15. Sharova I.A., Lukina N.F. Zazorozapolnyayushchij epoksidnyj klej VK-67M kholodnogo otverzhdeniya [Gap filling epoxy VK-67M glue of cold curing] // Klei. Germetiki. Tekhnologii. 2012. №3. S. 10–12.
16. Dementeva L.A., Tyumeneva T.Yu., Sharova I.A. Klei s ponizhennoj goryuchestyu dlya aviatsionnoj tekhniki [Glues with the lowered combustibility for aviation engineering] // Tr. VI Mezhdunar. konf. «Polimernye materialy ponizhennoj goryuchesti». Vologda, 2011. S. 102–104.
17. Avdonina I.A., Lukina N.F. Bystrootverzhdayushchijsya epoksidnyj klej VK-93 kholodnogo otverzhdeniya [Quick-hardening epoxy VK-93 glue of cold curing] // Klei. Germetiki. Tekhnologii. 2009. №3. S. 14–17.
18. Zhadova N.S., Tyumeneva T.Yu., Sharova I.A., Lukina N.F. Perspektivnye tehnologii dlya vremennogo operativnogo remonta aviacionnoj tehniki [Perspective technologies for field repair if aviation engineering] // Aviacionnye materialy i tehnologii. 2013. №2. S. 67–70.
19. Karimova S.A., Pavlovskaya T.G., Petrova A.P. Podgotovka poverkhnosti alyuminievykh splavov s primeneniem anodnogo oksidirovaniya [Surface preparation of aluminum alloys using anodic oxidation] // Klei. Germetiki. Tekhnologii. 2014. №1. S. 34–38.
6.
category: Composite materials
УДК 678.8
Chursova L.V.1, Tsybin A.I.1, Grebeneva T.A.1, Panina N.N.1
RECYCLING OF EPOXY RESINS AND POLYMER COMPOSITE MATERIALS ON THEIR BASES (review)
In this work the most common methods of recycling of carbon and glass composite materials based on epoxy resins are discussed. Recycling of thermosetting polymers and materials on their bases are one of the most difficult questions in modern chemistry of composite materials. This class of materials cannot be melted by heat and re-molded, since there are many strong cross-linking bonds in them. Even more difficult is recycling of polymer composite materials, which are multi-phase materials, which contain fillers, fibers and cured polymer matrix.
Keywords: recycling, thermosetting compositions, epoxy compositions, polymer composite materials.
Reference List
1. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Razrabotki FGUP «VIAM» v oblasti rasplavnykh svyazuyushchikh dlya polimernykh kompozitsionnykh materialov [Development of VIAM Federal State Unitary Enterprise in the field of molten binding for polymeric composite materials] // Polimernye materialy i tekhnologii. 2016. T. 2. №2. S. 37–42.
2. Chursova L.V., Dushin M.I., Kogan D.I., Panina N.N., Kim M.A., Gurevich YA.M., Platonov A.A. Plenochnye svyazuyushchie dlya RFI-tekhnologii [Film binding for RFI technology] // Rossiyskiy khimicheskiy zhurnal. 2010. T. 54. №1. S. 63–66.
3. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svyazujushhie dlya perspektivnyh metodov izgotovleniya konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] // Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
4. Panina N.N., Kim M.A., Gurevich Ya.M., Grigorev M.M., Chursova L.V., Babin A.N. Svyazuyushchie dlya bezavtoklavnogo formovaniya izdeliy iz polimernykh kompozitsionnykh materialov [Binding for bezavtoklavny formation of products from polymeric composite materials] // Klei. Germetiki. Tekhnologii. 2013. №10. S. 18–27.
5. Postnova M.V., Postnov V.I. Opyt razvitiya bezavtoklavnyh metodov formovaniya PKM [Development experience out-of-autoclave methods of formation PCM]// Trudy VIAM: ehlektron. nauch.-tekhnich. zhurn. 2014. №4. St. 06. Available at: http://www.viam-works.ru (accessed: October 13, 2016). DOI 10.18577/2307-6046-2014-0-4-6-6.
6. Chursova L.V., Raskutin A.E., Gurevich Ya.M., Panina N.N. Svyazuyushchee kholodnogo otverzhdeniya dlya stroitelnoy industrii [Binding cold curing for the construction industry] // Klei. Germetiki. Tekhnologii. 2012. №5. S. 40–44.
7. Chursova L.V., Kim M.A., Panina N.N., Shvetsov E.P. Nanomodificirovannoe epoksidnoe svyazuyushhee dlya stroitelnoj industrii [Nanomodified epoxy binder for the construction industry] // Aviacionnye materialy i tehnologii. 2013. №1. S. 40–47.
8. Kablov E.N. Khimiya v aviatsionnom materialovedenii [Chemistry in aviation materials science] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 3–4.
9. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozitsionnykh materialov aviatsionnogo naznacheniya. I. Mekhanizmy stareniya [Climatic aging of composite materials of aviation assignment. I. Aging mechanisms] // Deformatsiya i razrushenie materialov. 2011. №11. S. 19–27.
10. Veshkin E.A., Postnov V.I., Abramov P.A. Puti povysheniya kachestva detaley iz PKM pri vakuumnom formovanii [Ways of improvement of quality of details from PCM at vacuum formation] // Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk. 2012. T. 14. №4 (3). S. 831–838.
11. Grebeneva T.A., Panina N.N., Chursova L.V., TSybin A.I. Polimernye svyazuyushchie dlya kompozitsionnykh materialov stroitelnogo naznacheniya [Polymeric binding for composite materials of construction assignment] // Vse materialy. Entsiklopedicheskiy spravochnik. 2015. №8. S. 13–17.
12. Kogan D.I., Chursova L.V., Petrova A.P. Polimernye kompozitsionnye materialy, poluchennye putem propitki plenochnym svyazuyushchim [The polymeric composite materials received by impregnation by the film binding] // Kompozitsionnye materialy. 2011. №11. S. 2–6.
13. Grigorev M.M., Kogan D.I., Tverdaya O.N., Panina N.N. Osobennosti izgotovleniya PKM metodom RFI [Features of manufacturing of PCM RFI method] // Trudy VIAM: electron. nauch.-tehnich. zhurn. 2013. №4. St. 03. Available at: http://www.viam-works.ru (accessed: October 13, 2016).
14. Grigorev M.M., Kogan D.I., Gusev Yu.A., Gurevich Ya.M. Osobennosti izgotovleniya PKM metodom vakuumnogo formovaniya preprega [Features of producing composites by vacuum molding of prepreg] // Aviacionnye materialy i tehnologii. 2014. №3. S. 67–71. DOI: 10.18577/2071-9140-2014-0-3-67-71.
15. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] // Aviatsionnye materialy i tekhnologii. 2012. №S. S. 7–17.
16. Pickering S.J. Recycling technologies for thermoset composite materials-current status // Composites: Part A. 2006. Vol. 37. P. 1206–1215.
17. Scheirs J. Polymer recycling: science, technology and applications. New York: Wiley, 1998. 614 р.
18. Process for separating fibres from composite materials: pat. WO 1993005883 A1, filed 18.09.92; publ. 01.04.93.
19. Hartt G.N., Carey D.P. Economics of recycling thermosets. SAE Technical Paper 920802. 1992. DOI:10.4271/920802.
20. Skrifvars M. Introduction to composites recycling // Recycling of composite materials in transport: COMPOSITE thematic network workshop (Pitea, Sweden, 2003). Available at: http://www.compositn.net (accessed: October 13, 2016).
21. Thomas R., Guild F.J., Adams R.D. The dynamic properties of recycled thermoset composites // Proceedings of eighth international conference on fibre reinforced composites-FRC 2000. Newcastle upon Tyne, UK, 2000. P. 549–556.
22. Pickering S.J., Benson M. The recycling of thermosetting plastics. Plastics and rubber institute. Second international conference plastics recycling. London, 1991. P. 21–31.
23. Pickering S.J., Kelly R.M., Kennerley J.R., Rudd C.D. A fluidized-bed process for the recovery of glass fibres from scrap thermoset composites // Composites Science and Technology. 2000. Vol. 60. No. 4. P. 509–523.
24. Yip H.L.H., Pickering S.J., Rudd C.D. Characterisation of carbon fibres recycled from scrap composites using fluidized bed process // Plastic Rubber and Composites. 2002. Vol. 31. No. 6. P. 278–282.
25. Soh S.K., Lee D.K., Cho Q., Rag Q. Low temperature pyrolysis of composite scrap. Proceedings of 10th annual ASM/ESD advanced composites conference. Dearborn (Michigan). 1994. P. 47–52.
26. Cunliffe A.M., Jones N., Williams P.T. Pyrolysis of composite plastic waste // Environmental Technology. 2003. Vol. 24. No. 5. P. 653–663.
27. Ushikoshi K., Komatsu N., Sugino M. Recycling of CFRP by pyrolysis method // Journal the Society Materials. Science. Japan. 1995. Vol. 44. P. 428–433.
28. Allred R.E., Newmeister G.C., Doak T.J., Cochran R.C., Coons A.B. Tertiary recycling of cured composite aircraft parts // Proc. «Composites97»: Manufacturing and Tooling Conference. Dearborn: Society of Manufacturing Engineers, 1997. P. EM97-110–EM97-110-17.
29. Allred R.E., Gosau J.M., Wesley T.F. Integrated composite recycling process // Proc. 38th SAMPLE Technology Conference (Dallas, 2006). Available at: https://www.researchgate.net/publica-tion/286712047_Integrated_Composite_Recycling_Process (accessed: October 13, 2016).
30. Grove-Neilsen E. Material and thermal recycling of wind turbine blades and other fibreglass items by ReFiber ApS // Recycling of composite materials in transport: COMPOSITE thematic network workshop (Pitea, Sweden, 2003). Available at: http://www.compositn.net (accessed: October 13, 2016).
31. Bell J.R., Pickering S.J., Yip H., Rudd C.D. Environmental aspects of the use of carbon fibre composites in vehicles-recycling and life cycle analysis // ELV: Proceedings of end of life vehicle conference. University of Warwick, 2002.
32. Kao C.C., Ghita O.R., Hallam K.R. et al. Mechanical studies of single glass fibres recycled from hydrolysis process using sub-critical water // Composites: Part A: Applied science and manufacturing. 2012. Vol. 43. No. 3. P. 398–410.
33. Kablov E.N. Aviatsionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossiyskoy akademii nauk. 2002. T. 72. №1. S. 3–12.
2. Chursova L.V., Dushin M.I., Kogan D.I., Panina N.N., Kim M.A., Gurevich YA.M., Platonov A.A. Plenochnye svyazuyushchie dlya RFI-tekhnologii [Film binding for RFI technology] // Rossiyskiy khimicheskiy zhurnal. 2010. T. 54. №1. S. 63–66.
3. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svyazujushhie dlya perspektivnyh metodov izgotovleniya konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] // Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
4. Panina N.N., Kim M.A., Gurevich Ya.M., Grigorev M.M., Chursova L.V., Babin A.N. Svyazuyushchie dlya bezavtoklavnogo formovaniya izdeliy iz polimernykh kompozitsionnykh materialov [Binding for bezavtoklavny formation of products from polymeric composite materials] // Klei. Germetiki. Tekhnologii. 2013. №10. S. 18–27.
5. Postnova M.V., Postnov V.I. Opyt razvitiya bezavtoklavnyh metodov formovaniya PKM [Development experience out-of-autoclave methods of formation PCM]// Trudy VIAM: ehlektron. nauch.-tekhnich. zhurn. 2014. №4. St. 06. Available at: http://www.viam-works.ru (accessed: October 13, 2016). DOI 10.18577/2307-6046-2014-0-4-6-6.
6. Chursova L.V., Raskutin A.E., Gurevich Ya.M., Panina N.N. Svyazuyushchee kholodnogo otverzhdeniya dlya stroitelnoy industrii [Binding cold curing for the construction industry] // Klei. Germetiki. Tekhnologii. 2012. №5. S. 40–44.
7. Chursova L.V., Kim M.A., Panina N.N., Shvetsov E.P. Nanomodificirovannoe epoksidnoe svyazuyushhee dlya stroitelnoj industrii [Nanomodified epoxy binder for the construction industry] // Aviacionnye materialy i tehnologii. 2013. №1. S. 40–47.
8. Kablov E.N. Khimiya v aviatsionnom materialovedenii [Chemistry in aviation materials science] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 3–4.
9. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozitsionnykh materialov aviatsionnogo naznacheniya. I. Mekhanizmy stareniya [Climatic aging of composite materials of aviation assignment. I. Aging mechanisms] // Deformatsiya i razrushenie materialov. 2011. №11. S. 19–27.
10. Veshkin E.A., Postnov V.I., Abramov P.A. Puti povysheniya kachestva detaley iz PKM pri vakuumnom formovanii [Ways of improvement of quality of details from PCM at vacuum formation] // Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk. 2012. T. 14. №4 (3). S. 831–838.
11. Grebeneva T.A., Panina N.N., Chursova L.V., TSybin A.I. Polimernye svyazuyushchie dlya kompozitsionnykh materialov stroitelnogo naznacheniya [Polymeric binding for composite materials of construction assignment] // Vse materialy. Entsiklopedicheskiy spravochnik. 2015. №8. S. 13–17.
12. Kogan D.I., Chursova L.V., Petrova A.P. Polimernye kompozitsionnye materialy, poluchennye putem propitki plenochnym svyazuyushchim [The polymeric composite materials received by impregnation by the film binding] // Kompozitsionnye materialy. 2011. №11. S. 2–6.
13. Grigorev M.M., Kogan D.I., Tverdaya O.N., Panina N.N. Osobennosti izgotovleniya PKM metodom RFI [Features of manufacturing of PCM RFI method] // Trudy VIAM: electron. nauch.-tehnich. zhurn. 2013. №4. St. 03. Available at: http://www.viam-works.ru (accessed: October 13, 2016).
14. Grigorev M.M., Kogan D.I., Gusev Yu.A., Gurevich Ya.M. Osobennosti izgotovleniya PKM metodom vakuumnogo formovaniya preprega [Features of producing composites by vacuum molding of prepreg] // Aviacionnye materialy i tehnologii. 2014. №3. S. 67–71. DOI: 10.18577/2071-9140-2014-0-3-67-71.
15. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] // Aviatsionnye materialy i tekhnologii. 2012. №S. S. 7–17.
16. Pickering S.J. Recycling technologies for thermoset composite materials-current status // Composites: Part A. 2006. Vol. 37. P. 1206–1215.
17. Scheirs J. Polymer recycling: science, technology and applications. New York: Wiley, 1998. 614 р.
18. Process for separating fibres from composite materials: pat. WO 1993005883 A1, filed 18.09.92; publ. 01.04.93.
19. Hartt G.N., Carey D.P. Economics of recycling thermosets. SAE Technical Paper 920802. 1992. DOI:10.4271/920802.
20. Skrifvars M. Introduction to composites recycling // Recycling of composite materials in transport: COMPOSITE thematic network workshop (Pitea, Sweden, 2003). Available at: http://www.compositn.net (accessed: October 13, 2016).
21. Thomas R., Guild F.J., Adams R.D. The dynamic properties of recycled thermoset composites // Proceedings of eighth international conference on fibre reinforced composites-FRC 2000. Newcastle upon Tyne, UK, 2000. P. 549–556.
22. Pickering S.J., Benson M. The recycling of thermosetting plastics. Plastics and rubber institute. Second international conference plastics recycling. London, 1991. P. 21–31.
23. Pickering S.J., Kelly R.M., Kennerley J.R., Rudd C.D. A fluidized-bed process for the recovery of glass fibres from scrap thermoset composites // Composites Science and Technology. 2000. Vol. 60. No. 4. P. 509–523.
24. Yip H.L.H., Pickering S.J., Rudd C.D. Characterisation of carbon fibres recycled from scrap composites using fluidized bed process // Plastic Rubber and Composites. 2002. Vol. 31. No. 6. P. 278–282.
25. Soh S.K., Lee D.K., Cho Q., Rag Q. Low temperature pyrolysis of composite scrap. Proceedings of 10th annual ASM/ESD advanced composites conference. Dearborn (Michigan). 1994. P. 47–52.
26. Cunliffe A.M., Jones N., Williams P.T. Pyrolysis of composite plastic waste // Environmental Technology. 2003. Vol. 24. No. 5. P. 653–663.
27. Ushikoshi K., Komatsu N., Sugino M. Recycling of CFRP by pyrolysis method // Journal the Society Materials. Science. Japan. 1995. Vol. 44. P. 428–433.
28. Allred R.E., Newmeister G.C., Doak T.J., Cochran R.C., Coons A.B. Tertiary recycling of cured composite aircraft parts // Proc. «Composites97»: Manufacturing and Tooling Conference. Dearborn: Society of Manufacturing Engineers, 1997. P. EM97-110–EM97-110-17.
29. Allred R.E., Gosau J.M., Wesley T.F. Integrated composite recycling process // Proc. 38th SAMPLE Technology Conference (Dallas, 2006). Available at: https://www.researchgate.net/publica-tion/286712047_Integrated_Composite_Recycling_Process (accessed: October 13, 2016).
30. Grove-Neilsen E. Material and thermal recycling of wind turbine blades and other fibreglass items by ReFiber ApS // Recycling of composite materials in transport: COMPOSITE thematic network workshop (Pitea, Sweden, 2003). Available at: http://www.compositn.net (accessed: October 13, 2016).
31. Bell J.R., Pickering S.J., Yip H., Rudd C.D. Environmental aspects of the use of carbon fibre composites in vehicles-recycling and life cycle analysis // ELV: Proceedings of end of life vehicle conference. University of Warwick, 2002.
32. Kao C.C., Ghita O.R., Hallam K.R. et al. Mechanical studies of single glass fibres recycled from hydrolysis process using sub-critical water // Composites: Part A: Applied science and manufacturing. 2012. Vol. 43. No. 3. P. 398–410.
33. Kablov E.N. Aviatsionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossiyskoy akademii nauk. 2002. T. 72. №1. S. 3–12.
7.
УДК 678.6
Chursova L.V.1, Grebeneva T.A.1, Panina N.N.1
RENEWABLE SOURCES OF RAW MATERIALS FOR EPOXY OLIGOMERS CHEMISTRY (review)
In this paper the possibility of producing epoxy resins with epichlorohydrin prepared from renewable materials and vegetable oils instead of synthetic polymers from natural gas, coal and oil feedstock are discussed. The requirement to use renewable raw materials to obtain the final product, including epoxy oligomers, instead of the exhausted, is very relevant. As a raw material for producing epoxy oligomers may be used various petroleum resins and vegetable oils, and the process for producing such epoxy oligomers is epoxidation of these resins and oils.
Keywords: epichlorohydrin, epoxy oligomers, petroleum resins, vegetable oils, epoxidation.
Reference List
1. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] // Aviatsionnye materialy i tekhnologii. 2012. №S. S. 7–17.
2. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
3. Azimov A. Kratkaya istoriya khimii [Short history of chemistry]. M.: Tsentrpoligraf, 2002. 284 s.
4. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Anastas P.T., Bartlett L.B., Kirchhoff M.M., Williamson T.C. The role of catalysis in the design, development, and implementation of green chemistry // Catalysis Today. 2000. Vol. 55. No. 1–2. P. 11–22.
6. Resheniya XIX Mendeleevskogo sezda po obshchey i prikladnoy khimii [Solutions XIX of Mendeleevsky congress on the general and applied chemistry] (Volgograd, 25–30 sent. 2011 g.) [Elektronnyy resurs]. Available at: http://www.mendeleev2011.vstu.ru/ (accessed: October 12, 2016).
7. Gandini A. Polymers from renewable resources: a challenge for the future of macromolecular materials // Macromolecules. 2008. Vol. 41. No. 24. P. 9491–9504.
8. Kamm B., Gruber P.R., Kamm M. Biorefineries – industrial processes and products. Weinheim: Wiley–VCH, 2006. Vol. 1. 964 p.
9. Amidon T.E., Wood C.D., Shupe A.M. et al. Biorefinery: conversion of woody biomass to chemicals, energy and materials // Journal of Biobased Materials and Bioenergy. 2008. Vol. 2. No. 2. P. 100–120.
10. Slavgorodskaya O.I., Bondaletov V.G., Fiterer E.P., Ogorodnikov V.D. Poluchenie epoksidirovannykh neftepolimernykh smol po reaktsii Prilezhaeva [Receiving epoksidirovanny petropolymeric pitches on Prilezhayev's reaction] // Polzunovskiy vestnik. 2013. №1. S. 186–190.
11. Process for producing dichloropropanol from glycerol, the glycerol coming eventually from the conversion of animal fats in the manufacture of biodiesel: pat. WO2005054167; filed. 18.11.04; opubl. 16.06.05.
12. Energetics // Industrial bioproducts: today and tomorrow. Columbia, MD: Energetics, Incorporated, 2003. P. 49, 52–56.
13. Danov S.M., Sulimov A.V., Sulimova A.V. Sovremennye protsessy polucheniya epikhlorgidrina [Modern processes of receiving epihydrinchlorine] // Uspekhi v khimii i khimicheskoy tekhnologii. 2010. T. 24. №5 (110). S. 74–76.
14. Shah D.U. Towards sustainable polymers and plastics: NMR spectroscopic analysis and characterisation of vernonia seed (vernonia galamensis) oil and epoxidised soya bean seed (glycine max) oil // The Scitech Journal – Science. Technology. Innovation. 2004. Vol. 1. No. 12. P. 13–29.
15. Vasilev D.D. Rastitelnye masla kak poluprodukty dlya polucheniya aktivnykh razbaviteley epoksidnykh smol [Vegetable oils as semi-products for receiving active thinners of epoxies] // Sb. tez. 14-y Mezhdunar. Pushchinskoy shkoly-konferentsii molodykh uchenykh «Biologiya – nauka XXI veka». Pushchino: Institut belka RAN. 2010. T. 2. S. 15–16.
16. Gunstone D. The study of natural epoxy oils and epoxidized vegetable oils by13C nuclear magnetic resonance spectroscopy // JAOCS. 1993. Vol. 70. No. 11. P. 1139–1144.
17. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
18. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svyazujushhie dlya perspektivnyh metodov izgotovleniya konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] // Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
19. Postnova M.V., Postnov V.I. Opyt razvitiya bezavtoklavnyh metodov formovaniya PKM [Development experience out-of-autoclave methods of formation PCM]// Trudy VIAM: ehlektron. nauch.-tekhnich. zhurn. 2014. №4. St. 06. Available at: http://www.viam-works.ru (accessed: October 13, 2016). DOI 10.18577/2307-6046-2014-0-4-6-6.
20. Akintayo E.T. Ziegler T., Onipede A. Shromatographic and spectroscopic analysis of epoxidised canola oil // Bulletin of the Chemical Society of Ethiopia. 2006. Vol. 20. P. 75–81.
21. Ledeneva I.V., Falaleev A.V., Kartavtsev P.A., Perelygina I.E., Lyapun D.V. GKh/MS analiz produktov okisleniya metilovykh efirov zhirnykh kislot podsolnechnogo masla [GH/MS analysis of products of oxidation of methyl ethers of greasy acids of sunflower oil] // Sorbtsionnye i khromatograficheskie protsessy. 2015. T. 15. Vyp. 2. S. 280–287.
22. Tundo P., Anastas P., Black D.StC. et al. Synthetic Pathways and Processes in Green Chemistry. Introductory Overview // Pure and Applied Chemistry. 2000. Vol. 72. No. 7. P. 1207–1228.
23. Kustov L.M., Beletskaya I.P. Green Chemistry – novoe myshlenie [Green Chemistry – new thinking] // Rossiyskiy Khimicheskiy Zhurnal. 2004. T. 48. №6. S. 3–12.
24. Mehta G. Polnyy sintez novykh struktur i biologicheski aktivnykh estestvennykh produktov [Complete synthesis of new structures and biologically active natural products] // XVIII Mendeleevskiy sezd po obshchey i prikladnoy khimii: tez. dokl. M.: 2007. T. 5. S. 2218–2648.
25. Anastas P.T., Warner J.C. Green Chemistry: Theory and Practice. Oxford: Oxford University Press, 1998. 135 p.
26. Zelenaya khimiya v Rossii: sb. statey [Green chemistry in Russia: collection of articles] / pod red. V.V. Lunina, P. Tundo, E.S. Loktevoy. M.: Izd. Mosk. un-ta, 2004. 230 s.
2. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
3. Azimov A. Kratkaya istoriya khimii [Short history of chemistry]. M.: Tsentrpoligraf, 2002. 284 s.
4. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Anastas P.T., Bartlett L.B., Kirchhoff M.M., Williamson T.C. The role of catalysis in the design, development, and implementation of green chemistry // Catalysis Today. 2000. Vol. 55. No. 1–2. P. 11–22.
6. Resheniya XIX Mendeleevskogo sezda po obshchey i prikladnoy khimii [Solutions XIX of Mendeleevsky congress on the general and applied chemistry] (Volgograd, 25–30 sent. 2011 g.) [Elektronnyy resurs]. Available at: http://www.mendeleev2011.vstu.ru/ (accessed: October 12, 2016).
7. Gandini A. Polymers from renewable resources: a challenge for the future of macromolecular materials // Macromolecules. 2008. Vol. 41. No. 24. P. 9491–9504.
8. Kamm B., Gruber P.R., Kamm M. Biorefineries – industrial processes and products. Weinheim: Wiley–VCH, 2006. Vol. 1. 964 p.
9. Amidon T.E., Wood C.D., Shupe A.M. et al. Biorefinery: conversion of woody biomass to chemicals, energy and materials // Journal of Biobased Materials and Bioenergy. 2008. Vol. 2. No. 2. P. 100–120.
10. Slavgorodskaya O.I., Bondaletov V.G., Fiterer E.P., Ogorodnikov V.D. Poluchenie epoksidirovannykh neftepolimernykh smol po reaktsii Prilezhaeva [Receiving epoksidirovanny petropolymeric pitches on Prilezhayev's reaction] // Polzunovskiy vestnik. 2013. №1. S. 186–190.
11. Process for producing dichloropropanol from glycerol, the glycerol coming eventually from the conversion of animal fats in the manufacture of biodiesel: pat. WO2005054167; filed. 18.11.04; opubl. 16.06.05.
12. Energetics // Industrial bioproducts: today and tomorrow. Columbia, MD: Energetics, Incorporated, 2003. P. 49, 52–56.
13. Danov S.M., Sulimov A.V., Sulimova A.V. Sovremennye protsessy polucheniya epikhlorgidrina [Modern processes of receiving epihydrinchlorine] // Uspekhi v khimii i khimicheskoy tekhnologii. 2010. T. 24. №5 (110). S. 74–76.
14. Shah D.U. Towards sustainable polymers and plastics: NMR spectroscopic analysis and characterisation of vernonia seed (vernonia galamensis) oil and epoxidised soya bean seed (glycine max) oil // The Scitech Journal – Science. Technology. Innovation. 2004. Vol. 1. No. 12. P. 13–29.
15. Vasilev D.D. Rastitelnye masla kak poluprodukty dlya polucheniya aktivnykh razbaviteley epoksidnykh smol [Vegetable oils as semi-products for receiving active thinners of epoxies] // Sb. tez. 14-y Mezhdunar. Pushchinskoy shkoly-konferentsii molodykh uchenykh «Biologiya – nauka XXI veka». Pushchino: Institut belka RAN. 2010. T. 2. S. 15–16.
16. Gunstone D. The study of natural epoxy oils and epoxidized vegetable oils by13C nuclear magnetic resonance spectroscopy // JAOCS. 1993. Vol. 70. No. 11. P. 1139–1144.
17. Kablov E.N. Rossii nuzhny materialy novogo pokolenija [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
18. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svyazujushhie dlya perspektivnyh metodov izgotovleniya konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] // Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
19. Postnova M.V., Postnov V.I. Opyt razvitiya bezavtoklavnyh metodov formovaniya PKM [Development experience out-of-autoclave methods of formation PCM]// Trudy VIAM: ehlektron. nauch.-tekhnich. zhurn. 2014. №4. St. 06. Available at: http://www.viam-works.ru (accessed: October 13, 2016). DOI 10.18577/2307-6046-2014-0-4-6-6.
20. Akintayo E.T. Ziegler T., Onipede A. Shromatographic and spectroscopic analysis of epoxidised canola oil // Bulletin of the Chemical Society of Ethiopia. 2006. Vol. 20. P. 75–81.
21. Ledeneva I.V., Falaleev A.V., Kartavtsev P.A., Perelygina I.E., Lyapun D.V. GKh/MS analiz produktov okisleniya metilovykh efirov zhirnykh kislot podsolnechnogo masla [GH/MS analysis of products of oxidation of methyl ethers of greasy acids of sunflower oil] // Sorbtsionnye i khromatograficheskie protsessy. 2015. T. 15. Vyp. 2. S. 280–287.
22. Tundo P., Anastas P., Black D.StC. et al. Synthetic Pathways and Processes in Green Chemistry. Introductory Overview // Pure and Applied Chemistry. 2000. Vol. 72. No. 7. P. 1207–1228.
23. Kustov L.M., Beletskaya I.P. Green Chemistry – novoe myshlenie [Green Chemistry – new thinking] // Rossiyskiy Khimicheskiy Zhurnal. 2004. T. 48. №6. S. 3–12.
24. Mehta G. Polnyy sintez novykh struktur i biologicheski aktivnykh estestvennykh produktov [Complete synthesis of new structures and biologically active natural products] // XVIII Mendeleevskiy sezd po obshchey i prikladnoy khimii: tez. dokl. M.: 2007. T. 5. S. 2218–2648.
25. Anastas P.T., Warner J.C. Green Chemistry: Theory and Practice. Oxford: Oxford University Press, 1998. 135 p.
26. Zelenaya khimiya v Rossii: sb. statey [Green chemistry in Russia: collection of articles] / pod red. V.V. Lunina, P. Tundo, E.S. Loktevoy. M.: Izd. Mosk. un-ta, 2004. 230 s.
8.
category: Testing of materials and structures
УДК 66.017
Kochubey A.Ya.1, Treninkov I.A.1
THE DIFFRACTION ANALYSIS OF THE WHITE X-RADIATION ON CRYSTALS BY EWALD STRUCTURE AT DIRECT POLAR FIGURES CONSTRUCTION
The diffraction analysis of a white X-radiation on twirled crystal lattices with application of Ewald structure is carried out. Assay values are applicable in crystal structure researches in which twirl of crystals is applied, in particular, at construction of direct polar figures. Ewald structure studies communication between parametres of X-ray shooting and the maintenance of direct polar figures of crystals. It is shown, that for construction of a crystal direct polar figure with application of a white X-radiation it is not required to any additional information on a crystal structure of an investigated material
Keywords: continuous roentgen spectrum, white X-radiation, X-ray crystal analysis, crystal structure, Ewald structure.
Reference List
1. Kochubey A.YA., Treninkov I.A. Primenenie belogo rentgenovskogo izlucheniya v strukturnom analize kristallicheskikh materialov [Application of the white Х-radiation in the structural analysis of crystal materials] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2018. №1–2 (29). St. 04. Available at: http://www.materialsnews.ru (accessed: Мay 23, 2018).
2. Kochubey A.YA., Treninkov I.A. Primenenie nepreryvnogo rentgenovskogo spektra dlya postroeniya pryamykh polyusnykh figur kristallov [The continuous roentgen spectrum application for construction of direct polar figures of crystals] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2018. №3–4. S. 71–74. Available at: http://www.materialsnews.ru (accessed: December 6, 2018).
3. Kelli A., Grovs G. Kristallografiya i defekty v kristallakh [Crystallography and defects in crystals. Trans. from Engl.]. Per. s angl. M.: Mir, 1974. 504 s.
4. Van Byuren. Defekty v kristallakh [Defects in crystals. Trans. from Engl.]. Per s angl. M.: Inostrannaya lit. 1962. 584 s.
5. Novikov I.I., Rozin K.M. Kristallografiya i defekty kristallicheskoy reshetki: ucheb. dlya vuzov [Crystallography and defects of crystal lattice: the textbook for higher education institutions]. M.: Metallurgiya, 1990. 336 s.
6. Bouen D.K., Tanner B.K. Vysokorazreshayushchaya rentgenovskaya difraktometriya i topografiya [High-allowing x-ray diffractometry and topography. Trans. from Engl.]. Per. s angl. SPb.: Nauka, 2002. 274 s.
7. Brandon D., Kaplan U. Mikrostruktura materialov. Metody issledovaniya i kontrolya [Microstructure of materials. Research and control methods]. M.: Tekhnosfera, 2004. 384 s.
8. Gine A. Rentgenografiya kristallov. Teoriya i praktika [X-ray grafiya of crystals. Theory and practice. Trans. from Fr.]. Per. s fr. M.: Gos. izd. fiz.-mat. lit., 1961. 604 s.
9. Gorelik S.S., Skakov Yu.A., Rastorguev L.N. Rentgenograficheskiy i elektronno-opticheskiy analiz: ucheb. posobie dlya vuzov [X-ray graphic and electro-optical analysis: the textbook for higher education institutions]. 4-e izd., dop. i pererab. M.: MISIS, 2002. 360 s.
10. Kablov E.N. Additivnye tehnologii – dominanta nacionalnoj tehnologicheskoj iniciativy [The addi-tive technologies – dominant of national technological initiative] // Intellekt i tehnologii. 2015. №2 (11). S. 52–55.
11. Zaitsev D.V., Treninkov I.A., Alekseev A.A. Ultradispersnye plastinchatye vydeleniya v zharoprochnyh nikelevyh splavah [Ultrafine lamellar precipitation in Ni-based superalloys] //Aviacionnye materialy i tehnologii. 2015. №1. S. 49–55.
12. Lukina E.A., Filonova E.V., Treninkov I.A. Mikrostruktura i preimushhestvennye kristallograficheskie orientirovki zharoprochnogo nikelevogo splava, sintezirovannogo metodom SLS, v zavisimosti ot energeticheskogo vozdejstviya i termoobrabotki [The microstructure and preferential crystallographic orientation of nickel superalloy, synthesized by SLM method, depending of the energy impact and heat treatment] // Aviacionnye materialy i tehnologii. 2017. №1 (46). S. 38–44. DOI: 10.18577/2071-9140-2017-0-1-38-44.
13. Petrushin N.V., Elyutin E.S., Raevskikh A.N., Treninkov I.A. Vysokogradientnaya napravlennaya kristallizatsiya intermetallidnogo splava na osnove Ni3Al sistemy Ni–Al–Ta, uprochnennogo fazoy TaS [High-gradient directional solidification of intermetallic Ni–Al–Ta alloy based on Ni3Al, strengthened by TaC-phase] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №3. St. 01.. Available at: http://www.viam-works.ru (accessed: December 8, 2018). DOI: 10.18577/2307-6046-2017-0-3-1-1.
14. Treninkov I.A. Razrabotka rentgenovskikh difraktsionnykh metodov kompleksnoy otsenki strukturnogo stroeniya monokristallov zharoprochnykh nikelevykh splavov: [Development of x-ray diffraction methods of complex assessment of structural structure of monocrystals of heat resisting nickel alloys: thesis, cand. Sc. (Tech.) ]. M., 2013. 25 s.
15. Kochubey A.Ya., Treninkov I.A. Opredelenie parametrov orientirovki monokristallov difraktometricheskim metodom [Definition Single crystals orientation parametres of nickel-base superalloys by diffractometer method] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2017. №2 (26). St. 08. Available at: http://www.materialsnews.ru (accessed: December 8, 2018).
16. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
17. Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii [Tendencies and reference points of innovative development of Russia]/ M.: VIAM, 2015. 720 s.
18. Barret Ch.S., Massalskiy T.B. Struktura metallov v 2 ch. [Structure of metals in 2 p. Trans. from Engl.]. Per. s angl. M.: Metallurgiya, 1984. CH. 1. 352 s.
19. Umanskiy YA.S., Skakov YU.A., Novikov A.N., Rastorguev L.N. Kristallografiya, rentgenografiya i elektronnaya mikroskopiya [Crystallography, X-ray grafiya and electron microscopy]. M.: Metallurgiya, 1982. 632 s.
2. Kochubey A.YA., Treninkov I.A. Primenenie nepreryvnogo rentgenovskogo spektra dlya postroeniya pryamykh polyusnykh figur kristallov [The continuous roentgen spectrum application for construction of direct polar figures of crystals] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2018. №3–4. S. 71–74. Available at: http://www.materialsnews.ru (accessed: December 6, 2018).
3. Kelli A., Grovs G. Kristallografiya i defekty v kristallakh [Crystallography and defects in crystals. Trans. from Engl.]. Per. s angl. M.: Mir, 1974. 504 s.
4. Van Byuren. Defekty v kristallakh [Defects in crystals. Trans. from Engl.]. Per s angl. M.: Inostrannaya lit. 1962. 584 s.
5. Novikov I.I., Rozin K.M. Kristallografiya i defekty kristallicheskoy reshetki: ucheb. dlya vuzov [Crystallography and defects of crystal lattice: the textbook for higher education institutions]. M.: Metallurgiya, 1990. 336 s.
6. Bouen D.K., Tanner B.K. Vysokorazreshayushchaya rentgenovskaya difraktometriya i topografiya [High-allowing x-ray diffractometry and topography. Trans. from Engl.]. Per. s angl. SPb.: Nauka, 2002. 274 s.
7. Brandon D., Kaplan U. Mikrostruktura materialov. Metody issledovaniya i kontrolya [Microstructure of materials. Research and control methods]. M.: Tekhnosfera, 2004. 384 s.
8. Gine A. Rentgenografiya kristallov. Teoriya i praktika [X-ray grafiya of crystals. Theory and practice. Trans. from Fr.]. Per. s fr. M.: Gos. izd. fiz.-mat. lit., 1961. 604 s.
9. Gorelik S.S., Skakov Yu.A., Rastorguev L.N. Rentgenograficheskiy i elektronno-opticheskiy analiz: ucheb. posobie dlya vuzov [X-ray graphic and electro-optical analysis: the textbook for higher education institutions]. 4-e izd., dop. i pererab. M.: MISIS, 2002. 360 s.
10. Kablov E.N. Additivnye tehnologii – dominanta nacionalnoj tehnologicheskoj iniciativy [The addi-tive technologies – dominant of national technological initiative] // Intellekt i tehnologii. 2015. №2 (11). S. 52–55.
11. Zaitsev D.V., Treninkov I.A., Alekseev A.A. Ultradispersnye plastinchatye vydeleniya v zharoprochnyh nikelevyh splavah [Ultrafine lamellar precipitation in Ni-based superalloys] //Aviacionnye materialy i tehnologii. 2015. №1. S. 49–55.
12. Lukina E.A., Filonova E.V., Treninkov I.A. Mikrostruktura i preimushhestvennye kristallograficheskie orientirovki zharoprochnogo nikelevogo splava, sintezirovannogo metodom SLS, v zavisimosti ot energeticheskogo vozdejstviya i termoobrabotki [The microstructure and preferential crystallographic orientation of nickel superalloy, synthesized by SLM method, depending of the energy impact and heat treatment] // Aviacionnye materialy i tehnologii. 2017. №1 (46). S. 38–44. DOI: 10.18577/2071-9140-2017-0-1-38-44.
13. Petrushin N.V., Elyutin E.S., Raevskikh A.N., Treninkov I.A. Vysokogradientnaya napravlennaya kristallizatsiya intermetallidnogo splava na osnove Ni3Al sistemy Ni–Al–Ta, uprochnennogo fazoy TaS [High-gradient directional solidification of intermetallic Ni–Al–Ta alloy based on Ni3Al, strengthened by TaC-phase] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №3. St. 01.. Available at: http://www.viam-works.ru (accessed: December 8, 2018). DOI: 10.18577/2307-6046-2017-0-3-1-1.
14. Treninkov I.A. Razrabotka rentgenovskikh difraktsionnykh metodov kompleksnoy otsenki strukturnogo stroeniya monokristallov zharoprochnykh nikelevykh splavov: [Development of x-ray diffraction methods of complex assessment of structural structure of monocrystals of heat resisting nickel alloys: thesis, cand. Sc. (Tech.) ]. M., 2013. 25 s.
15. Kochubey A.Ya., Treninkov I.A. Opredelenie parametrov orientirovki monokristallov difraktometricheskim metodom [Definition Single crystals orientation parametres of nickel-base superalloys by diffractometer method] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2017. №2 (26). St. 08. Available at: http://www.materialsnews.ru (accessed: December 8, 2018).
16. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
17. Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii [Tendencies and reference points of innovative development of Russia]/ M.: VIAM, 2015. 720 s.
18. Barret Ch.S., Massalskiy T.B. Struktura metallov v 2 ch. [Structure of metals in 2 p. Trans. from Engl.]. Per. s angl. M.: Metallurgiya, 1984. CH. 1. 352 s.
19. Umanskiy YA.S., Skakov YU.A., Novikov A.N., Rastorguev L.N. Kristallografiya, rentgenografiya i elektronnaya mikroskopiya [Crystallography, X-ray grafiya and electron microscopy]. M.: Metallurgiya, 1982. 632 s.
9.
category: History of materials
УДК 001.92:37
Kuzmina N.A.1, Muromtsev N.A.2
WAY INFERIOR TO THE ONE WHO KNOWS WHERE HE IS GOING
The article analyzes the reasons of Russia's lagging behind in the development of the 5th technological mode. The phenomena typical for the 6th technological order, such as convergence of information technologies and production, are considered. Ways of formation of personnel base for overcoming of lag in development of information technologies and successful development of the 6th technological way are offered. Examples of effective interaction between educational and industrial institutions in order to form a balanced market of professions and qualified personnel are given.
Keywords: technological way of life, convergence, spiritual and moral education, mentoring, algorithmic thinking, career guidance.
Reference List
1. Kablov E.N. Shestoy tekhnologicheskiy uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
2. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Ospennikova O.G. Tendencii sozdaniya zharoprochnyh nikelevyh splavov nizkoj plotnosti s polikristallicheskoj i monokristallicheskoj strukturoj (obzor) [Tendencies of development of heat-resistant nickel alloys of low density with polycrystalline and single-crystal structures (review)] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 3–19. DOI: 10.18577/2071-9140-2016-0-1-3-19.
5. Ospennikova O.G. Itogi realizacii strategicheskih napravlenij po sozdaniyu novogo pokoleniya zharoprochnyh litejnyh i deformiruemyh splavov i stalej za 2012–2016 gg. [Implementation results of the strategic directions on creation of new generation of heat-resisting cast and wrought alloys and steels for 2012–2016] // Aviacionnye materialy i tehnologii. 2017. №S. S. 17–23. DOI: 10.18577/2071-9140-2017-0-S-17-23.
6. Bazyleva O.A., Ospennikova O.G., Arginbaeva E.G., Letnikova E.Yu., Shestakov A.V. Tendencii razvitiya intermetallidnyh splavov na osnove nikelya [Development trends of nickel-based intermetallic alloys] // Aviacionnye materialy i tehnologii. 2017. №S. S. 104–115. DOI: 10.18577/2071-9140-2017-0-S-104-115.
7. Kablov E.N. Materialy novogo pokolenija [Materials of new generation] // Zashhita i bezopasnost. 2014. №4. S. 28–29.
8. Kablov E.N. Iz chego sdelat budushhee? Materialy novogo pokolenija, tehnologii ih sozdanija i pere-rabotki – osnova innovacij [Of what to make the future? Materials of new generation, technology of their creation and processing – basis of innovations] // Krylja Rodiny. 2016. №5. S. 8–18.
9. Kablov E.N. Materialy novogo pokolenija – osnova innovacij, tehnologicheskogo liderstva i nacionalnoj bezopasnosti Rossii [Materials of new generation – basis of innovations, technological leadership and national security of Russia] // Intellekt i tehnologii. 2016. №2 (14). S. 16–21.
10. Kablov E.N. Vek umnyh materialov [Century of smart materials] // Ekspert. 2012. №36. S. 82–86.
11. Kablov E.N. Rossiya na rynke intellektualnyh resursov [Russia in the market of intellectual resources] // Ekspert. 2015. №28. S. 48–51.
12. Kablov E.N. Na perekrestke nauki, obrazovaniya i promyshlennosti [At intersection of science, education and the industry] // Ekspert. 2015. №15. S. 49–53.
13. Dlya shkolnikov iz Severnogo proveli «urok magii» [For school students from Northern have conducted «magic lesson»] // FGUP «VIAM»: [ofits. sajt]. Available at: https://viam.ru/news/4845 (accessed: March 12, 2018).
14. Ekskursiya moskovskih shkolnikov [Excursion of the Moscow school students] // FGUP «VIAM»: [ofits. sajt]. Available at: https://viam.ru/news/4664 (accessed: March 12, 2018).
15. Ekskursiya moskovskih shkol'nikov [Excursion of the Moscow school students] // FGUP «VIAM»: [ofits. sajt]. Available at: https://viam.ru/news/4917 (accessed: March 12, 2018).
16. Kursy povysheniya kvalifikatsii v VIAM [Advanced training courses in VIAM] // FGUP «VIAM»: [ofits. sajt]. Available at: https://viam.ru/news/4710 (accessed: March 12, 2018).
17. Predstaviteli AAK «Progress» proshli obuchenie v VIAM [Representatives of AAС «Progress» were trained in VIAM] // FGUP «VIAM»: [ofits. sajt]. Available at: https://viam.ru/news/4841 (accessed: March 12, 2018).
18. Studentam MGU rasskazali o VIAM [Students of the Moscow State University were told about VIAM] // FGUP «VIAM»: [ofits. sajt]. Available at: https://viam.ru/news/4718 (accessed: March 12, 2018).
19. Ekskursiya dlya studentov MGTU im. N.E. Baumana [Excursion for students of MGTU of N.E. Bauman] // FGUP «VIAM»: [ofits. sajt]. Available at: https://viam.ru/news/4657 (accessed: March 12, 2018).
2. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Ospennikova O.G. Tendencii sozdaniya zharoprochnyh nikelevyh splavov nizkoj plotnosti s polikristallicheskoj i monokristallicheskoj strukturoj (obzor) [Tendencies of development of heat-resistant nickel alloys of low density with polycrystalline and single-crystal structures (review)] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 3–19. DOI: 10.18577/2071-9140-2016-0-1-3-19.
5. Ospennikova O.G. Itogi realizacii strategicheskih napravlenij po sozdaniyu novogo pokoleniya zharoprochnyh litejnyh i deformiruemyh splavov i stalej za 2012–2016 gg. [Implementation results of the strategic directions on creation of new generation of heat-resisting cast and wrought alloys and steels for 2012–2016] // Aviacionnye materialy i tehnologii. 2017. №S. S. 17–23. DOI: 10.18577/2071-9140-2017-0-S-17-23.
6. Bazyleva O.A., Ospennikova O.G., Arginbaeva E.G., Letnikova E.Yu., Shestakov A.V. Tendencii razvitiya intermetallidnyh splavov na osnove nikelya [Development trends of nickel-based intermetallic alloys] // Aviacionnye materialy i tehnologii. 2017. №S. S. 104–115. DOI: 10.18577/2071-9140-2017-0-S-104-115.
7. Kablov E.N. Materialy novogo pokolenija [Materials of new generation] // Zashhita i bezopasnost. 2014. №4. S. 28–29.
8. Kablov E.N. Iz chego sdelat budushhee? Materialy novogo pokolenija, tehnologii ih sozdanija i pere-rabotki – osnova innovacij [Of what to make the future? Materials of new generation, technology of their creation and processing – basis of innovations] // Krylja Rodiny. 2016. №5. S. 8–18.
9. Kablov E.N. Materialy novogo pokolenija – osnova innovacij, tehnologicheskogo liderstva i nacionalnoj bezopasnosti Rossii [Materials of new generation – basis of innovations, technological leadership and national security of Russia] // Intellekt i tehnologii. 2016. №2 (14). S. 16–21.
10. Kablov E.N. Vek umnyh materialov [Century of smart materials] // Ekspert. 2012. №36. S. 82–86.
11. Kablov E.N. Rossiya na rynke intellektualnyh resursov [Russia in the market of intellectual resources] // Ekspert. 2015. №28. S. 48–51.
12. Kablov E.N. Na perekrestke nauki, obrazovaniya i promyshlennosti [At intersection of science, education and the industry] // Ekspert. 2015. №15. S. 49–53.
13. Dlya shkolnikov iz Severnogo proveli «urok magii» [For school students from Northern have conducted «magic lesson»] // FGUP «VIAM»: [ofits. sajt]. Available at: https://viam.ru/news/4845 (accessed: March 12, 2018).
14. Ekskursiya moskovskih shkolnikov [Excursion of the Moscow school students] // FGUP «VIAM»: [ofits. sajt]. Available at: https://viam.ru/news/4664 (accessed: March 12, 2018).
15. Ekskursiya moskovskih shkol'nikov [Excursion of the Moscow school students] // FGUP «VIAM»: [ofits. sajt]. Available at: https://viam.ru/news/4917 (accessed: March 12, 2018).
16. Kursy povysheniya kvalifikatsii v VIAM [Advanced training courses in VIAM] // FGUP «VIAM»: [ofits. sajt]. Available at: https://viam.ru/news/4710 (accessed: March 12, 2018).
17. Predstaviteli AAK «Progress» proshli obuchenie v VIAM [Representatives of AAС «Progress» were trained in VIAM] // FGUP «VIAM»: [ofits. sajt]. Available at: https://viam.ru/news/4841 (accessed: March 12, 2018).
18. Studentam MGU rasskazali o VIAM [Students of the Moscow State University were told about VIAM] // FGUP «VIAM»: [ofits. sajt]. Available at: https://viam.ru/news/4718 (accessed: March 12, 2018).
19. Ekskursiya dlya studentov MGTU im. N.E. Baumana [Excursion for students of MGTU of N.E. Bauman] // FGUP «VIAM»: [ofits. sajt]. Available at: https://viam.ru/news/4657 (accessed: March 12, 2018).